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ABSTRACT

The lowest order sigma-transformed momentum equation given by Mellor takes into account a phase-
averaged wave forcing based on Airy wave theory. This equation is shown to be generally inconsistent
because of inadequate approximations of the wave motion. Indeed the evaluation of the vertical flux of
momentum requires an estimation of the pressure p and coordinate transformation function s to first order
in parameters that define the large-scale evolution of the wave field, such as the bottom slope. Unfortu-
nately, there is no analytical expression for p and s at that order. A numerical correction method is thus
proposed and verified. Alternative coordinate transforms that allow a separation of wave and mean flow
momenta do not suffer from this inconsistency nor do they require a numerical estimation of the wave
forcing. Indeed, the problematic vertical flux is part of the wave momentum flux, thus distinct from the
mean flow momentum flux, and not directly relevant to the mean flow evolution.

1. Introduction

Wave-induced motions are of prime importance in
the upper ocean and in the coastal ocean (e.g., Ardhuin
et al. 2005 for a recent review). Therefore, the usual
three-dimensional primitive equations must be modi-
fied to account for waves. Among such modified equa-
tions, those based on surface-following coordinates
provide physically sound definitions of velocities right
up to the free surface, allowing a proper representation
of surface shears and mixing on a vertical scale smaller
than the wave height (i.e., a few meters). Any change of
coordinate adds some complexity to the derivation, but
the final equations can be relatively simple because
parts of the advective fluxes are removed, and bound-

ary conditions may be simplified. A new set of such
equations was recently derived by Mellor (2003) using a
change of the vertical coordinate only, arguably the
simplest possible. Mellor’s (2003) set of equations was
originally derived for monochromatic waves, but it is
easily extended to random waves [e.g., Ardhuin et al.
2004, their Eq. (8)]. Unfortunately, we show here that
these equations, in the form given by Mellor, are not
consistent in the simple case of shoaling waves without
energy dissipation. A modification is proposed to solve
the problem, but it requires a numerical evaluation of
the wave-forcing terms. This difficulty is due to the
choice of averaging, and the same problem arises with
the alternative generalized Lagrangian mean (aGLM)
equations of Andrews and McIntyre [1978a, their Eq.
(8.7a)]. Both Mellor’s and the aGLM equations de-
scribe the evolution of a momentum quantity that con-
tains the three-dimensional wave (pseudo) momentum
[hereinafter called “wave momentum” for simplicity;
see McIntyre (1981) for details]. Writing an evolution
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equation for this quantity requires an explicit descrip-
tion of the complex vertical fluxes of wave momentum
that are necessary to maintain the vertical structure of
the wave field in the surface gravity waveguide.

2. The problem: Wave motions and wave-following
vertical coordinates

We discuss here the simple case of monochromatic
waves of amplitude a and wavenumber k propagating in
the horizontal x direction, with all quantities uniform in
the other horizontal y direction. The surface and bot-
tom elevations are �(x, t) and �h(x), respectively, so
that the local mean water depth is D(x, t) � h(x) �
�(x, t), with the overbar denoting an Eulerian average
over the wave phase. We shall assume that the maxi-
mum surface slope is a small parameter �1 � ka K 1,
and that the Eulerian mean current u in the x direction
is uniform over the depth. Thus, � will denote the ra-
dian wave frequency related to k by the linear wave
dispersion relation (e.g., Mei 1989),

� � ku � � � ku � �gk tanh�kD	
1�2, �1	

where g is the acceleration due to apparent gravity, and
� is the relative radian frequency of the waves.

Finally, we assume that the water depth, current, and
wave amplitude change slowly along the x axis with a
slowness measured by a second small parameter �2

taken to be the maximum bottom slope. We thus as-
sume |(�D/�x) | � �2, | (�a/�x) | � �1�2, | (�u/�x)/� | � �2,
| (�a/�t) | � C�1�2, |k(�u/�t)/�2 | � �2, and |(�D/�t) | �

C�2, where C � �/k is the intrinsic phase speed of the
waves. The conditions on the bottom slope and current
gradients are consistent with the condition on the wave
amplitude gradient because in steady conditions the
wave amplitude would change as a result of shoaling
over the current and/or bottom.

The vertical coordinate z is implicitly transformed
into Mellor’s  coordinate through

z � s�x, �, t	 � � � �D � s̃, �2	

with s̃ defined by Mellor’s Eq. (23b) as

s̃ � s̃0 � aFSS cos�kx � �t	 �3	

and the vertical profile function FSS defined by

FSS �
sinh�kD�1 � �	


sinh�kD	
�

sinh�k�z � h	


sinh�kD	
� O� a

D�.

�4	

The coordinate transformation from z to  has the
very nice property of following the vertical wave-
induced motion, at least for linear waves on a flat bot-
tom, and to first order in �1. In that case the iso- sur-

faces are material surfaces, and the fluxes of horizontal
momentum through one of these surfaces are simply
correlations of pressure p times the slope of that surface
�s/�x (Fig. 1c), which replaces the wave-induced advec-
tive flux uw in an Eulerian point of view (Fig. 1a). More
generally, when averaging is performed following water
particles over their trajectory (Lagrangian) or over
their vertical displacement (Mellor sigma), the corre-
sponding advective flux of momentum uiuj is replaced
by a modified pressure force (Fig. 1).1

Using his coordinate transform, Mellor (2003) ob-
tained a phase-averaged equation for the drift current
U � û � uS, where uS is the Stokes drift (i.e., the mean
velocity of water particles induced by fast wave-induced
motions); U is strictly defined as the phase-averaged
particle drift velocity when following the up-and-down
wave motion, and û � U � uS is a quasi-Eulerian mean
current (Jenkins 1986, 1987). Below the wave crests û is
equal, to second order in the wave slope, to the Eule-
rian mean current u (Fig. 2).

Mellor’s horizontal mean momentum Eq. (34a) is re-
produced here for completeness, in our conditions with
a flow restricted to the vertical x, z plane, a constant
water density, no Coriolis force, no turbulent fluxes,
and the atmospheric mean pressure set to zero (wind-
wave generation due to air pressure fluctuations is ab-
sorbed in Fx3):

�DU

�t
�

�DU2

�x
�

��U

��
� gD

��̂

�x
� Fxx � Fx3, �5	

where � is the vertical mean velocity, and �̂ is the mean
surface elevation.

On the right-hand side, the first term

Fxx � �
�Sxx

�x
� �

�

�x �Dũ2 � p̃
�s̃

��
� �6	

represents the convergence of a horizontal flux of hori-
zontal momentum that accelerates the mean drift ve-
locity U.

The other term

Fx3 � �
�Sx3

��
�

�

��
� p̃�s̃��x	 �7	

represents a similar convergence of a vertical flux of
horizontal momentum.

Here, p̃ and s̃ are of order ga and a, respectively. In
general p̃ � p̂ cos(kx) and s̃ � ŝ cos(kx � �) are almost

1 For the GLM, only the contributions to lowest order in �1 are
indicated. Indeed, in GLM the wave-induced advective flux is not
strictly zero, but of higher order, since the average only follows a
zero-mean displacement with a residual advection, contrary to a
truly Lagrangian mean with zero advection (e.g., Jenkins 1986).
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in phase (i.e., the phase shift � is of order �2). Thus,
�s̃/�x � kŝ sin(x � �) � cos(kx � �)�ŝ/�x gives a phase-
averaged correlation with p̃ that is 0.5p̂[kŝ sin(�) �
0.5�ŝ/�x]. Thus, given that the amplitude ŝ is less than a
and that �a/�x � �1�2 by definition, both the flux Sx3 and
the force Fx3 are on the order of gDka�a/�x � gD�2

1�2.
Mellor estimated the vertical momentum flux Sx3

from (3) and the corresponding lowest-order wave-
induced kinematic pressure on  levels,2

p̃ � p̃0 � ga�FCC � FSS	 cos�kx � �t	, �8	

where the vertical profile function FCC is defined by

FCC �
cosh�kD�1 � �	


cosh�kD	
�

cosh�k�z � h	


cosh�kD	
� O� a

D�.

�9	

For nondissipating shoaling waves, the right-hand
side terms of Eq. (5) are on the order of gD�2

1�2. The
estimation of Fx3 thus requires the knowledge of p̃/(gD)
and ks̃ to order �1�2, for which Airy theory is insuffi-
cient. In particular, this estimation demands a formal
definition of s̃, not given by Mellor (2003). Further, Eq.
(7) is only valid if the wave-induced velocity �̃ through
 levels is zero, or at least, yields a negligible flux �̃ũ

2 This pressure includes a hydrostatic correction due to the ver-
tical displacement.

FIG. 1. Wave-induced fluxes of horizontal momentum in Eulerian, generalized Lagrangian, and Mellor-sigma averages of the flow.
Viscous or turbulent fluxes are neglected for simplicity. Distorted squares represent an elementary fluid volume and its position at four
phases of the wave cycle, and the large arrow indicates the local wave orbital velocity. The horizontal and vertical fluxes of the
horizontal momentum are represented by smaller arrows. Their expressions are given to lowest order, without Jacobian corrections due
to a change of volume (e.g., this results in u2 � p becoming Mellor’s u2 � p�s/�).
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FIG. 2. (left) Averaging procedures and (right) examples of resulting velocity profiles in the case of (a) Eulerian averages, (b) the
GLM, and (c) sigma transforms (Mellor 2003). The thick black bars connect the fixed points (x, z) where the average field is evaluated,
to the displaced points (x, z) � (�1, �3) where the instantaneous field is evaluated. For averages in moving coordinates, the points (x,
z) � (�1, �3) at a given vertical level � are along the gray lines. The drift velocity is the sum of the (quasi-Eulerian) current and the
wave-induced mass transport. In the present illustration an Airy wave of amplitude 3 m and wavelength 100 m in 30-m depth is
superimposed on a hypothetical current of velocity u(z) � �0.5 � 0.01z m s�1 for all z � �(x). The quasi-Eulerian current profile is
not represented in (c) since it is not directly given in Mellor’s theory, although it can obviously be obtained by taking the difference
of the other two profiles.
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and a negligible mean Jacobian-weighted vertical ve-
locity � � �̃/(1 � �s/�/D). This is not the case over a
sloping bottom with Mellor’s (2003) s function.

a. Formal definition of the coordinate change s̃

For a general surface  defined implicitly by z � s(x,
, t), the  velocity component �̃ is [e.g., Mellor’s (2003)
Eq. (20)]

�̃ �
d�z � s	

dt
�

d�z � s	

dt
,

� w̃ � ũ
�s

�x
� û

�s̃

�x
�

�s̃

�t
, �10	

with s � � � D.
In the spirit of Mellor’s (2003) derivation, the  levels

should be material surfaces for wave-only motions, so
that one may neglect the vertical flux of momentum
(U � ũ)�̃/(1 � �s/�/D).

Using the wave-induced vertical and horizontal dis-
placements �3(x, , t) and �1(x, , t), defined by �� i /�t �
ũi(x1 � �1, z � �3, t), we redefine the wave part of s as

s̃	 � 
3 � 
1

�s

�x
. �11	

The first term �3 corresponds to Mellor’s definition
while the second is a O(�2)-relative correction. This
definition yields a wave-induced vertical velocity �̃ �
�û�s̃�/�x through the iso- surfaces redefined by z � s
(x, , t) � � � D � s̃�. If û K ũ, as in the examples
below, then �̃ is of a higher order compared to that
given by Mellor’s (2003) s̃ [Eq. (2)].

b. Wave-induced vertical displacements and
pressure over a sloping bottom

A Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) ap-
proximation using Airy’s theory is sufficient for esti-
mating �Fxx /�x because the horizontal gradient of any
wave-averaged quantity � is on the order of �2k�. �n
the contrary, the other force Fx3 is affected by modifi-
cations s̃�1 and p̃1 to the local flat-bottom solutions s̃�
and p̃.

For small bottom slopes, s̃�1 and p̃1 are expected to be
on the order of �2s̃� and �2 p̃ (i.e., of order a�2 and
ga�1�2, respectively). Thus, �s̃�1/�x is on the order of
ka�2 � �1�2, and is expected to be in phase with the
wave-induced pressure (8), of order ga, giving another
term of order gD�2

1�2 omitted by Mellor in his estima-
tion of �( p̃�s̃/�x)/�. The modification of the pressure
can be obtained from the modification of the velocity
potential, and it may be in phase with �s̃0 /�x, thus also
contributing at the same order to Fx3.

To be convinced of the problem, one may consider
the case of steady monochromatic shoaling waves over
a slope without bottom friction, viscosity, or any kind of
surface stress. We also neglect the Coriolis force. In this
mathematical experiment, the flow is purely irrota-
tional. We consider that the nondimensional depth kD
is of order 1, and that there is no net mass flux across
any vertical section. In that case the mean current and
the Stokes drift are of the same order (i.e., of order C�2

1

with C as the phase speed). The mean current exactly
compensates the divergence of the wave-induced mass
transport, and the mean sea level is lower in the area
where the wave height is increased (Longuet-Higgins
1967):

�̂�x	 � �
kE

sinh�2kD	
�

k0E0

sinh�2k0D0	
, �12	

where E is the variance of the surface elevation time
series, and the 0 subscript corresponds to quantities
evaluated at the offshore boundary of the domain.

Since wave forcing is steady, the Eulerian mean cur-
rent response is steady (e.g., Rivero and Sanchez-
Arcilla 1995; McWilliams et al. 2004; Lane et al. 2007),
and thus the Lagrangian mean current is also steady.
Thus the first term in (5) is zero and the second is of
order DC2�4

1�2 /D � gD�4
1�2. The vertical mean velocity

� can be estimated from the steady mass conservation
equation

�DU

�x
�

��

��
� 0, �13	

where the first term is of order DC�2
1�2 /D and the sec-

ond is of order �. Thus the third term in (5) is of order
C2�4

1�2 � gD�4
1�2. The remaining terms in (5) are of

order �2
1�2, giving the lowest order momentum balance

�D
�

�x
�g�	

Feta

�
�Sxx

�x

Fxx

�
�

��
p̃�s̃��x

Fx3

� 0, �14	

which defines the depth-integrated forces Feta, Fxx, and
Fx3. For reference, the corresponding lowest-order Eu-
lerian mean balance is (e.g., Rivero and Sanchez-
Arcilla 1995; Lane et al. 2007)

�
�

�x
�g� � w̃2	 �

�ũ2

�x
�

�ũw̃

�z
� 0. �15	

Only the hydrostatic pressure gradient is present in
both the Eulerian and Mellor-sigma balances, because
the other terms represent a different balance, including
wave momentum in the latter (see Fig. 2).

Equation (14) is now tested numerically. We take a
Roseau (1976)-type bottom profile defined by x and z
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coordinates given by the real and imaginary parts of the
complex function,

Z�x		 �
h1�x	 � i�	 � �h2 � h1	 ln�1 � ex	�i�	

�
. �16	

With � � 15�/180, h1 � 6 m, and h2 � 4 m (Fig. 1),
and a radian frequency of � � 1.2 rad s�1 (i.e., a fre-
quency f � 0.2 Hz), the nondimensional water depth
varies between 0.85 � kD � 1.1. The reflection coeffi-
cient for the wave amplitude is 1.4 � 10�9 (Roseau
1976), so that reflected waves may be neglected in the
momentum balance. We illustrate the force balance ob-
tained for waves with an offshore amplitude a0 � 0.12
m, which corresponds to a maximum steepness �1 �
ka � 2.6 � 10�2 equal to the maximum bottom slope
�2 � �1. The change in wave amplitude is given by the
conservation of the wave energy flux [see Ardhuin
(2006) for a thorough discussion], and the wave phase �
is taken as the integral over x of the local wavenumber,
so that ��/�x � k. The various terms are then estimated
using second-order finite differences on a regular grid
in  coordinates, with 201 by 401 points covering the
domain shown in Fig. 3a. The three terms in Eq. (14)
are shown in Fig. 3.

We have verified that the depth-integrated forces are
in balance, within 0.1% of Feta. However, at most water
depths there is a large imbalance on the order of the
individual forces (i.e., gD�2

1�2), up to 180% of Feta. This
contradicts the known steady balance obtained from
the Eulerian-mean analysis of Rivero and Sanchez-
Arcilla (1995).

For the case of shoaling waves without breaking, the
three-dimensional equations of motion of Mellor
(2003) are not consistent to their dominant order, be-
cause of an improper approximation of Sx3. This con-
clusion holds for any relative magnitude of the wave
and bottom slopes �1 and �2.

c. Wind-forced waves

Clearly, any deviation of the wave-induced fields s�,
p, and u from Airy wave theory may have strong effects
on the vertical momentum flux term Sx3. Another ex-
ample of such a situation, correctly described by Mel-
lor, is the case of wind-wave generation. We briefly
address it here because the full solution has not been
given previously. Mellor focused on the wind-wave gen-
eration contribution to the vertical momentum flux
term p̃�s̃/�x. This equals the wave-supported wind stress
at the sea surface, and below, it explains the growth of
the wave momentum profile with the same profile as
that of the Stokes drift (Mellor 2003).

In horizontally uniform conditions, the wave ampli-

tude is a function of time only, and for the sake of
simplicity we shall solve the problem in the frame of
reference moving at the velocity at which the wave
phase is advected by the current. We write the wave-
induced nonhydrostatic kinematic Eulerian pressure in
the form p̃E � p̃E0 � p̃Ew, the elevation as � � �0 � �w,
and the velocity potential as � � �0 � �w, in which the
0 subscript refers to the primary waves and the w sub-
script refers to the added components in the presence
of wind forcing. Taking a primary surface elevation of
the form �0 � a cos � with the phase � � kx � �t,
Mellor considered an atmospheric kinematic pressure
fluctuation in quadrature with the primary waves,

p̃a � �g�
w

a
a sin�, �17	

with � as a small nondimensional wave growth factor;
and �w and �a as the densities of water and air, respec-
tively. He then assumed that the water-side wave-
induced pressure was of the form

p̃Mellor � �g�a
cosh�k�z � h	


cosh�kD	
sin�. �18	

Implicitly s̃�w is zero, and for his purpose �w was ir-
relevant. We shall now also determine �w. The conti-
nuity of dynamic pressures at the surface is3

p̃Ew � gs̃	w � �g�a sin� at z � �. �19	

A solution is obtained by solving Laplace’s equation
with proper boundary conditions to first order in �. The
boundary conditions include the Bernoulli equation,

��

�t
� �g� �

a

w
pa, at z � �, �20	

in which nonlinear terms have been neglected because
they are the sum of products of the form ��0 · ��0,
unchanged from the case without wind, and terms of
the form ��w · ��0, which are negligible compared to
the left-hand side terms for primary waves of small
slope. Similarly, the surface kinematic boundary condi-
tion is linearized as

��

�z
�

��

�t
at z � �. �21	

The combination of both yields

�2�

�t2 � g
��

�z
� �

a

w

�p̃a

�t
at z � �; �22	

3 Here the pressure is Eulerian. For correspondence to Mellor’s
pressures on  levels, one should take p̃ � p̃E � gs̃�.
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FIG. 3. (a) Snapshot of the pressure field for a slowly varying Airy wave over (a) the bottom topography given by Eq. (16). (b)–(d)
The forces in the balance (14) and (e) their sum are shown, all estimated from Mellor’s analytical expressions. All forces have been
normalized by gD�3. (N.B. in the case shown here �1 � �2 � �.)
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�w is also a solution of Laplace’s equation with the
bottom boundary condition ��w /�z � 0 at z � �h. With
the fully resonant atmospheric pressure (17) envisaged
by Mellor, one has

�0 � a�t	 cos�, �23	

�0 �
ga�t	

�
FCC sin�, �24	

p̃E0 � ga�t	FCC cos�, �25	

da�t	

dt
�

��a�t	

2
, and �26	

�w � �g
a

2�
FCC �A cos� � B cos�	
, �27	

with �� � (kx � � t). The elevation and underwater
nonhydrostatic pressures corresponding to �w are given
by (21) and the linearized Bernoulli equation

�

�t
��0 � �w	 � �p̃E0 � p̃Ew, �28	

yielding

�w � �
a

2
��1 � A	 sin� � B sin�	
 and �29	

p̃Ew � g�
a

2
FCC ���1 � A	 sin� � B sin�	
. �30	

Mellor’s expression for p̃w [Eq. (18)] is obtained by
replacing �w and p̃Ew in (19), giving A � 1. One may
take B � 1 to have �w � 0 at t � 0, or more simply
B � 0, which gives �w � 0, and pEw � FCC p̃a�a /�w. The
choice of B has no dynamical effect. In the present case
�w should give a contribution to Sxx because it is in
phase with �0, but this is a relative correction of order
� and is thus negligible. To the contrary, the contribu-
tion of p̃w to ( p̃�s̃/�x) is quite important, because for
uniform horizontal conditions this flux is otherwise
zero.

3. A solution to the problem?

Contrary to that particular wind-forcing term, there
is no simple asymptotically analytical correction for p̃
and s̃� that can account for the bottom slope and wave
field gradient. A major problem in this situation is that
the wave velocity potential becomes a nonlocal func-
tion of the water depth. The velocity potential and pres-
sure fields may only be investigated analytically for
plane beds (e.g., Ehrenmark 2005) or specific bottom
profiles. Numerical solutions for the three-dimensional
wave motion are generally found as infinite series of
modes (e.g., Massel 1993). The velocity potential for

any of these modes satisfies Laplace’s equation with a
local vertical profile Fn proportional to cos(knz � knh)
and a dispersion relation �2 � gkn tan(knD). The local
amplitudes of these modes are nonlocal functions of the
water depth, and may be obtained numerically with a
coupled-mode model (Massel 1993). This nonlocal de-
pendence of the wave amplitude on the water depth
arises from the elliptic nature of Laplace’s equation,
satisfied by the velocity potential in irrotational condi-
tions. The series of modes can be made to converge
faster by adding a “sloping bottom mode” that often
accounts for a large part of the correction and is a local
function of the depth and bottom slope. It is thus of
interest to see if that correction only, without the infi-
nite series, may provide a first-order analytical correc-
tion to Mellor’s momentum flux Sx3.

Following Athanassoulis and Belibassakis (1999),
one may define the velocity potential for that mode as

�1 � �
dh

dx
a�DF �z	 cos�. �31	

To satisfy the bottom boundary condition w � ��1/�z �
�(dh/dx)��0 /�x, the function F should verify DdF(�h)/
dz � 1/sinh(kD) and the satisfaction of the surface
boundary condition may be obtained with F(0) �
dF(0)/dz � 0. Athanassoulis and Belibassakis (1999)
have used

F � FAB �
1

sinh�kD	
��z � �

D �3

� �z � �

D �2�, �32	

and Chandrasekera and Cheung (2001) have used

F � FCh �
1

kD sinh2�kD	
�1 � cosh�kz � k�	
. �33	

With these choices �1 does not satisfy exactly
Laplace’s equation, and thus requires further correc-
tions in the form of evanescent modes. An infinite num-
ber of other choices is available, either satisfying
Laplace’s equation or the surface boundary conditions,
but never both. Thus, each of these solutions is only
approximate, and the exact solution is given by the in-
finite series of modes, which can be computed numeri-
cally for any bottom topography (e.g., Athanassoulis
and Belibassakis 1999; Belibassakis et al. 2001; Magne
et al. 2007).

The vertical displacement and Eulerian pressure cor-
rections are given by time integration of the vertical
velocity and the linearized Bernoulli equation,


31 �
dh

dx
aD

dF

dz
sin� and �34	

p̃E1 �
dh

dx
aDF �z	 sin�. �35	
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Thus, in absence of wind forcing but taking into ac-
count the sloping bottom mode to first order in the
bottom slope, the wave-induced flux of momentum
through iso- surfaces is

p̃
�s̃	

�x
� �FCC � FSS	�ga

2
��aFSS	

�x

�
gka2

2
dh

dx �D
dF

dz
� �FCS��

�
gka2

2
dh

dx ��FSCF � FSS�D
dF

dz
� �FCS��,

�36	

with FCS � cosh [kD(1 � )]/sinh (kD). The first line is
the term given by Mellor (2003). The second line arises
from the correction due to the difference between s̃�
and s̃, and the third line arises because of corrections
p̃1 � p̃E1 � gs�1 to the pressure on  levels. These addi-
tional terms are of the same order as the first term and
have no flux at the bottom and surface. Thus, the
depth-integrated equations including that term also
comply with known depth-integrated equations (e.g.,
Smith 2006).

In the case chosen here, FCh gives a net momentum
balance closer to zero than Mellor’s (2003) original ex-
pression (Fig. 4). However, the remaining error is sig-
nificant. Thus, one cannot use only that mode, and the
contribution of the evanescent modes has to be com-
puted, which can only be done numerically.

A numerical evaluation of the forces was performed
using the coupled mode model (CMM) developed at
the National Technical University of Athens (NTUA-
CMM; Athanassoulis and Belibassakis 1999). The
NTUA-CMM solution was obtained in a domain with
401 points in the horizontal dimension. For the small
bottom slope used here, the model contains a numerical
reflection R � 0.002 much larger than the analytical
value given by Roseau (1976). However, this only in-
troduces a modulation, in the x direction, of the esti-
mated forces (see Ardhuin et al. 2008, section 4.1). This
modulation is significant but still relatively smaller than
the average. The net force estimated from NTUA-
CMM results is found to converge to the expected force
balance described by Eq. (14) as the number of evanes-
cent modes is increased (Fig. 4). In this calculation the
values of Fxx do not differ significantly from those es-
timated using Mellor’s analytical expressions, as ex-

FIG. 4. Net forces in the momentum balance (14) for steady shoaling waves over a smooth
bottom profile. The net force has been integrated over x and normalized by a similar inte-
gration of the hydrostatic pressure force Feta. Several solutions are obtained. One corresponds
to Mellor’s original expression, another is a possible analytical correction using FCh, and the
others are numerical estimations using the NTUA-CMM model with various numbers of
modes.
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pected. The only significant difference between the
NTUA-CMM numerical result with 10 modes and Mel-
lor’s analytical expression is found in Fx3, with a much
stronger value near the surface in the numerical re-
sult, allowing a balance with the strongly sheared Fxx

(Fig. 4).

4. Conclusions

Mellor (2003) changed the vertical coordinate from 
to z using an implicit function s in two parts, z � s(x, y,
, t) � s̃(x, y, , t), with s changing only slowly in space
and time and s̃ representing the faster wave-induced
change of vertical coordinate. If the  levels are mate-
rial surfaces, then the momentum flux Sx3 � p̃��s̃/�x is
the surface-following coordinate counterpart of the Eu-
lerian vertical momentum flux term ũw̃ discussed by
Rivero and Arcilla (1995), with p̃� as the wave-induced
pressure at the displaced position (in the surface-
following coordinates). However, p̃��s̃�/�x and ũw̃ do
not represent the same physical quantity since the
former contains wave momentum, which is not in-
cluded in the latter.

Just like the Eulerian momentum flux, ũw̃ is modi-
fied by the bottom slope, wave amplitude gradients,
wind-wave generation, boundary layers, or vertical cur-
rent shears; these effects also modify Sx3. But in these
situations, the  levels as defined by Mellor (2003) are
not material surfaces, and a missing Eulerian-like flux
term �̃w̃ would have to be added to correct the mo-
mentum equations, with �̃ as the wave-induced velocity
across  levels. Alternatively, we propose to replace s̃
with s̃�, defined by Eq. (11) such that  levels are closer
to material surfaces (i.e., so that �̃ is of a higher order).

Whether the original s̃ or our corrected s̃� is used, the
wave-induced momentum flux Sx3 must be estimated to
first order in the bottom slope �2 for consistency. This
requires an O(�2) estimation of both p̃� and s̃ or s̃�.
Unfortunately there is no analytical O(�2) expression
for the wave motion. Thus, Mellor’s equations, even
when corrected, require a computer-intensive solution
that is generally not feasible. For example, Magne et al.
(2007) only included a total of five modes in their cal-
culation of wave propagation over a submarine canyon.
In an example shown here, this small number of modes
is insufficient for an accurate estimation of wave-
forcing terms.

The trouble with these equations can be avoided by
using, instead, equations of motion for the quasi-
Eulerian velocity û � U � uS (Jenkins 1986, 1987,
1989). Such equations have been obtained in the limit
of vanishing wave amplitude using an analytical con-
tinuation (e.g., using a Taylor expansion) of the current

profile across the surface (McWilliams et al. 2004). A
general and explicit solution can also be obtained from
the exact generalized Lagrangian mean (GLM) equa-
tions of Andrews and McIntyre (1978a) expanded to
second order in the surface slope �1 (Ardhuin et al.
2008). In these, the equation for the horizontal quasi-
Eulerian momentum involves no flux term like p̃�s̃/�x
because this corresponds to the flux p���3/�x[1 � O(�)]
of wave momentum uS [Andrews and McIntyre 1978b,
their Eq. (2.7b)], not directly relevant to the problem of
mean flow evolution (see also Jenkins and Ardhuin
2004). This flux of wave momentum only appears in
evolution equations for the total momentum U, such as
given by Mellor (2003), or the “alternative” form of the
GLM equations [Andrews and McIntyre 1978a, their
Eq. (8.7a)].

For that reason, the equations for the quasi-Eulerian
velocity û are simple and consistent in their adiabatic
form (without wave dissipation), at least to lowest or-
der in wave slope and current vertical shear, for which
analytical expressions exist for the wave-forcing terms.
Further details on the relationships between all these
equations, and further validation against numerical so-
lutions of Laplace’s equation, can be found in Ardhuin
et al. (2008).
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