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ABSTRACT

The influence of waves on the mean flow is derived on a rotating earth in the form of interaction stresses
and a mass flux in the averaged momentum balance and mass conservation equations, respectively, using
Hasselmann’s formalism and keeping only the vertical component f of the Coriolis parameter. These stresses,
easily computed from a spectral wave model, arise from both spatial gradients in the wave field and the bufferlike
role of waves that store a small fraction of the air–sea momentum flux in the initial growth stages (young seas)
and restore this momentum to the mean currents, atmosphere, or solid earth when wave energy is dissipated.
The practical importance of these wave-induced stresses on the depth-integrated mean circulation is evaluated
from wind-wave growth curves and a third-generation spectral wave model. In steady conditions, waves are
shown to induce stresses opposed to the wind stress for wave growth stages that may represent up to 10% of
the wind stress for short fetches. Assuming simple mean flow responses, wave-induced stresses shall translate
into mean sea level variations, which are typically less than 1 mm in the middle of ocean basins but are much
larger and significant in shallow areas like continental shelves. The present formulation is consistent with previous
studies on wave-driven inertial oscillations and nearshore circulation, cases for which wave effects are known
to be much stronger.

1. Introduction

Waves have a direct effect on the mean ocean cir-
culation because they are nonlinear and cannot be av-
eraged out of the equations of motion. Even if nonlin-
earity is generally weak at the scales carrying most of
the wave energy, waves can transport or diffuse mass,
momentum, and tracers. This is also true of the turbu-
lence at subgrid scales of ocean circulation models
(OCMs) that is generally parameterized in these models.
Nevertheless waves have a behavior that is quite dif-
ferent from turbulence. In particular, they can radiate
energy over very long distances at speeds, O(10 m s21),
much greater than those of mean currents. Wave effects
therefore require a specific parameterization that is, to
our knowledge, absent from all OCMs, except for recent
attempts by Perrie et al. (2003). Furthermore, opera-
tional ocean circulation models rely heavily on satellite
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altimetry to represent the ocean mesoscale accurately.
This measurement of the sea surface height is closely
related to depth-integrated ocean currents via the qua-
sigeostrophic equilibrium, but it is also contaminated
by a still poorly understood bias, mostly associated with
the local sea state. This ‘‘sea state bias’’ makes the sea
surface height appear lower in the presence of waves
by about 2%–4% of the significant wave height and is
currently corrected using, at best, empirical algorithms
(see, e.g., Gaspar et al. 1994; Chapron et al. 2001; Van-
demark et al. 2002). This bias is thought to be related
to the nonlinear wave geometry leading to a preferential
sampling of wave troughs that are flatter and thus bright-
er to the altimeter than the wave crests. Known theory
for this effect (Elfouhaily et al. 2001) still fail to account
for the observed bias magnitude, and it is thus possible
that a true change in the mean sea level is also caused
by waves. Thus wave nonlinearities can have an impact
on the ocean circulation itself and also on the interpre-
tation of that circulation from remote sensing.

Leaving aside diffusion effects (for a discussion of
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these, see Herterich and Hasselmann 1982, Balk 2002)
and indirect known effects such as the dependency of
the wind stress on the wave age and swell (see, e.g.,
Janssen 1991; Donelan 1998; Drennan et al. 1999), the
aim of the present paper is to provide a general param-
eterization of deterministic and direct wave effects in
the equations of motion of the mean flow, uniformly
valid from the surf zone to the global ocean, directly
applicable using today’s ocean circulation and wave nu-
merical models. For our purpose, the relative importance
of these processes is evaluated using a wave generation
and propagation model. A more detailed investigation
of the impact of waves on the mean flow, with the actual
implementation of wave parameterizations in an OCM,
is beyond the scope of the present paper and will be
described elsewhere.

In and around the surf zone it is already clear from
the many observations and theoretical work that inter-
actions between waves and the mean flow, usually ex-
pressed as radiation stresses and Stokes drift, are the
main forcing mechanisms for the mean ocean circulation
(Longuet-Higgins and Stewart 1962; Longuet-Higgins
1970). On the continental shelf this question has already
been addressed more or less directly by many authors,
with mixed results. Among these, Lentz et al. (1999)
provide unambiguous evidence of a significant contri-
bution of waves to the mean flow momentum on the
inner shelf, through cross-shore gradients in the radia-
tion stresses that they computed to be comparable to the
Coriolis force caused by alongshore currents.

In the deep ocean, the influence of waves on the mean
circulation has also been widely investigated in terms
of wave-driven flow or drift. Reviews were given by
Huang (1979), Jenkins (1987, 1989), Xu and Bowen
(1994), and more recently by Weber (2001). In short,
the Lagrangian velocity known as Stokes drift cannot
be applied to steady conditions in the deep ocean be-
cause the conservation of the absolute circulation for-
bids that a steady wave field produce a Lagrangian mean
current (Ursell 1950). Hasselmann (1970) showed that
this absence of Lagrangian mean velocity could be ex-
plained by the presence, in addition to the Lagrangian
Stokes drift, of an Eulerian return flow (opposed to the
Stokes drift), giving a Coriolis force in balance with a
mean wave-induced stress. This stress, which we shall
call the Hasselmann stress, is due to a small wave ve-
locity component orthogonal to the wave propagation
direction (thereafter called transversal component) that
is driven by the Coriolis force applied on the wave field.
Therefore, if only the Hasselmann stress and the Coriolis
force are nonzero, the net velocity induced by the waves
is zero. If vertical mixing is involved (see, e.g., Xu and
Bowen 1994), the net velocity is not zero anymore.
However, the depth-integrated mass transport remains
null as the surface drift current shall be canceled by a
return flow distributed over a larger depth. Observations
confirming this theory are still missing (Gnanadesikan
and Weller 1995), probably because of the weakness of

this return flow. Consequently, the coexistence of other
forces is needed to yield a nonzero mean wave-induced
mass transport.

Currents, and in particular inertial oscillations, can be
forced by unsteady wave conditions (Hasselmann 1970).
The Stokes drift may be significant also in areas where
geostrophic equilibrium is not possible, in a narrow bay
or on the shelf where friction upsets the (quasi-) geo-
strophic equilibrium.

Weber (1983) and Xu and Bowen (1994) further in-
vestigated the effect of viscosity that drives a vertically
sheared flow. Since viscosity causes a dissipation of wave
energy, this flow can be seen as a consequence of the
transfer of wave momentum to the mean current, which
we shall describe in section 2.

Waves have also been related to enhanced mixing at
the ocean surface, both by turbulence injected down to
about 15% of the wave height (Craig 1996; Donelan
1998) and Langmuir circulations, probably caused by
the stretching of vorticity due to the Stokes drift vertical
shear (Craik and Leibovich 1976; Leibovich 1983), that
penetrate much deeper than the region where the wave
motion is felt. These mixing effects are not considered
here, as we focus on depth-integrated equations. How-
ever, the ‘‘vortex force’’ concept, used by Craik and
Leibovich to explain Langmuir circulations, has effects
relevant to the depth-integrated motion. This concept is
the basis of McWilliams and Restrepo (1999) study of
the impact of waves on the global ocean circulation.
Separating the rotational transversal wave motion from
the irrotational wave motion (the one on a nonrotating
earth), they obtain an expression for the quasigeostroph-
ic Eulerian surface mass flux [their Eq. (51) with inertial
motions filtered out] in which an Eulerian current op-
posite to the Stokes drift is forced by the wave motion.
For illustration purposes, these authors assume that the
wave field is everywhere in equilibrium with the wind,
taking the shape of a Pierson–Moskowitz (1964) spec-
trum. They estimate that at mid latitudes the Stokes drift
can be as large as 40% of the Ekman transport. But, as
they noted, this drift is largely cancelled by the wave-
driven Eulerian flow and thus may have no impact on
the transport of tracers or other quantities on a large
scale, except for significant differences in the vertical
profiles of the Eulerian and Lagrangian flows (see, e.g.,
Jenkins 1987; Xu and Bowen 1994).

Indeed, even if the Stokes layer is generally shallower
than the mixed layer, the wave-driven Eulerian flow is
easily redistributed over a large depth, leading to a net
drift at the surface in the direction of wave propagation.
Perrie et al. (2003) computed net wave effects at the
surface in the Labrador Sea that are up to 40% of the
Ekman transport. The McWilliams and Restrepo esti-
mate of the Stokes drift is also relevant for inertial mo-
tions forced by variations in time of the wave field (Has-
selmann 1970). Hasselmann showed that observed in-
ertial oscillations in the Baltic Sea had the same order
of magnitude as the oscillations that could be expected



JULY 2004 1743A R D H U I N E T A L .

from wave-induced forcing. The contribution of waves
to inertial or other ageostrophic motions at mid latitudes
should thus be of the same order as the wind contri-
bution. McWilliams and Restrepo (1999) also evaluated
mean surface wave-induced pressure, which may be
hastily interpreted as a hydrostatic ‘‘mean sea level cor-
rection’’ (the title of their Figs. 3.a and 3.b) of the order
of 10 cm. Unfortunately they do not comment, in their
analysis, on another term that is generally of the same
order (the wave contribution in their term Rh). As al-
ready mentioned, such a mean sea level change, if es-
tablished, should be part of the sea-state-dependent bi-
ases for altimeter range measurements, with implica-
tions for the interpretation of satellite altimetry.

In order to provide an independent investigation of
these results, we chose to clearly separate waves from
the mean flow, following Hasselmann’s (1971) formal-
ism. We only add viscosity and the Coriolis force in his
derivation, keeping the results general enough so that
the velocity and pressure fluctuations contain both
waves and turbulence. Including viscosity allows a con-
sistent account of stresses at the surface and bottom. It
is also indicative of how turbulence can be represented
using an eddy viscosity parameterization. Relating the
momentum and mass equations to the wave energy or
action balance equations used in current operational
wave models, our approach provides a practical way of
introducing wave effects in ocean circulation models.
We originally took this approach without knowing about
the pioneering work of Jenkins (1989) that shares the
same practical aspects with some differences in the re-
sults.

Equations for waves and the mean flow are derived
and commented in section 2; a detailed comparison with
the Lagrangian view of Weber and Melsom (1993),
Craik and Leibovich (1976), and Jenkins (1989) is at-
tempted in section 3. We then apply our equations to
fetch limited wave conditions in section 4. Conclusions
and perspectives for further applications are given in
section 5.

2. Averaged momentum equations on a rotating
earth

a. General formalism

Following Hasselmann’s (1971) notation we use dum-
my Greek indices a and b for the horizontal components
x and y, denoted with indices 1 and 2. Indices i and j
refer to Eulerian coordinates x, y, and z, denoted with
indices 1, 2, and 3. Nevertheless, our notation of mo-
mentum and stress differs from Hasselmann’s since we
prefer to use dynamic rather than kinematic quantities.
Kinematic quantities do not include the densities ra and
rw of air and water and pose continuity problems at the
free surface for example. We also warn the reader that
we, like Hasselmann, take the variable p to be the pres-
sure minus the hydrostatic equilibrium pressure, 2gx3,

which allows the equations to be similar in the vertical
and horizontal. Means are generally understood as av-
erages over flow realizations, which, for random phase
processes such as gravity waves is equivalent to a run-
ning average in time over several wave periods.

The mean horizontal momentum is separated intoM
a mean flow and a wave part,

m wM 5 M 1 M , (1)

with

z

mM 5 r u dz, and (2)a E w a

2h

z

wM 5 r u dz, (3)a E w a

z

where z (x, y) is the position of the free surface, (ux,
uy) is the horizontal velocity vector and the overbar
denotes an average over several wave periods and wave-
lengths. Hereinafter velocity fluctuations are treated as
wave velocity only. Turbulence can be included in the
present derivation by further separating these fluctuation
into waves and turbulence, or representing it by an eddy
viscosity in the mean flow equations.

On a rotating earth, the Coriolis force enters the wave
momentum balance. Keeping only the vertical compo-
nent f of the Coriolis parameter, the average of this
force reduces to the vector product of f 5 (0, 0, f ),
oriented vertically, and the mass flux in the ‘‘surface
layer,’’ between and z. This surface layer mass fluxz
is sometimes called the Stokes mass transport, Mst , and
is equal, by definition, to Mw. Therefore this Coriolis
force is

st w2f 3 M 5 2f 3 M . (4)

Now, the Coriolis force also comes into the instan-
taneous wave momentum balance, imposing a (rota-
tional) transversal component ( , ), that is, perpen-t tu u1 2

dicular to the wave propagation direction on top of the
usual (irrotational) wave velocity ( , , ). Thisw w wu u u1 2 3

transversal component ut is an order f /v smaller than
uw (see Xu and Bowen 1994), where v is the wave
radian frequency. But more important, this component
is in phase with the vertical velocity .wu3

The mean product (^ &, ^ &) of horizontal andu9u9 u9u91 3 2 3

vertical velocity fluctuations (including wave motion)
has the extra term (^ &, ^ &), which is equal to ft w t wu u u u1 3 2 3

3 Mw at z 5 0 (see Xu and Bowen 1994). For simplicity,
we chose to remove this particular correlation term,
which we call ‘‘Hasselmann stress’’ TH, from the stress
T̂ int defined by Hasselmann (1971). Thus the latter stress
in a nonrotating frame, adding the surface viscous
stresses, is mathematically equal to our interaction stress
in a rotating frame, namely,
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w]M]u ]z b1int int int HT̂ 5 m 1 T 2 T 2 u 2 T , (5)a w a3 ab a a1 2]x ]x ]x3 b b z5z

with
int 2T 5 r (u9 d 2 u9u9). (6)i j w 3 i j i j

The Hasselmann stress TH is identical to the part of
Craik and Leibovich (1976) vortex force that is due to
planetary vorticity. Other effects on waves of the Cor-
iolis force and the earth sphericity were derived by
Backus (1962). They are a very weak (about 1026) rel-
ative change in the group speed and a small deviation
of the wavenumber vector and propagation directions
(on the order of 1023 to 1022 radians), both of which
can be neglected here.

The wave momentum evolution equation in a non-
rotating frame is given by Hasselmann [1971, Eq. (18)]
and is not modified in a rotating frame because the
depth-integrated Coriolis force acting on the surface lay-
er (4) is equal to 2f 3 Mw and thus cancels the Has-
selmann stress that we have removed from our definition
of T̂int, yielding

w]M
sl a intˆ2 = · t 5 T 2 T , (7)

]t

with

z

slt 5 2 d p 1 r u u dx (8)E ab w a b 3

z

and Ta the usual wind stress, equal to the total atmo-
sphere to ocean momentum flux [see Hasselmann (1971)
and our appendix]. Although Ta depends crucially on
the sea state, we assume that it is a known forcing that
may, in practice, come from a coupled ocean wave–
atmosphere model such as the Integrated Forecasting
System, including the wave model WAM-Cycle 4,
which is operational at the European Centre for Me-
dium-Range Weather Forecasts (ECMWF).

b. Parameterization in terms of wave spectra and
source terms

Wave momentum is closely related to wave energy
or action, which are the quantities used in operational
wave models, based on a phase-averaged spectral energy
balance (these models will be referred to as ‘‘WAM-
type models’’). For weak currents, with velocities U
much smaller than the phase speed, the energy balance
equation (Gelci et al. 1957; see also the WAMDI Group
1988), used in WAM-type models, can be used instead
of the action balance equation. Using a quasi-linear de-
scription of the wave field, t sl 5 E/2, and (7) can be
rewritten from the energy balance equation for deep
water waves,

]F
1 C · = F 1 C · = F 5 S 1 S 1 S , (9)g x k k in ds nl]t

where =x and =k denote the horizontal gradients in the
physical and spectral space, respectively; Cg and Ck are
the wave energy advection vector velocities in physical
space (the group speed) and wavenumber space; and F
is the wave energy spectral density so that the wave
energy E (in joules per square meter) is

E(x, t) 5 r g F(k, x, t) dk, (10)w E
with x and k the horizontal position and wavenumber
vectors. With this definition the mean wave momen-
tum is

wM 5 r g kF /(kC) dk, (11)w E
where C is the wave phase speed, a function of water
depth and wavenumber magnitude k.

The source terms Sin, Sds, and Snl parameterize the trans-
fer of energy from the atmosphere to the wave field, the
dissipation of wave energy due to surface processes (wa-
ter and air viscosity, whitecapping), and the redistribution
of energy between wave components due to the wave
nonlinearity, respectively. Essentially, (7) can be derived
from the integration of (9) divided by the phase speed
C over the spectral variable k. This gives

Ck ]Fk,baa intˆT 2 T 5 (S 1 S 1 S ) 2 dka a E in ds nl 1 2kC C ]kb

Cgk k] 1 a b
1 E 2 . (12)

21 2[ ]]x 2 Ckb

By definition Ta is the total wind stress (including the
momentum flux from swell to the atmosphere). Ac-
cordingly the momentum lost by the waves rwg # Sds/
C dk is entirely given to the mean ocean flow and not
the atmosphere. If the integration is performed over the
entire wavenumber range, from zero to infinity, Snl can
be left out. In practice, however, wave models have a
finite frequency range so that Snl must be kept in (12).

For unidirectional waves in deep water and without
refraction, Ta 2 T̂int is more simply the sum of the
source terms # (Sin 1 Sds 1 Snl)k/kC dk. In shallow
water, depth-induced refraction will contribute to a mo-
mentum flux to the bottom, and not the mean flow.
Therefore the bottom stress Tb must also be considered.
Processes specific to shallow water can then be repre-
sented by additional source terms.

This quasi-linear description of the wave field, used
in (9), only accounts for the energy of the freely prop-
agating wave modes that generally carry most of the
energy. One should not forget that all sorts of additional
bound modes are necessary to satisfy exactly the bottom
and surface boundary conditions (e.g., Stokes harmon-
ics), and the evolution of the wave field given by the
source terms is impossible without these modes. We
assume here that their momenta and energies are neg-
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ligible compared to those of the freely propagating
modes.

c. Horizontal momentum equations

The averaged horizontal momentum equations are

m]u ] ]p
r 1 (u u ) 2 f u 1w 1 j 2[ ]]t ]x ]xj 1

]
int5 m Du 1 T , 2h # x # z , (13)w 1 1j 3]xj

and

m]u ] ]p2r 1 (u u ) 1 f u 1w 2 j 1[ ]]t ]x ]xj 1

]
int5 m Du 1 T , 2h # x # z , (14)w 2 2 j 3]xj

with mw the water dynamic viscosity.
The impact of waves in the horizontal mean flow

momentum is given by Hasselmann’s (1971) Eq.mMa

(14), correcting for the apparent omission of the hy-
drostatic pressure in the bottom mean pressure term and
a typographic mistake ( ] /]x3; see our appendix forap z
a derivation). These equations were also derived by Ku-
dryavtsev (1994) for the coupling of surface wind waves
with internal waves. A discussion of all the terms de-
rived by Hasselmann can be found in his paper. We will
here emphasize the practical parameterization of these
terms.

By vertical integration of (13)–(14) we get (see the
appendix),

mm ]t]M ]z1b1 m a5 1 fM 1 p2[]t ]x ]xb 1

]h
m a b1 (p 1 gh) 1 T 2 T2h 1 1]]x1

int]t]h 1bw w int aˆ1 p 1 fM 1 1 (T 2 T ) (15)2h 2 1 1]x ]x1 b

and

mm ]t]M ]z2,b2 m a5 2 fM 1 p1[]t ]x ]xb 2

]h
m a b1 (p 1 gh) 1 T 2 T2h 2 2]]x2

int]t]h 2bw w int aˆ1 p 2 fM 1 1 (T 2 T ), (16)2h 1 2 2]x ]x2 b

where t m is a horizontal tensor that contains mean mo-
mentum advection terms and mean-flow pressure gra-
dients (including hydrostatic pressure) and viscous
stresses,

z

m mt 5 2 r (u u ) 1 d (p 2 r gz)ab E w a b ab w

2h

2] u11 m dx , (17)w 3]x ]xb b

Ta is the usual wind stress vector, and Tb is the bottom
stress vector, each equal to the total atmosphere to ocean
and bottom to ocean momentum fluxes per unit hori-
zontal surface. The last four terms in (15) and (16)
represent the wave effects on the mean flow that are not
represented in current ocean circulation models; (]h/wp2h

]xa) can be neglected in deep water and will not be
considered here. In steady quasigeostrophic conditions,
the divergence of the Hasselmann stress ]TH/]x3 5 2f
3 Mw will drive a mean Eulerian transport that will
exactly balance the Stokes drift giving a zero Lagrang-
ian wave-induced transport. In other conditions, such as
variations in time of the wave field, the Lagrangian
wave-induced transport may not be balanced and waves
may drive net mass transports (Hasselmann 1970).

In the terms before the last one in (15) and (16),

z

int intt 5 T dz (18)ab E ab

2h

is given by Hasselmann’s (1971) Eqs. (16)–(17a). Using
his sign convention and now using a linear wave ap-
proximation, one obtains (see the appendix)

C C k kg g a bintt 5 r g F(k) 1 2 d 2 dk, (19)ab w E ab 21 2[ ]C C kk

which gives, for monochromatic waves,

C C k kg g a bintt 5 E 1 2 d 2 . (20)ab ab 21 2[ ]C C k

This interaction stress is the sum of the nonisotropic
wave momentum advected by the waves, 2E(Cg/
C)kakb/k2, acting in the wave propagation direction, and
the isotropic wave-added depth-integrated pressure
term, E(1 2 Cg/C)dab.

The mean pressure added by the waves at the sur-
face,

2w]z
wp 5 2r , (21)w1 2]t

as given by McWilliams and Restrepo (1999) using lin-
ear wave theory, is included in this pressure part with
the correct depth-integration. As derived here, there is
no reason why this pressure would drive a hydrostatic
change in mean sea level given by pw/(rwg), which was
suggested by the title of Fig. 3 in McWilliams and Res-
trepo (1999), because it is not hydrostatic and therefore
must be integrated over depth to give the right stress
that may or may not contribute to changes in the mean
sea level. Besides, this term can be partially canceled
by their other term Rh.
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Last, the last term T̂int 2 Ta represents, essentially,
the fraction of the wind stress that is gained (or lost)
by the mean flow when it is released by (or stored in)
the wave field. This term also can be computed from
the source terms of a WAM-type wave model using the
rather complex expression (12). A more practical set of
equations is

mm ]t]M ]z1b1 m a5 1 fM 1 p2[]t ]x ]xb 1

]h
m a b1 (p 1 gh) 1 T 2 T2h 1 1]]x1

rad w]t]h ]M1b 1w w1 p 1 fM 1 2 , (22)2h 2]x ]x ]t1 b

and
mm ]t]M ]z2b2 m a5 2 fM 1 p1[]t ]x ]xb 2

]h
m a b1 (p 1 gh) 1 T 2 T2h 2 2]]x2

rad w]t]h ]M2b 2w w1 p 2 fM 1 2 (23)2h 1]x ]x ]t2 b

in which the rate of change of the wave momentum is
simply substracted from the total momentum rate of
change, and the radiation stresses take their usual form,
neglecting the mean current velocity relative to the
phase speed of the waves (Phillips 1977):

C C k k1 g g a bradt 5 r g F(k) 2 d 2 dk. (24)ab w E ab 21 2[ ]2 C C k

d. Mass conservation

The vertically integrated mass conservation equation
is also given by Hasselmann’s (1971) Eq. (21), and
states that for general wave fields that are not uniform
in space, the divergence of the Stokes transport Mw must
be taken into account:

m w]z ]M ]Ma ar 1 5 2 . (25)w ]t ]x ]xa a

We thus have three equations, (22), (23), and (25),
for three unknowns, , , and z. These are the classicm mM M1 2

shallow-water equations with the addition of wave-forc-
ing terms. It is important to realize that these equations
are coupled and therefore the effects of wave mass flux-
es cannot be dissociated from wave momentum fluxes.

Besides the term = ·t m in (22) and (23), (25) provides
another connection between wave effects and mean sea
level. These equations can represent well-known effects
related to wave groups, such as the presence of bound
long waves, also called infragravity waves for which
the fluctuations in the surface mass transport is balanced

by undulations in the mean sea level (Longuet-Higgins
and Stewart 1962). These effects undoubtedly occur for
bound long waves with frequencies much less than the
inertial frequency. If the wave field varies more slowly,
the response of the mean circulation is not obvious and
can be determined numerically by integration of (22)–
(25). The significant amplitude of bound infragravity
waves associated with wave groups of 3-m waves of
12-s period in 94 m of water was measured to be 5 cm
and 14 cm for 9-m waves of about the same period,
during the DUCK94 experiment on the North Carolina
shelf (Herbers et al. 2000), that is, 1.5% of the signif-
icant wave height Hs.

In deeper water and for variations of the wave field
over larger scale, it is expected that the variations of
the mean water level will decrease as 1/h, following the
Longuet-Higgins and Stewart (1962) results for shallow
water wave groups [their Eq. (3.36)]. In this case, mean
water level changes are determined by a balance be-
tween the depth integrated hydrostatic pressure, rwghz,
and the wave-added pressure that is present only in a
shallow layer. However, it is true that the balance in our
depth-integrated view cannot give the balance at all
depth levels when things are discretized over the ver-
tical. The waves stresses solely act close to the surface
while a change in water level acts over the entire water
depths. A balance at all depths may be possible in the
presence of stratification.

3. Comparison with Lagrangian solutions

Most studies on wave interaction with the mean flow
have been based on Lagrangian descriptions of the flow,
following Pierson (1962); see also Ünlüata and Mei
1970) and Madsen (1978). This was motivated by the
ability of Lagrangian coordinates to track the surface
and the exact solution derived by Pollard (1970) for
waves in a rotating frame, in the form of modified Ger-
stner waves. Recently Weber and Melsom (1993) and
Jenkins (1986, 1987) have attempted to quantify real-
istically the effect of breaking waves. Although depth-
integrated, the present momentum equation are consis-
tent with Weber and Melsom’s (1993) Eq. (15). Their
term, 2ifUS, corresponds to our Hasselmann stress
term. Their virtual wave stress term is part of our mo-
mentum buffer term T̂int 2 Ta. That term, as we de-
scribed, is related to the integral of the net wave source
terms including surface dissipation that represents both
whitecapping and viscous dissipation. However, it is not
clear that their stress t0 is identical to our wind to mean
flow stress T̂int . Somehow their stress t0 should exclude
a wind to wave stress; otherwise the momentum given
first to the waves and then to the mean flow by viscous
wave damping would be counted twice.

Looking at the effect of wave breaking in a saturated
sea, they consider the variations in Stokes drift as waves
grow and break. From this point our description differs.
First, in a saturated sea, our Stokes drift, computed for
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random waves, would be constant because its fluctua-
tions are averaged over the random realizations of the
sea state. Second, we consider the wave momentum as
well as the mass conservation. These wave momentum
terms are missing in the Weber and Melsom (1993)
derivation of the total velocity, WL 5 WE 1 WS in their
Eq. (25), which corresponds to our total mean momen-
tum 5 Mm 1 Mw. Indeed, they only consider theM
wave-induced mass flux and its variations in time [their
Eq. (35)], omitting that momentum is stored in the wave
field. Thus, for a wave field that grows or decays in
time (but is uniform in space), they obtain a net drift
WL that is, for fast evolutions, to the right of the wave
propagation direction for growing waves and to the left
for decaying waves [their Eq. (34)]. In the present theory
the total momentum does not change in this case so that
the waves impose a stress in the direction of the wave
propagation when they decay, giving their momentum
to the mean flow, which probably result in a drift to the
right due to quasigeostrophic equilibrium (the ocean
reacts to this stress as it would to a wind stress) and a
drift to the left when waves grow. This effect can be
interpreted as a ‘‘negative wind stress.’’ The wind stress
forcing is overestimated when one uses Ta because a
small fraction of the air–sea momentum flux is absorbed
by the wave field. Therefore the present theory gives
results in contradiction with Weber and Melsom (1993).
We hold that this difference is caused by their hypothesis
that O(ṽ2) terms are negligible in their Eq. (7), which
seems inconsistent with keeping {w̃ũ}z50 in their Eq.
(17) and the Stokes drift Us in their Eq. (21). These
hypotheses would essentially render our wave–current
interaction stresses T int and t int equal to zero so that
total momentum would no longer be conserved.

Another approach, used by McWilliams and Restrepo
(1999), directly introduces wave effects through a vor-
tex force that is the vector product of the Stokes drift
and the total vorticity. As already noted, the part of this
vortex force due to the planetary vorticity is equal to
the divergence of the Hasselmann stress. A more thor-
ough comparison is beyond the scope of the present
paper. The connection between integrated and vertically
distributed momentum equations is the subject of on-
going work with a generalized Lagrangian mean for-
malism (see, e.g., Leibovich 1980) or other coordinates
(Mellor 2003). One term that is clearly missing in the
present formalism is the vertical shear that gives an
upward vortex force. This may come from neglecting
the effect of vertical current shear on wave kinematics
and the vertical shear that should give a second-order
term in the expression of t sl .

For depth-integrated equations, Garrett (1976)
showed that for a uniform current on the scale of the
Stokes depth 1/(2kp), where kp is the dominant wave-
number, the radiation stresses can be transformed into
the vortex force plus the gradient of a modified pressure
[p term in Leibovich’s (1980) Eq. (10a)] by including
the mean current effect on the radiation stresses. Mean

currents contribute to the wave radiation stresses by
modifying the wave momentum, and the term Ua 1wM b

Ub must be added to our expression of (Phillipsw radM ta ab

1977). The results of Garrett are therefore recovered
from the present analysis by this simple extension. Gar-
rett’s (1976) derivation yields the term Ua] /]xb inwM b

the a component of the momentum equations that does
not appear in the Craik Leibovich (CL) equations be-
cause the wave field is assumed homogeneous (see
Smith 1980 and Holm 1996 for discussions of this hy-
pothesis).

This derivation by Garrett (1976) has a dynamically
consistent interpretation of the vortex force as the com-
pensation for the change in wave momentum due to
wave refraction by horizontal current shears. In this sit-
uation wave momentum is exchanged with mean flow
momentum; this effect is thus analogous to the ‘‘remote
recoil’’ described by Bülher and McIntyre (2003). This
consistency is lost in all other derivations of CL equa-
tions that assume a uniform wave field. In these, mo-
mentum is not conserved locally because the vortex
force appears like a momentum source for the mean
flow while the wave field has a constant momentum.

The wave–mean flow interaction caused by t rad in
stationary conditions can take place without dissipation
in the case of wave refraction by a current shear as
described by Garrett (1976). This effect is not included
in Jenkins’ (1989) equations who parameterized the
wave effects on the mean flow only through wave
growth and dissipation source terms. In practice the ap-
plication of Jenkins’ (1989) Eq. (7) on the beach, with
a proper finite depth dispersion relation for wave effect,
would drive an alongshore current and wave setup that
would be too weak because the driving term would have
only an integrated wave breaking source term equal to
]E/]x, thus missing the extra (]E/]x)/2 that accounts for
the wave momentum advection to give the correct ra-
diation stress derived by Longuet-Higgins and Stewart
(see also Phillips 1977). In his derivation, Hasselmann
(1971) checked that his equations were consistent with
the Longuet-Higgins and Stewart radiation stresses ap-
plied to deep water. Consequently, while more powerful
than our equations by fully taking into account the three-
dimensional nature of the problem, it appears that the
Jenkins (1987, 1989) theory misses effects of wave field
gradients. This flaw may not be too much of a problem
for large-scale situations where wave fields are generally
thought to be fairly uniform, but wave gradients may
be relevant to coastal situations such as examined below.

4. Wave effects in steady fetch-limited conditions

As mentioned, the wave-induced terms that enter the
mean-flow momentum and mass conservation equations
(15)–(25) can be estimated from spectral wave model
calculations. WAM-type models rely on parameteriza-
tions of the source terms (see Komen et al. 1984) that
differ between models. However, they are usually cal-
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FIG. 1. Schematic of the fetch-limited wave growth situation.

FIG. 2. Wave height growth curves obtained with the CREST model, using WAM Cycle 3
parameterizations for U* 5 0.38 and U* 5 0.917 corresponding to U10 5 10 and 20 m s21,
respectively.

ibrated against observations among which the fetch-lim-
ited cases (see the review by Kahma and Calkoen 1992)
are probably the most important. In such cases, obser-
vations are given of local wave generation with un-
ambiguous initial conditions (the wave height starts
from zero at the coast). Details in the evolution of the
wave spectrum may be sensitive to the particular pa-
rameterization chosen in the wave model, but wave
height and period ‘‘growth curves’’ computed by the
models are tuned to these observations. Consequently,
the stresses computed here for fetch-limited conditions,
that are integrals over the entire wave spectrum, are not
likely to differ significantly with the choice of a third
generation wave model provided it has been tuned, with
the exception of wave directional spreading effects that
are discussed below.

We therefore chose to use our own model CREST
(Ardhuin et al. 2001) with a multistep ray advection
scheme with one step only (Ardhuin and Herbers 2003,

manuscript submitted to J. Atmos. Oceanic Technol.).
The physics of wave generation and nonlinear evolution
were added in CREST following the simple parameter-
ization of WAM Cycle 3 (the WAMDI Group 1988),
including the adapted Snyder et al.’s (1981) wind gen-
eration source term Sin, Hasselmann and Hasselmann’s
(1985) discreet interaction approximation (DIA) param-
eterization of wave–wave interactions, and Komen et
al.’s (1984) tuned adaptation of Hasselmann’s (1974)
description of wave energy dissipation due to white-
capping. The FORTRAN code for the source terms was
actually adapted from version 2.22 of Wavewatch III,
using the wave growth limiter and fractional step
schemes described by Tolman (1992, 2002).

The model was run in steady state in a one-dimen-
sional (transect) configuration representing alongshore-
uniform conditions (along the y axis) with a constant
depth H 5 100 m. The wind was prescribed directly as
a uniform (in space) and constant (in time) friction ve-
locity U* 5 (Ta/ra)1/2 with a direction along the x axis
(Fig. 1). The spatial resolution used was 500 m with a
time step of 120 s and a frequency range 0.041–0.7 Hz,
with exponentially spaced frequency using a 10% in-
crement from one frequency to the next, and a 158 res-
olution. This spectral grid is a standard WAM grid, im-
posed by the DIA parameterization. The reproduction
of Kahma and Calkoen’s (1992) growth curve was sat-
isfactory (see Fig. 2) with the standard coefficients of
WAM-Cycle 3 parameterizations, which were therefore
kept unchanged. On this flat bottom, the wave mean
bottom pressure term vanishes, and we computed three
terms from the wave spectra and source terms: the total
and net wave momentum intakes (Fig. 3) and wave–
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FIG. 3. Percentage of the wind stress represented by the stress, Tin 5 # Sinkx/kC dk, imparted
to the wave field and the net gain of momentum # (Sin 1 Sds 1 Snl)kx/kC dk, by the wave field
following the wave propagation.

current radiation stresses. The effects of the wave-in-
duced mass flux are not considered here.

a. Momentum storage in the wave field

The portion Tin 5 # kSin/(kC) dk of the wind stress
Ta that is transmitted to the wave field grows with the
inverse wave age U*/C and fetch x. While the steepness
of the dominant waves decreases with fetch, the sea
surface roughness increases toward offshore with the
height and wave spectrum broadens. Accordingly, the
wind stress is increasingly supported by form drag over
the waves (Fig. 3).

As individual waves grow, they also break more fre-
quently so that the fraction R of the wind stress that is
locally stored in the wave field, and added to the wave
momentum, decreases with wave development; R is larg-
est for young windseas and short fetches (Fig. 3), with
a maximum of about R 5 10%. This fraction can be
estimated more simply from the wave growth curve

2 b 4 2m 5 a(xg/U ) U /g ,0 10 10 (26)

where a and b are empirical coefficients. We use a rep-
resentative group speed Cg and phase speed C for the
entire spectrum so that the energy flux is Cgrwgm0 and
the wave momentum is rwgm0/C. Taking the wind stress
Ta as raCd , with ra the density of air, the momentum2U10

balance of the wave field (11) can be rewritten as

d(C m /C)g 0 2r g 5 Rr C U . (27)w a d 10dx

In deep water, Cg 5 C/2, and the ratio R 5 T̂ int/Ta is
obtained by replacing the growth curve expression (26)
in (27):

b21ab r xgwR 5 . (28)
21 2C r Ud a 10

Taking a 5 5 3 1027, b 5 20.9, and Cd 5 1.3 3 1023,
R 5 15% for x 5 0 and goes to zero like (xg/ )b21.2U10

The wave field becomes more ‘‘transparent’’ to the
air–sea momentum flux as the waves get more devel-
oped because the momentum given to the waves is im-
mediately lost to the current through whitecapping. This
view of the air–sea momentum balance is consistent
with Mitsuyasu’s (1985) conclusions, who determined
this ratio R as a function of the wave steepness. The
values we find here are probably overestimated for short
fetches (Donelan 1998 observed a maximum value R 5
4%), essentially because we use a constant value for
Cd. It is now firmly established that for a given wind
speed Cd can increase by a factor 3 for very young
windseas (i.e., short fetches).

Also, if the total source term balance Sin 1 Snl 1 Sdis

is rather well constrained by observations, there is still
a wide variety of parameterizations for the different
source terms. In particular, values of Sin and thus Tin

have been proposed about 4 times smaller than what is
presented in Fig. 3 (Burgers and Makin 1993; Tolman
and Chalikov 1996).

b. Overall wave-induced effect

We have seen that, for fetch-limited wave growth, the
two terms, Ta 2 T̂int and the divergence of the inter-
action stress = ·t int , act in opposite direction. However,
since we look at stationary conditions, we also know
that the total right-hand side of the surface layer mo-
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FIG. 4. Vertically integrated momentum balance for the wave field
(shaded arrow) that gains momentum from the wind and wind and
wave effects on the mean flow momentum (black solid arrows). The
mean flow is accelerated offshore by the total wind stress Ta and the
divergence of the interaction stress t int, and onshore by the correction
T̂int 2 Ta on the wind stress (overestimated by Ta). In stationary
conditions these two terms add up to give the divergence of the
radiation stress t rad.

FIG. 5. Total wave-induced stresses = ·t rad for stationary fetch-
limited wave growth as a percentage of the wind stress Ta.

FIG. 6. Wave setup at the coast in fetch-limited wave growth con-
ditions, assuming a balance between hydrostatic pressure and the
divergence of the interaction stresses t rad and using a water depth h
5 100 m.

mentum equation [(7)] is zero. The total wave forcing
is thus

a int int sl int radˆT 2 T 1 = · t 5 = · (t 1 t ) 5 = · t . (29)

As commented by Hasselmann (1971), stationary con-
ditions yield the usual radiation stress formulation. In
deep water this stress acts against the wave propagation
direction, as summarized in Fig. 4. This total stress (here
a force per unit surface) can be as large as 10% of the
wind stress for short fetches and decreases away from
the coast, staying above 3% out to 30 km for U10 5 10
m s21 and out to 100 km for U10 5 20 m s21 (Fig. 5).

This total stress is only a function of the gradients of
the total wave height and the directional spread of the
wave spectrum. Although we may trust third-generation
wave models for the growth curves of wave heights and
peak periods, there is a real shortage of directional wave
data to calibrate the wave directional distribution pre-
dicted by models, and the wave directional spread is
generally not considered in the tuning of numerical
wave models. Indeed today’s wave models have differ-
ent directional properties. In particular WAM Cycle 4,
operational at ECMWF, presents a distribution similar
to Wavewatch III, operational at the National Centers
for Environmental Prediction, but has different source
term parameterizations. The WAM Cycle 3 parameter-
ization used here probably gives an upper bound on the
wave directional spread and on .radt xx

Assuming that the adjustment is only between the
hydrostatic pressure induced by the mean sea level, pm

5 pa 1 rwgw(z 2 z), and the radiation stress, we can
write

rad]z ]t xx(r gh 1 z ) 5 . (30)w ]x ]x

For small ratios /h this leads toz

2(H /4)sz 5 2m , (31)u 2h

with the directional moment mu defined by

2F(k) cos uk dk duE E
k u

m 5 . (32)u

F(k) k dk duE E
k u

In the present calculations mu is very close to 0.7 and
the results for a water depth h 5 100 m are given in
Fig. 6, with a maximum setdown along the fetch of 12
mm for 5-m waves. Of course on a real coastline the
depth is variable, increasing from zero at the coast, so
that the actual relative setup at the coast is larger. This
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is also increased by the fact that goes to 23E/2 inradt xx

the limit of small dimensionless depth kh, compared to
2E/2 in deep water. The actual balance of forces be-
tween radiation stresses and the mean flow adjustment
probably involves a reduction in the Ekman transport
together with a setdown along the fetch (a situation
opposite to that of shoaling waves described by Lentz
et al. 1999).

c. Extension for wave setdown in nonstationary
conditions

The balance obtained in (31) can be extended to non-
stationary conditions. For uniform conditions in the y
direction and wave propagating in the x direction, var-
iations on the scale of a weather system can be seen as
an extension of Longuett-Higgins and Stewart’s results
[1962, Eq. (3.26)] for wave groups long compared with
the depth (please remember the opposite sign conven-
tion for t rad between Hasselmann and Longuett-Higgins
and Stewart)

1
radz 5 t , (33)xx2r (gh 2 c )w

where c is the velocity of the wave height pattern (storm
or wave group). This solution can be generalized from
a linearization of Eqs. (22), (23), and (25) for the var-
iables , , and forced by a propagating wavem mM M zx y

energy perturbation of the form Eei(Kx2Vt) , proportional
to the significant wave height Hs squared, giving

radt xxz 5
2 2 2r [gh 2 (V 2 f )/K ]w

2g(H /4)s5 2m , (34)u 2 2 22[gh 2 (V 2 f )/K ]

where the second equality is only valid for deep water
waves. This last result shows that the bound long waves
forced by waves in a moving storm are only weakly
modified by the earth rotation and thus have very small
amplitudes, on the order of /h.2Hs

5. Conclusions and perspectives

We have established a framework for studying all
wave–current interactions by a straightforward exten-
sion of Hasselmann’s (1971) formalism describing mass
and momentum conservation in a rotating frame. This
theory is uniformly valid, from global-scale ocean cir-
culation to the nearshore, and is expected to be consis-
tent with other derivations that use Lagrangian coor-
dinates and/or separate turbulence and wave motions
(e.g., Jenkins 1986; Weber 2001; Groeneweg and Klop-
man 1998). Our practical applications invoke linear
wave theory to compute second-order quantities, which
has been shown to be a robust assumption, even in the
surf zone (e.g., Thornton and Kraphol 1974). However,

its validity in the present context still needs to be as-
sessed.

The effects of waves on the mean flow can thus be
computed using existing operational wave models in
which the decomposition of wave evolution into source
terms can easily be transformed in wave momentum
changes. Care should be given in separating the three
possible recipients of the wave momentum: the atmo-
sphere, the mean ocean circulation, or the bottom. For
instance, the dependency of the wind stress on wave
age and swell strength and direction should also further
affect both source terms Sin and Sds. As proposed, the
wave energy balance equation can be adequately mod-
ified to express a depth-induced breaking source term,
following common practice (e.g., Booij et al. 1999), to
explicitly represent phenomena such as wave setup and
setdown and alongshore currents in the nearshore.

As discussed, wave effects can be expected from the-
ory at scales ranging from the wave group to the ocean
basin, including infragravity waves, setup at the coast
for offshore winds, and inertial oscillations, all with a
magnitude that scales as the square of the wave height.
The combination of large-scale infragravity motions
forced by a divergence in the wave mass transport and
the gradients of the interaction stresses may yield a set-
down under areas where waves are larger. This is likely
to be much smaller than the values of the ‘‘mean sea
level correction’’ suggested by McWilliams and Res-
trepo (1999), with 0.5 mm in the deep (h 5 5000 m)
ocean for important (from 0 to 10 m significant wave
height) over large scale [larger than O(10 km)] varia-
tions in the wave field, according to our Eq. (31) or
(34). Essentially, the wave pressure and momentum acts
in a very thin surface layer that cannot balance a large
surface elevation z resulting in a depth integrated hy-
drostatic pressure of the order of rwghz.

This further confirms the general idea that most of
the measured altimeter sea state bias shall be solely
attributed to the local sea surface geometry and instru-
mental probing characteristics. However, while small,
the expected sea level adjustments predicted here may
still be of concern in the context of corrections applied
to precision altimetry. These variations in water level
will be systematic over preferred ocean regions. In-
creasing as 1/h toward shallow areas, sea level changes
become significant, with the well-known wave setdown,
where many tide gauges used for altimeter validation
are situated.

Last, on smaller scales (e.g., groups of about 10
waves), wave height modulations will drive infragravity
waves of larger amplitude because they do not reach
the bottom [Longuett-Higgins and Stewart (1962) Eq.
(3.29)]. These effects should certainly be taken into ac-
count for planned high-resolution satellite altimeters and
the use of altimetric measurements close to the coasts.
These infragravity motions may still contribute to the
electromagnetic bias of large-footprint altimeters be-
cause of a correlation of low water elevations (the long
wave troughs) with short wave steepness.
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Using a standard wave model, the wave-induced
stresses for the mean flow were calculated to be as large
as 10% of the wind stress for stationary conditions and
short fetches. Ignoring this effect probably introduces
regional biases in the forcing of ocean circulation mod-
els with wind stresses. These biases are still small com-
pared to the known variation in wind stress induced by
changes in the sea state such as swell and wave age
(Drennan et al. 1999, 2003).

In the future, the actual implementation of the present
theory in an ocean circulation model will require the
transformation of molecular viscosity into a variable
turbulent viscosity, following common practice. For fine
vertical resolution, resolving the Stokes depth 1/(2k),
an extension in three dimensions will also be needed
that will have to be consistent with present results. That
extension will likely benefit from the work of Jenkins
(1987, 1989) and Mellor (2003). Determination of the
eddy viscosity profile is a major challenge in this re-
spect. Such a parameterization should ideally include
effects of wave breaking and Langmuir circulation, as
proposed by, for instance, Jenkins (1987, 1989) and
McWilliams and Sullivan (2001).

The practical advantage of using a wave model to
take into account the (surface) wave effects described
here can also be exploited to compute surface drift,
turbulent fluxes of kinetic energy at the surface, and the
associated mixing. This combination of wave and cir-
culation modeling can thus be most fruitful for a three-
dimensional ocean model, while demanding a more rig-
orous validation of individual wave energy source terms
and wave spectral moments that can be computed from
today’s wave forecasting models.

Acknowledgments. This work was financially sup-
ported by the Groupe Mission Mercator. Permission of
Hendrik Tolman to adapt Wavewatch III routines and
methods to the CREST code is greatly appreciated. We
also thank Jan Erik Weber for discussions that helped
to clarify some aspects related to viscosity, and many
colleagues, in particular the participants in the Waves
and Operational Oceanography Workshop held in Brest
in 2003, for their interest and encouragement. Com-
ments of J. McWilliams and anonymous reviewers
brought about significant improvements to the paper.
Author FA acknowledges the kind support of Robert L.
Haney over the years, on the occasion of his retirement.

APPENDIX

Derivation of the Mean Flow
Momentum Equations

Following the notation of section 1, we derive the
equation for . The derivation of the equation formM1

is similar. We start from the Navier–Stokes equa-mM 2

tions on a rotating earth (‘‘ f plane’’):

]u ]1r 1 r (u u )w w 1 j]t ]xj

]
1 p 2 f r u 5 m Du , 2h # x # z, (A1)w 2 w 1 3]x1

]uj
5 0, 2h # x # z (A2)3]xj

ap 2 gz 5 p , x 5 z (A3)3

]z ]z
1 u 2 u 5 0, x 5 z (A4)a 3 3]t ]xa

and
]h

u 1 u 5 0, x 5 2h. (A5)a 3 3]xa

In the surface boundary conditions (A2)–(A5) we have
not specified the horizontal stress, essentially because
it results from a coupling of the air and water flow
around the interface so that the pressure and horizontal
stress fluctuations at the surface cannot be prescribed.

We thus assume that the mean stress is known and
is carried by small-scale viscous and pressure stresses
on a surface that is not horizontal. General boundary
conditions and the different mechanisms of air–sea mo-
mentum transfer are given and discussed by Jenkins
(1992). For a correct separation of wind to wave and
wind to mean flow momentum, the wave growth must
be attributed to both the correlation of air pressure and
water elevation at the scale of the waves and the mod-
ulation of the tangential stress along the wave profile.
The rest of the wind stress is then given to the ocean.
In the same way, the wave dissipation is the result of
viscous stresses [the virtual wave stress in Weber
(1983); see also Xu and Bowen (1994) for an Eulerian
description] and wave breaking that we group in Ta 2
T̂int . Therefore our end result should be coherent with
a careful accounting of the exact dynamic boundary
condition at the surface.

By averaging (rw and mw are assumed to be uniform
in space) we get

]u ] ]1 mr 1 (u u ) 1 p 2 f uw 1 j 2]t ]x ]xj 1

]
int5 m Du 1 T , 2h # x # z . (A6)w 1 1j 3]xj

Now we compute the evolution of the mean momen-
tum:

zm]M ]1 5 u dxE 1 3]t ]t
2h

z ] ]z
5 u dx 1 u (z ). (A7)E 1 3 1]t ]t

2h

Replacing (A1) in (A7) and using
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z ]
m2 p dxE 3]x12h

z ]
m5 2 (p 2 r gz) dxE w 3]x12h

z] ]z
m m5 2(p 2 r gz) dx 1 [p (z ) 2 gz ]E w 3]x ]x1 12h

]h
m1 [p (2h) 1 r gh] , (A8)w ]x1

we get
zm]M ] ]1 m5 2 (u u ) 2 p 1 f u 1 m DuE 1 j 2 w 1]t ]x ]xj 12h

] ]z
int1 T dx 1 u (z )1j 3 1]x ]tj

z]
m5 2(u u ) 2 d (p 2 gz) dxE 1 b 1b 3]xb 2h

]z ]h
1 u (z )u (z ) 1 u (2h)u (2h)1 b 1 b]x ]xb b

]z ]h
m m1 [p (z ) 2 gz ] 1 [p (2h) 1 gh]

]x ]x1 1

z z]
1 2 (u u ) dx 1 f u dxE 1 3 3 E 2 3]x32h 2h

z 2]u ]u ] u1 1 11 m 2 m 1 m dxw w w E 3) )]x ]x ]x ]x3 3 b bz 2h 2h

z ] ]z
int1 T dx 1 u (z ). (A9)E 1j 3 1]x ]tj2h

Grouping the terms in u1( ), u1(2h), and using Has-z
selmann’s definitions with the added viscous stresses,

z 2] u1m mt 5 2 (u u ) 1 d (p 2 gz) 1 m dx ,ab E a b ab w 3]x ]xb b2h

(A10)

and
z

int intt 5 T dx , (A11)ab E ab 3

2h

we get

m]M ] ]z ]z1 m5 t 1 u (z ) 1 u (z ) 2 u (z )1b 1 b 3[ ]]t ]x ]t ]xb b

]h
1 u (2h) 1u (2h) 1 u (2h)1 b 3[ ]]xb

]z ]h
m m1 [p (z ) 2 gz ] 1 [p (2h) 1 gh]

]x ]x1 1

] ]u ]z1m b int int1 fM 2 T 1 t 1 m 2 T2 1 1b w 1b)]x ]x ]xb 3 bz

]h
int int int2 T (2h) 1 T (z ) 2 T (2h). (A12)1b 13 13]xb

This simplifies by using the boundary conditions (A3)–
(A5):

m]M ] ]z ]h1 m a m5 t 1 p 1 [p (2h) 1 gh]1b5]t ]x ]x ]xb 1 1

]
m a b a int1 fM 1 T 2 T 2 T 1 t2 1 1 1 1b6 ]xb

]u ]z1 int int1 m 1 T (z ) 2 T (z )w 13 1b)]x ]x3 bz

w]M ]hb int int2 u (z ) 2 T (2h) 2 T (2h), (A13)1 1b 13]x ]xb b

which is almost Hasselmann’s Eq. (14) with the addition
of the horizontal Coriolis force, either because u 5 0
at the bottom or assuming linear wave theory at the top
of the bottom boundary layer in order to remove the
extra bottom terms. The only real differences are the
hydrostatic pressure in the bottom pressure term, prob-
ably an omission on the part of Hasselmann, and the
clear typographic mistake b instead of a in the defi-u u
nition of .intT̂ a

This equation yields our Eq. (13), that T̂int is redefined
by (5) in order to separate the Coriolis-wave term, which
we call the Hasselmann stress, that drives the Eulerian
return flow in steady open ocean conditions.

Using linear wave theory the wave-added stresses can
be determined at first order. The derivation of T̂int 2 Ta

from the source terms of a WAM-type model is given
in section 2, and the stress t int can be computed from
the definition (18) and linear wave theory applied to
random waves:

2sinh (kz 1 kh)
w 2 2(u ) 5 v (k) F(k) dk, (A14)3 E 2sinh (kh)

and
2k k cosh (kz 1 kh)a bw w 2u u 5 v (k) F(k) dk, (A15)a b E 2 2k sinh (kh)

with

k 5 |k | and (A16)

v(k) 5 gk tanh(kh). (A17)

The nonhydrostatic pressure term in t int is therefore

z

w 2r (u ) dzw E 3

2h

ztanh(kh)
25 r gk F(k) sinh (kz 1 kh) dz dkw E E2sinh (kh)k 2h
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2gk
5 r F(k)w E sinh(2kh)k

z

3 0.5[cosh(2kz 1 2kh) 2 1] dz dkE
2h

k
5 r g F(k)[sinh(2kh) 2 2kH ] dkw E 2k sinh(2kh)k

1 kH
5 r g F 2 dk. (A18)w E [ ]2 sinh(2kh)k

Using linear wave theory expressions for Cg and C,
(A18) is equivalent to the term with dab in (19). The
other term is given in the same way by integrating (A15)
instead of (A14) in (A18).
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