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ABSTRACT

A hybrid Eulerian–Lagrangian wave model is presented that solves the spectral energy balance equation for
surface gravity waves in varying depth. The energy of each spectral component is advected along (Lagrangian)
ray trajectories. The source terms in the energy balance equation (e.g., interactions between wave components
and nonconservative processes) are computed on a fixed Eulerian grid and interpolated onto the ray trajectories.
The source terms are integrated in time along the rays. This integration is performed in parallel over the entire
model domain. The main advantage of this new model, named CREST (Coupled Rays with Eulerian Source
Terms), is that refraction of waves by subgrid-scale depth variations is evaluated accurately using precomputed
rays, and thus the model can be applied with relatively coarse source term grids to large coastal areas. Hindcasts
of swell evolution across the North Carolina continental shelf are presented for a source term restricted to energy
dissipation in the bottom boundary layer over a movable sandy seabed. The results show that the hybrid Eulerian–
Lagrangian method is a viable approach for accurate wave predictions in large coastal regions with nonstationary
boundary conditions. Good agreement between model predictions and field observations of swell decay supports
the hypothesis that, in the absence of strong local wind forcing, the evolution of waves across a wide, sandy
continental shelf is dominated by refraction and bottom friction, which is well represented by a moveable bed
parameterization.

1. Introduction

In shallow water, surface gravity waves are affected
by seabed features with a wide range of scales. Wave
refraction over large-scale (nominally 1–10 km) bottom
features can induce dramatic variations in wave energy
along the coast that are readily observed (e.g., Munk
and Traylor 1947). The effects of refraction on the evo-
lution of wave spectra are generally well understood
and accurately predicted by geometrical optics models
(e.g., Longuet-Higgins 1957; O’Reilly and Guza 1993).
Smaller scale (one-half to several wavelengths) bottom
features can scatter waves, possibly causing increased
directional spreading of waves on the continental shelf
and reduced wave heights near the shore. Models for
this process exist (e.g., Long 1973) but concurrent ob-
servations of wave evolution and finescale bathymetry
data are not yet available to assess the importance of
this mechanism.

In addition to these relatively well understood energy
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conserving wave–bottom interaction processes, wave
evolution across continental shelves and in shallow mar-
ginal seas is also believed to be strongly affected by
nonconservative bottom boundary layer processes (e.g.,
Shemdin et al. 1980; Bouws and Komen 1983; Weber
1988; Young and Gorman 1995). For seabeds composed
of noncohesive sandy sediments, the dissipation of wave
energy in the bottom boundary layer is strongly depen-
dent on the presence of sand ripples formed by the near-
bed wave orbital motion. Neglecting currents unrelated
to the waves, the bottom boundary layer can be clas-
sified in three regimes, based on the ratio of friction and
buoyant forces acting on a sand grain, and represented
by the Shields number c (e.g., Nielsen 1981). For small
values of c, the bottom morphology does not change,
thus retaining the history of past wave events and bi-
ological activity. In this ‘‘relict roughness’’ regime wave
energy dissipation is minimal as bottom velocities are
small and turbulence is weak. As c increases past a
threshold value cc (typically 0.05 for well-sorted quartz
sand), the wave flow intermittently moves surficial sed-
iments that organize into ripple fields (e.g., Nielsen
1981; Traykovski et al. 1999). These ‘‘active ripples’’
sharply increase the turbulent dissipation of wave en-
ergy as vortices are shed by the orbital flow at the ripple
crests. According to Madsen et al. (1990) the drag co-
efficient for spectral wave motion over ripples is max-
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imum for c . 1.2cc. Example swell conditions with
this maximum drag are a peak period Tp 5 12 s, and
significant wave height Hs 5 1.5 m in 25 m depth over
well sorted quartz sand with grain size D 5 0.15 mm.
For larger values of c the drag coefficient decreases as
ripples are eroded. For very large values of c (typically
c ; 20cc, corresponding to Hs 5 5 m keeping the other
parameters unchanged) ripples are obliterated and a lay-
er of sediments moves with the water column (e.g., Li
and Amos 1999). Both the thickness of this ‘‘sheet flow’’
layer and the drag coefficient increase with c.

Models for the evolution of waves over a movable
sandy bed (e.g., Graber and Madsen 1988; Tolman
1994) usually involve a ‘‘ripple roughness predictor’’
that, based on the wave conditions and sediment nature,
determines the flow regime, the type of bottom features
(e.g., Clifton 1976; Wiberg and Harris 1994), and their
equivalent sand grain roughness kN (e.g., Grant and
Madsen 1982; Madsen et al. 1990; Li and Amos 1998,
1999). This roughness predictor is combined with a hy-
drodynamic model of the bottom boundary layer flow
that predicts the corresponding wave energy dissipation.
Most hydrodynamic models parameterize turbulence
with a vertical profile of the eddy viscosity (Kajiura
1968; Grant and Madsen 1979; Weber 1991a, 1991b;
see Wiberg 1995 for a review). The use of a single
roughness length for spectral waves was validated in
laboratory experiments by Mathisen and Madsen
(1999).

Most numerical models for the evolution of surface
gravity waves across ocean basins, marginal seas, and
continental shelves that account for nonconservative
processes are based on a spectral energy balance (Gelci
et al. 1957). The wave field can be represented by the
spectral energy densities F(x, k, t), in wavenumber space
(k), as a function of geographical space (x) and time (t).
Neglecting currents, the Eulerian energy balance equa-
tion is given by (e.g., Whitham 1974)

]F
1 = · (c F) 1 = · (c F) 5 S, (1)x g k k]t

where = and = are horizontal divergence operators inx k

geographical and wavenumber space, respectively, and
cg (the group speed) and ck are the corresponding energy
transport velocities. The source term S(k, x, t) is the net
rate of energy transfer to component k resulting from
wind forces on the sea surface, dissipation processes
(wave breaking, bottom friction), and nonlinear inter-
actions with other components of the spectrum. In most
operational wave models the energy balance equation
(1) or a similar action balance equation is fully discre-
tized in the five-dimensional (k, x, t) space and inte-
grated in time on a Eulerian grid. These models are
widely used in deep water applications where large spa-
tial and temporal scales of wave evolution allow for
relatively coarse grids (e.g., SWAMP Group 1984; Ko-
men et al. 1994).

In shallow water accurate representation of refraction
may require grid resolution of the order of 100 m. If
the region of interest is small (less than 100 km2), a
high-resolution Eulerian model is feasible and gives
good results (Booij et al. 1999), but the computational
cost is presently too large for larger shelf areas, even
in a steady-state formulation. Additionally, finite dif-
ference approximations in these models cause numerical
diffusion, artificially spreading wave energy in time, x,
and k space, in a way unrelated to the physical evolution
of a wave spectrum over bottom topography. High-order
finite difference schemes and piecewise ray methods,
using local ray trajectories to estimate the advection
terms of Eq. (1), have been developed to mitigate this
effect (Sobey 1986; Young 1988; Benoit et al. 1996).

The spectral energy balance can also be formulated
from a Lagrangian point of view:

dF
5 S, (2)

dt

where the left-hand side is the rate of change of F fol-
lowing a wave component along its ray trajectory. Equa-
tions (1) and (2) are equivalent for waves that obey a
dispersion relation of the form f 5 W(k, x, t), where f
is the wave component frequency. However, in contrast
to the Eulerian balance (1), the along-ray conservation
of spectral densities is valid only in k space (Longuet-
Higgins 1957). Lagrangian wave prediction models
based on (2) usually assume a source term S equal to
zero. This approach is suitable for narrow shelf regions
where propagation distances are too short for significant
wave generation or decay (O’Reilly and Guza 1991).
Lagrangian models avoid the numerical diffusion of fi-
nite difference schemes, but the ray trajectories are high-
ly sensitive to topography details. The scattering of rays
over rough bottom topography causes physical diffusion
of wave energy that may broaden wave spectra in shal-
low water. The accurate representation of these finescale
bathymetry effects in a ray model requires averaging
over a large number of rays, whether the rays be com-
puted from initially parallel directions (forward refrac-
tion, e.g., Bouws and Battjes 1982) or from fixed points
(back-refraction, e.g., O’Reilly and Guza 1993). Back-
refraction models are not based on finite area elements,
unlike forward refraction and finite-difference schemes
in Eulerian models, and thus have different conservation
properties. For example finite-difference schemes are
generally constrained to conserve energy fluxes through
the model domain, but the energy fluxes obtained
through spatial interpolation in a back-refraction model
balance exactly only in the limit of high spatial and
wavenumber resolution. Nevertheless if high resolution
bathymetry is available, a back-refraction ray model
with high wavenumber resolution gives a potentially
more accurate representation of wave propagation than
finite-difference schemes.

Cavaleri and Malanotte Rizzoli (1981) included wind
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FIG. 1. Schematic of the integration of the Lagrangian energy
balance equation from t to t 1 Dt along a single ray (solid curve)
using a spatially interpolated source term. Filled circles symbolize
the magnitude of the energy density, and dashed arrows indicate the
interpolation of the source term from the Eulerian grid (squares) onto
the ray at increments dt. See section 2 for further details.

input and dissipation source terms in a ray model. Their
model parameterizes the source terms for each individ-
ual wave component, and solves the energy balance
equation independently for each ray, without any cou-
pling. In this study we include coupling between rays
through a source term that is parameterized in terms of
the full energy spectrum. The source term S(k, t) is
evaluated at each point of a coarse Eulerian grid, and
subsequently interpolated from this grid onto ray tra-
jectories. The energy balance equation (2) is solved
along a full spectrum of rays traced backward from each
grid point to the model boundary. Spectral components
are advected from the model boundary along the pre-
computed rays while being modified by the interpolated
source terms until they reach a grid point where all
components are combined into a full spectrum F(k, t)
from which S(k, t) can be evaluated. The advection and
source term computations are performed simultaneously
for the entire model domain. This hybrid Eulerian–La-
grangian model essentially couples a Lagrangian energy
advection scheme with an Eulerian source term com-
putation scheme. The formulation of the source term
computations is not constrained in any way by the ad-
vection scheme and thus can be adapted from existing
third-generation models.

In section 2 the details of the numerical model Cou-
pled Rays with Eulerian Source Term (CREST), are
described: ray computations, ray ensemble averaging,
source term interpolation, and time integration. The
source term, restricted in this paper to Tolman’s (1994)
parameterization of wave energy dissipation on a mov-
able sandy bottom, is reviewed in section 3. A numerical
implementation of the model for the North Carolina
continental shelf is described in section 4. Hindcasts of
swell attenuation across the shelf are compared in sec-
tion 5 to observations from the DUCK94 experiment.
The parameterization of bottom friction, and the effi-
ciency of hybrid Eulerian–Lagrangian spectral wave
models are discussed in section 6, followed by a sum-
mary in section 7.

2. Numerical schemes

The model consists of two parts. First wave rays are
traced backward from fixed Eulerian grid points with
positions xi to the model boundary. Second, these tra-
jectories are used to integrate Eq. (2) in time, using an
ensemble average over a large number of rays. Along
each ray, arriving at xi with a wavenumber vector k, we
define a Lagrangian energy density FL (t, t) as the energy
density ‘‘upstream’’ of xi at time t, where t is the energy
advection time from the local ray position to the grid
point xi. The spectral densities FL are averaged over
ensembles of rays within finite bands kj of the arrival
wavenumbers k at xi. The full Eulerian energy density
spectrum FE(xi , k, t) at xi is evaluated by combining the
average Lagrangian density predictions FL(t, 0) at xi for
all bands kj . A source term S(xi , kj , t) is determined at

each grid point from the full Eulerian spectrum FE and
other local parameters (e.g., wind stress and bottom
roughness). Then S is interpolated in x and k space to
yield an approximate source term S̃(t, t) at the local ray
positions and wavenumbers, which in turn modifies
FL(t, t) along the rays (Fig. 1). Rays and grid are thus
coupled at t 5 0 only.

The entire set of interpolation coefficients, repre-
senting the influence of the topography on waves is
precomputed once and stored in files. Using these files
and a time series of wave spectra at the model open
boundaries, the energy balance equation is integrated in
time.

Although the Lagrangian energy balance (2) holds
only for energy density in wavenumber (k) space, the
propagation of waves is formulated more conveniently
using wave frequency f and direction u as variables. In
the following f and u are used throughout in ray cal-
culations, grid discretization, and result displays, but the
energy density in k space is used in the energy balance
calculations.

a. Model domain and boundary conditions

The model domain covers a region of known bottom
topography. From an arbitrary set of Ngp grid points (here-
after called model grid) with locations (xi)i51,Ngp a triangular
mesh is generated using Delauney’s tessellation technique.
The outermost points of the mesh form the model bound-
ary, which is therefore a polygon. Additional interior
polygons can be added to the boundary in order to rep-
resent islands in the model domain (Fig. 2). Ray tra-
jectories are traced backward in time from the grid
points xi until they cross a boundary. For each xi, rays
are computed for a large number of frequencies fj and
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FIG. 2. Schematic of the boundary condition treatment for an
arbitrary model grid (squares represent grid points). The boundary
(dashed lines) separates and couples adjacent model subdomains.
Examples are shown of rays transporting energy into the model do-
main from four different types of boundaries (a: shelf break, b: island,
c: coast, d: internal boundary between model subdomains) to a given
grid point (large square). In cases a and d energy is advected through
the boundary, whereas in cases b and c energy is reflected from the
boundary. In all cases, the energy is interpolated (dotted arrows) at
the boundary from the adjacent two boundary grid points.

arrival directions ul. Depending on the geographical re-
gion covered by the model domain, rays can be trapped
in shallow water and end at the coast, reach a deep water
region where they become straight, or cross the model
boundary in a region of intermediate depth. In all cases
a ray is terminated when it crosses a triangle side con-
necting two boundary grid points, and the Lagrangian
energy density carried by the ray into the model domain
is approximated by a linear interpolation of the spectral
densities at these two grid points (Fig. 2).

The boundary condition for the model is therefore
fully prescribed by the spectral densities at the grid
points along the boundary for directions toward the in-
side of the boundary. On the open part of the boundary,
spectra may be estimated from deep water wave mea-
surements or obtained by nesting the model within a
larger scale wave model. On the closed coastal part of
the boundary, the energy entering the domain may be
set equal to zero (i.e., wave energy impinging on the
coast is dissipated in the surf zone) or, in the case of a
steep coastline, determined by partially reflecting the
shoreward energy flux. In order to reduce the scattering
of rays over large propagation distances, the model do-
main can be subdivided into subdomains that are cou-

pled through their common boundaries. This technique
reduces memory requirements by shortening the rays,
at the expense of some local numerical diffusion, as the
energy that is transmitted through the boundary is in-
terpolated from boundary grid points (e.g., ray d in Fig.
2).

b. Precomputations

1) RAYS

In applications presented here the model domain is
small enough to neglect the curvature of the earth, and
use local Cartesian (x, y) coordinates. The geometry of
wave rays is determined by Fermat’s geometrical optics
principle that the integral of the phase speed c along a
curve is minimum when this curve is a ray, which yields
Snel’s law when bottom contours are parallel. The ray
equations are

dx
5 cos(u) (3a)

ds

dy
5 sin(u) (3b)

ds

du 1 dc dh dh
5 sin(u) 2 cos(u) , (3c)[ ]ds c dh dx dy

with s a curvilinear coordinate along the ray, h the water
depth, and u the angle between the x axis and the tangent
to the ray. Wave energy is transported along the ray with
the group velocity cg and the frequency f is conserved.
In the linear approximation we have

2(2p f ) 5 gk tanh(kh) (4a)

g
c 5 tanh(kh) (4b)!k

1 kh
c 5 c 1 , (4c)g 1 22 sinh(2kh)

where k 5 |k | is the wavenumber magnitude.
Along the ray the local depth and bottom slopes are

evaluated from a biquadric fit to the bathymetry grid
(Dobson 1967). The wavenumber magnitude k is com-
puted from f using Eq. (4a) and is used to determine
c, cg, and dc/dh. With these parameters Eqs. (3) are
integrated using an error-controlled Cash–Karp Runge-
Kutta scheme (Press et al. 1992) with a variable step
size.

Along each ray the position and direction (xm,um) are
computed at small distance intervals mt 1dtds 5 # c dtmt g

that correspond to a fixed advection time step dt. A dt
was chosen for each frequency such that ds 5 200 m
in deep water. The result of the ray computation is a
series of positions and directions (xm, um) for each of
the rays with m ranging from 0 at the initial grid point
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to M at the domain boundary, with typical values M ;
1000 in the implementation presented in section 4.

M, xM, and uM give the time lag, position, and direc-
tion at the end of the ray needed to specify the boundary
condition. Although waves can travel along the same
ray in both directions, the rays are used here only to
advect energy from the boundaries to the grid points.

2) INTERPOLATION OF BOUNDARY CONDITIONS AND

SOURCE TERM

At each position xm along a ray, a local source term
estimate S̃(xm) is given by the linear interpolation in
space of source term predictions at the three grid points
xi of the local triangle. Since the source term is computed
only at discrete directions ul, another linear interpola-
tion, with weights is performed over the two di-mw ,l

rections ul that enclose the local direction um of the ray.
The same procedure is used for deriving an estimate F̃B

of the energy density FL (tM) at the boundary:
m m mS̃( x ) 5 a w S( x , u ) (5a)O i l i l

i,l

B M EF̃ 5 b w F ( x , u ), (5b)O i l i l
i,l

where the spatial weighting coefficients and bi arema i

nonzero only for the three grid points xi on the vertices
of the local triangle, and the two points of the boundary
segment crossed by the ray, respectively.

In order to resolve the refraction of a single wave
component and interpolate accurately the source term
onto the ray, a small time step dt is required that is of
the order of 10 to 100 s for typical swell group velocities
[cg 5 O(10 m s21)] and scales [O(1–10 km)] of bottom
features. This time step is too small for an efficient time
integration of the energy balance equation (2). This in-
tegration is performed here with a fixed larger time step
Dt (10 minutes in the calculations presented here),
which resolves the typically slower evolution of the
wave energy and source terms in space and temporal
changes of the offshore boundary conditions. The
source term S̃ (Eq. 5a) is averaged over an advection
time interval Dtn that covers values of t from (n 2 1)
Dt to nDt:

n nS̃ 5 A S( x , u ) (6)O il i l
i,l

with

dt
n m mA 5 a w , (7)Oil i9 l9Dt i95i,l95l,m

where the summation over m includes all ray segments
that fall within the time step Dtn. In the applications
presented here the time step index n ranges from 0 at
the grid point to 10–50, depending on the location of
the grid point, the frequency of the waves, and the com-
plexity of the topography. Higher frequency waves and
rough topography require more time steps than low fre-

quency waves and smooth topography because the
group velocity decreases with increasing frequency and
bending of rays over rough topography lengthens the
propagation path.

3) FINITE BANDWIDTH APPROXIMATION

So far we have considered the evolution of the spec-
tral energy density FL(t,t) along a single ray. Since in-
dividual ray trajectories are highly sensitive to the un-
derlying bathymetry, the energy balance equation is en-
semble-averaged over a ‘‘bundle’’ of rays originating
from xi with frequencies and directions covering a small
but finite bandwidth. The rays that form a bundle can
be scattered and follow different paths away from xi,

therefore the ray ensemble has a physical interpretation
only at the grid points xi as a finite bandwidth average.
The ensemble-averaged energy density FL and associ-
ated source term interpolation coefficients are givennAil

by weighed averages of single-ray values:
L LF (t, t) 5 b F (t, t) (8a)O r r

r

n r,nA 5 b A , (8b)Oil r il
r

where the summation is over all the rays in the bundle,
and br is the fraction of the finite bandwidth attributed
to the individual ray r.

Different rays from the same bundle may reach the
boundary during different time steps, so that the ensem-
ble average ‘‘boundary energy’’ must be defined fornF̃B

each time step n:
n n EF̃ 5 B F ( x , u ) (9a)OB il i l

i,l

n r r,MB 5 b b w , (9b)Oil r i9 l9
r,i95i,l95l

where the summation is restricted to those rays that
reach the boundary during time step n.

Averaging over finite frequency–direction bands not
only accounts for the scattering of rays by refraction
over bottom irregularities but also has the advantage of
avoiding the ‘‘garden sprinkler effect’’ of Eulerian mod-
els formulated for a discrete spectrum (e.g., SWAMP
Group 1984). A large number of ray computations (of
the order of 1000 for applications presented here) may
be needed to obtain a stable ensemble average but these
time-consuming computations can be performed in par-
allel for different bundles and grid points.

The results of the precomputation are the ensemble-
averaged interpolation coefficients and These co-n nA B .il il

efficients are written to files that are used in the time-
integration scheme described below.

c. Integration in time

The energy balance equation (2), averaged over ray
ensembles, is a unidimensional time evolution equation
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that can be integrated using standard finite-difference
schemes. However, a more accurate formulation is pos-
sible for linear or quasi-linear source terms. The total
source term S is split into a (quasi-)linear part lF and
a residual term R that includes constant and nonlinear
(in F) contributions:

dF
5 lF 1 R. (10)

dt

For l and R constants, Eq. (10) has an exact solution
for the evolution of F over one time step:

exp(lDt) 2 1
F(t 1 Dt) 5 F(t) exp(lDt) 1 R . (11)[ ]l

For l and R varying slowly in time and space an ap-
proximate solution is obtained by replacing l and R in
Eq. (11) with average values. The interpolation of the
total source term lF 1 R is more accurate with this
formulation provided that the gradients of l, in k space,
x space, and time are smaller than those of F (see ap-
pendix B). For fully nonlinear source terms (i.e., l 5
0), Eq. (11) reduces to a first-order Euler scheme.

Here l and R are assumed to be known functions V
and Q of the local wave spectrum that can be adopted
from parameterizations in existing Eulerian models. Us-
ing the precomputed coefficients , l and R are inter-nAil

polated from the Eulerian grid onto the rays.
The complete integration scheme is given by

Source term evaluation (on the grid):

El(t) 5 V[F (t)] (12a)
ER(t) 5 Q[F (t)], (12b)

Interpolations (grid to rays coupling):

n n EF̃ (t) 5 B F ( x , u , t) (12c)OB il i l
i,l

n n El̃ (t) 5 A l( x , u , t)F ( x , u , t)O il i l i l @[ ]i,l

n EA F ( x , u , t) (12d)O il i l
i,l

n nR̃ (t) 5 A R( x , u , t), (12e)O il i l
i,l

Prognostic equation (along the rays):

LF (t 1 Dt, (n 2 1)Dt)
n L n5 F (t) 1 F (t, nDt) exp(l̃ (t)Dt)B

nexp(l̃ (t)Dt) 2 1
n˜1 R (t) , (12f)

n[ ]l̃ (t)

Rays to grid coupling (at t 5 0):

LF (t 1 Dt, 0) or
EF (t 1 Dt) 5 (12g)

B5F (t 1 Dt),

where the frequency variable fj is omitted. Variables xi

and u1 are written explicitly only in the interpolations,
Eqs. (12c–e). In Eq. (12d) the weighting of l by the
corresponding energy density FE allows the conserva-
tion of the source term lF in the interpolation. The
prognostic equation (12f ) applies the interpolated
boundary condition and source term to the Lagrangian
energy balance to determine FL at the next time step.
The Eulerian spectrum FE is advanced to time t 1 Dt
with Eq. (12g), closing the set of equations. For grid
points xi located on model domain boundaries, the spec-
tral densities FE for waves traveling into the model do-
main are prescribed by the boundary condition FB. On
the deep water boundary FB is set equal to the observed
deep water spectrum. At other external boundaries FB

is set equal to zero. At internal boundaries FE for waves
traveling into one domain are prescribed by FE for waves
traveling out of the other domain. For all other com-
ponents and interior grid points FE follows from FL.
Each equation can be evaluated in parallel for all the
ray ensembles and all grid points, and different fre-
quency bands are only coupled by the source term.

The accuracy of this scheme depends on the relative
size of the Eulerian (TE) and Lagrangian (TL) timescales
of wave evolution. For TE K TL (e.g., a sudden and
uniform change in forcing conditions over the entire
model grid), the dominant source of error is the low-
order time integration scheme. If TE k TL (e.g., strong
energy dissipation at a fixed location, with quasi-sta-
tionary boundary conditions and source term), the larg-
est errors may result from spatial interpolation of the
source term. Large errors occur if either TE or TL are
comparable to or smaller than Dt. For all cases presented
in section 5, Dt is small compared to both TE and TL.
An alternative predictor–corrector scheme was tested,
giving results that are indistinguishable from those of
the scheme used here.

3. The source term

Previous work by Young and Gorman (1995) and
Herbers et al. (2000) suggests that bottom friction is
an important dissipation mechanism for energetic swell
propagating over a wide continental shelf. Bottom fric-
tion was incorporated in our hybrid Eulerian–Lagrang-
ian model using Tolman’s (1994) parametrization of
the interaction of waves with a mobile sandy bed, ne-
glecting mean currents and their effects on bedforms.
It combines a ripple roughness predictor by Madsen et
al. (1990) with Grant and Madsen’s (1979) hydrody-
namic model, extended to spectral waves by Madsen
et al. (1988). For the sheet flow regime Tolman used
Wilson’s (1989) extrapolation of river flows to oscil-
latory boundary layers. The source term S at grid point
xi can be expressed as a quasi-linear function of the
energy density FE [i.e., Eq. (10) with R 5 0] with an
isotropic local decay rate l:
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FIG. 3. Example relationships between dissipation factors fe and
Shields numbers c. The solid line is Tolman’s (1994) parameterization
for a representative grain size D 5 0.15 mm, and wave period T 5
14 s. The dashed line shows corresponding values of fe using the
JONSWAP parameterization.

ES( x , f , u, t) 5 l( x , f , t) 3 F ( x , f , u, t) (13a)i i i

2(2p f )
l( x , f , t) 5 2 f u , (13b)i e b 22g sinh (kh )i

where g is the gravity acceleration, hi is the local water
depth, and k is the wavenumber magnitude.

In (13b) fe is a local dissipation factor that depends
on sediment and wave characteristics. The sediment pa-
rameters are a representative grain size D; specific den-
sity s 5 rs /r, where rs and r are the densities of sed-
iments and water, respectively; and the critical Shields
number for sediment motion cc. The wave parameters
are a representative orbital velocity ub and horizontal
displacement ab at the top of the bottom boundary layer
(see appendix A for details).

In order to estimate fe, first a skin friction factor f9w
is determined by solving Eq. (A2) iteratively for a grain
roughness D. The corresponding Shields number c 5

quantifies the movement of sedi-2f9 u / [g(s 2 1) D]w b

ments and indicates the ripple regime. The equivalent
grain roughness kN of the bedforms is parameterized as
a function of c, cc, ab, and ub. For c/cc , 1.2 (i.e., in
the ‘‘relict roughness’’ regime), kN is taken to be 0.01
m. Beyond 1.2cc, in the ‘‘active ripple/sheet flow’’ re-
gime, kN is the sum of a ripple roughness kr and a sheet
flow roughness ks [Eq. (A3)]. Finally the total friction
factor fw (skin friction and form drag) is determined by
solving Eqs. (A2) again using the estimated bedform
roughness kN, and fe is assumed equal to fw (e.g., Nielsen
1992). For c/c , 1.2, fe is limited to a maximum value
of 0.30 (Jonsson 1980).

The spatial interpolation of the source term onto ray
trajectories may cause large errors in the transition re-
gion from the ‘‘relict roughness’’ to the active ripple
regime, where fe increases by one order of magnitude
(Fig. 3). Tolman (1995) proposed a subgrid model of
the source term that accounts for subgrid variations of
c resulting from variations over each grid cell of h, D,
cc, the significant wave height Hs and peak wave period
Tp. For simplicity these five random variables were as-
sumed to be Gaussian and independent. Because no in-
formation on the spatial variability of sediment char-
acteristics was available, a simpler subgrid model was
implemented here. If uniform sediment properties are
assumed, then both D and cc are uniform within each
grid cell, leaving only three random variables h, Hs, and
Tp. In model simulations of swell evolution on the North
Carolina shelf, using observed incident wave condi-
tions, most of the subgrid variability of the source term
resulted from the subgrid variations of water depths h
rather than the wave parameters Hs and Tp, and Hs was
correlated with h. This predominance of the depth var-
iability was also noted by Tolman (1995) and used in
his computations.

In the present subgrid model, spatial variations in the
water depth h are represented by forming a histogram
of depths for a grid cell that consists of the triangles

surrounding the grid point xi, using ten depth bins that
span the mean 6 2 standard deviations of h. A corre-
sponding linear theory shoaling correction of the wave
spectrum is added to account for correlations of Hs with
h. A subgrid-averaged value of l is obtained by aver-
aging estimates of l (for each depth bin, based on the
corresponding shoaling-corrected wave spectrum, Eq.
13b), weighted by the depth histogram values.

A simpler empirical parameterization of bottom dis-
sipation used in many operational wave prediction mod-
els assumes that fe is inversely proportional to ub so that
the factor G 5 feubg/2 is constant and the source term
is given by

2
2p f

ES( x , f , u, t) 5 2G F ( x , f , u, t). (14)i i[ ]g sinh(kh )i

An average value G 5 0.038 m2 s23 was inferred from
the JONSWAP North Sea experiment (Hasselmann et
al. 1973). This linear JONSWAP parameterization (in-
cluded in the comparisons presented below) yields val-
ues of fe that are close to the movable21 21( f 5 2Gu g )e b

bed fe, except in the active ripple regime, where the
JONSWAP parameterization predicts less energy dis-
sipation (Fig. 3).

4. Model implementation and field data

The hybrid Eulerian–Lagrangian model (section 2)
with a movable bed bottom dissipation source term (sec-
tion 3) was implemented for the North Carolina shelf
region between 358N and 378N (Fig. 4). During the
DUCK94 experiment a 100 km cross-shelf transect of
nine bottom mounted pressure sensors was deployed
extending from 12 m (site A) to 87 m depth (site I)
(Fig. 4; Herbers et al. 2000). The instrument deployed
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FIG. 4. Bottom topography and model grid. The grid points where the source term is evaluated
are the nodes of the triangular mesh. A linear interpolation is applied in each triangle to approximate
the source term along the rays (Fig. 1). The entire model domain is subdivided into subdomains
separated by thicker lines. Grid points denoted with squares labeled A to I are the locations of
pressure sensors deployed during the DUCK94 field experiment.

at site H in 49 m depth was located within 2 km of 3-
m discus buoy 44014 operated by the National Data
Buoy Center (NDBC). Between site A and the shore a
pressure sensor array was operated in 8 m depth by the
Army Corps of Engineers Field Research Facility, Duck,
North Carolina. Other instruments on the inner shelf

included current meters, thermistors, and conductivity
sensors in depths ranging from 4 to 26 m. Data from
these instruments show that outside the surf zone the
depth-averaged currents are mostly wind driven with
speeds usually in the range 10–20 cm s21, and occa-
sional stronger currents (.50 cm s21) in storm condi-
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tions (Lentz et al. 1999). These currents are generally
much weaker than both the wave speeds and the near-
bed orbital velocities of energetic swell in shallow water.
The effects of currents on the propagation of swell and
on the wave bottom boundary layer are neglected here.

Bathymetry data was derived from the National
Ocean Service digital database and additional bathy-
metric surveys conducted during the DUCK94 experi-
ment (Herbers et al. 2000). These datasets were merged
and linearly interpolated onto a regular 60 longitude by
60 latitude grid, using a standard Delauney tessellation
technique (Fig. 4). This grid was then linearly trans-
formed into a Cartesian x (west–east) and y (south–
north) coordinate grid (resolution 152 and 185 m, re-
spectively) that is used in the Lagrangian ray integra-
tions [Eqs. (3)]. Errors introduced by neglecting the
curvature of the earth are small for the size (128 km by
211 km) of our domain (O’Reilly and Guza 1993).

The Eulerian model grid, much coarser than the ba-
thymetry grid, consists of 329 grid points arranged in
triangles that vary in size from 5 km on the inner shelf
to 10 km on the outer shelf (Fig. 4). Slightly coarser
grids gave similar results, suggesting that the resolution
chosen here is adequate. The model domain was made
as small as possible while covering the shelf region
through which most of the wave energy, measured by
the pressure sensors, has propagated. The model bound-
aries were chosen to be the 11-m isobath (except around
the 8-m array, where a grid point is collocated with the
array), the 400-m isobath, and the 358129N and 378589N
parallels. Swell energy enters the model domain only
through the deep water boundary where the spectrum
FB ( fj , ul , t) is assumed to be spatially uniform. The
model domain is subdivided into a main subdomain,
around sites A to I and additional subdomains (Fig. 4).
This allows for the representation of waves coming from
high incidence angles, and reduces the memory required
to store all the interpolation coefficients, including those
for trapped rays, to one gigabyte. Trapped rays are not
necessary for the present application, since energy en-
ters the model domain only through the deep water
boundary, but were implemented for future applications
with other source terms and reflective boundaries. The
use of subdomains, described in section 2, introduces
some numerical diffusion for waves propagating across
the internal boundaries, but these waves, with high in-
cidence angles, carry a very small fraction of the total
energy in the present application.

For each grid point xi, rays are initially traced for 162
frequencies, at arrival direction intervals of 0.258. For
each frequency the arrival directions are subsequently
bisected (O’Reilly and Guza 1993) until neighbouring
rays have directions and positions at the boundary with-
in 28 and 5 km of one another, respectively. If the num-
ber of rays for a 38 sector exceeds 500, the bisection is
stopped. The rays are grouped in 19 3 120 bundles,
which represent finite bandwidths of the spectrum
FE (xi, fj , ul , t) with 19 frequencies fj spaced exponen-

tially with a 5% increment from 0.05 Hz to 0.12 Hz,
and 120 directions ul spaced linearly over a full circle
with a 38 resolution. The number of rays per bundle
varies from Nf 3 13 (initial number of rays before bi-
secting) to Nf 3 500 (an upper limit set for broadly
scattered bundles), where Nf is the number of frequen-
cies per frequency band. Here Nf decreases from 9 for
0.05 Hz to 3 for 0.12 Hz.

Wave frequency spectra F ( fj , t), integrated over di-
rections, are estimated from the measured bottom pres-
sure records at sites A–I, using a linear theory depth
correction. The offshore frequency–direction spectrum
FB ( fj , ul , t) is estimated by combining the frequency
spectrum obtained from the pressure sensor at site H,
with directional distributions estimated from the nearby
NDBC buoy cross-spectra using the Maximum Entropy
Method (Lygre and Krogstad 1986). This spectrum is
back-refracted from site H to deep water, assuming par-
allel bottom contours, and neglecting the time lag be-
tween site H and the offshore model boundary. Although
the offshore conditions generally varied slowly on time-
scales of several hours, this spectrum is determined at
10-min intervals, in order to match the model time step
Dt. Frequency–directional wave spectra on the inner
shelf were estimated from the 8-m depth array near site
A (Herbers et al. 1999).

Based on core samples collected in 1997 on the inner
shelf (R. Beavers 1999, personal communication) and
earlier geological data covering the entire shelf (Mil-
liman et al. 1972; Swift and Sears 1974), we crudely
approximate the bottom sediments in the entire area
encompassed by the model with a thick uniform layer
of fine quartz sand (s 5 2.65), with a representative
grain size D 5 0.15 mm and a critical Shields number
cc 5 0.05.

The accuracy of the source term interpolation and the
representation of refraction in the model is demonstrated
with model tests described in appendix B.

5. Hindcasts

Hindcasts are presented for two time periods in 1994,
17–21 October and 16–19 November, that are repre-
sentative of fall weather patterns causing large waves
on the North Carolina coast. Wind sea and swell were
observed in October, generated by a storm that moved
across the eastern United States into the North Atlantic,
whereas in November large swells arrived from Hur-
ricane Gordon, which remained in the western Atlantic,
south of Cape Hatteras. In both cases, the model was
run both with and without the bottom dissipation source
term. Runs without the source term isolate the effects
of refraction and shoaling in the evolution of wave spec-
tra, and the difference between runs with and without
the source term can be used to assess energy dissipation
caused by bottom friction.
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FIG. 5. Three-hour averages of observed wind and wave condi-
tions during the October storm. (a) Wind speed (solid line), wind
direction (M), and mean wave direction (3) measured by NDBC
buoy 44014 (near site H). (b) Significant wave height and peak period
estimated from pressure sensor H (peak periods were replaced by the
NDBC buoy values when smaller than 8 s). Vertical dash-dotted lines
labeled I (2330 EST 17 Oct) and II (0830 EST 19 Oct) indicate times
for which more detailed analyses are presented in Figs. 7, 8.

a. October storm

On 14 and 15 October local winds from the northeast
were strong enough to contribute significantly to the
energy balance on the shelf at the dominant (8–10 s)
wave periods (Fig. 5). Strong wind forcing is evident
at the NDBC buoy where the mean wave direction u
[defined here as the direction of the first-order moment
vector ## /kF( ) dkx dky] follows the local wind direc-k k
tion. As wave generation is not represented in the pre-
sent model, predictions are not expected to be accurate
during the spinup of this storm.

On 15 October the significant wave height observed
at site H reached a maximum value Hs 5 5.3 m (4.3 m
in the restricted model frequency range), with a peak

period Tp 5 11 s (Fig. 5b). After 16 October local winds
subsided and Tp shifted to 15 s, indicating a transition
from wind sea to swell. Between 15 and 18 October, Hs

decreased to 2.3 m (time I) followed by an increase to
2.8 m on 19 October (time II), with a narrow, swell-
dominated spectrum (not shown). After 19 October Hs

and Tp gradually decreased to 0.6 m and 10 s.
Model predictions are presented only for the swell-

dominated period 17–21 October. Predictions of Hs with
bottom dissipation are generally in good agreement with
observed Hs on the outer (e.g., Fig. 6a) and inner shelf
(e.g., Fig. 6b). The model predicts the expected turning
of toward the shore-normal direction, owing to re-u
fraction by the large-scale shelf slope (Fig. 7). The ob-
served shift in , up to 25 degrees between the offshoreu
buoy and the nearshore (8 m depth) array, is reproduced
by the model (Fig. 6c). Observed and predicted in 8u
m depth differ by less than 5 degrees.

Model predictions without bottom dissipation show
a small decrease in wave height across the shelf that is
caused by refraction and shoaling effects (Figs. 6a,b).
The model with movable bed friction predicts a strong
attenuation of Hs across the shelf (Figs. 6b and 7) that
is comparable to the observed attenuation. The observed
and predicted decay across the outer shelf is negligible
except for a slight (10%) decrease of Hs on 19 October
when swell energy was maximum (time II in Fig. 6a).
Strong decay of Hs is observed and predicted across the
inner shelf, up to a factor 2 (equivalent to a 75% energy
reduction) (Fig. 6b). The observed and predicted de-
crease of Hs across the shelf is generally smaller when
Hs is smaller (e.g., compare times I and II in Figs. 6a
and 6b). On 21 October when Hs was less than 0.5 m,
the observed and predicted Hs (with and without bottom
dissipation) are nearly uniform across the shelf.

Details of the representation of bottom friction in the
model are illustrated in Fig. 8. The predicted variation
of the dissipation factor fe on the scale of the grid res-
olution confirms the importance of subgrid modeling of
the movable bed (Tolman 1995). Predicted boundary
layer regimes (relict roughness or active ripples) are
sensitive to the offshore wave conditions. On 17 October
(time I in Figs. 5 and 6), the model predicts relict rough-
ness over most of the shelf with dissipation factors Fe

close to the relict regime minimum ( fe 5 0.04) and a
sharp transition to active ripples (0.08 , fe , 0.18) in
depths shallower than 25 m (Fig. 8a). The boundary
between active and relict ripples generally follows the
depth contours. The corresponding local decay rate |l |
} feub sinh22(kh) [Eqs. (13b) and (A1a)] is enhanced
not only by the large increase in fe but also by the
increase of the bottom orbital velocity ub in shallow
water. Seaward of site D, predicted Hs with and without
bottom dissipation are nearly equal to the observed Hs,
whereas closer inshore, predicted Hs with and without
bottom dissipation diverge sharply and predictions of
Hs with bottom dissipation reproduce the observed de-
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FIG. 7. Model predictions (with movable bed source term) of
significant wave height (colors) and mean wave direction (arrows) at
time II (Figs. 5, 6). Dotted lines indicate the 30-m and 50-m isobaths.

heights at sites (a) F and (b) B after the October storm. The dotted
lines represent model results at the same sites based on the JONSWAP
linear damping formulation. The offshore Hs is indicated with a
dashed line. (c) The mean wave direction measured at the 8-mu
depth array (solid line) is compared to the model prediction with the
movable bed source term (1). The offshore is indicated with au
dashed line. Vertical dash-dotted lines labeled I and II indicate times
for which more detailed analyses are presented in Figs. 7, 8.

FIG. 6. Three-hour averages of observed (solid line) and predicted
(1: with movable-bed source term, #: without) significant wave

cay of Hs across the inner shelf (Fig. 8b). The strongly
enhanced dissipation predicted by the movable bed
model on the inner shelf is consistent with the observed
variations in wave heights. However, the JONSWAP
parameterization also gives reasonable predictions of Hs

in this case.
On 19 October when the swell energy was maximum

(time II in Figs. 5 and 6), the movable bed model pre-
dicts active ripples on the entire shelf (Fig. 8c). The
corresponding values of fe are maximum close to the
shelf break (0.1 , fe , 0.12) and decrease inshore ( fe

5 0.04 at site B). A strong decay of wave energy inshore
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FIG. 8. (a) Ripple regime based on local mean water depth (hatched for active ripples, blank for relict roughness) and dissipation factor
fe (contour interval is 0.02) at time I (Figs. 5, 6). (b) Observed (solid line) and predicted (#: without bottom dissipation, 1: with movable-
bed source term, dotted: with JONSWAP source term) Hs at time I, as a function of cross-shelf distance. (c) Same as (a) for time II (Figs.
5, 6). (d) Same as (b) for time II.
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FIG. 9. Wind and wave conditions during Hurricane Gordon
(same format as Fig. 5). The vertical dash-dotted line labeled III (0830
EST 18 Nov) indicates the time when Hs was maximum offshore.

FIG. 10. Model predictions (with moveable bed source term) of
significant wave height (colors) and mean wave direction (arrows) at
the peak of Hurricane Gordon (time III in Fig. 9). Dotted lines indicate
the 30-m and 50-m isobaths.

of site G is evident in the difference between model
predictions of Hs with and without bottom dissipation
and these energy losses (on average 0.35 W m22 over
the entire shelf ) are consistent with the observations
(Fig. 8d). Inshore of site D the model with the source
term underpredicts Hs (overpredicts decay) by about 25–
50 cm. The JONSWAP parameterization on the other
hand overpredicts Hs by 40–60 cm, as might be expected
from Fig. 3.

b. Hurricane Gordon

Although the eye of Hurricane Gordon remained
south of Cape Hatteras, local winds were strong (10–
15 m s21) on 17 November through the morning of 18
November (Fig. 9a). During the peak of this event (time
III) when Hs . 10 m and Tp . 15 s (Fig. 9a), the local
wind speed was about 13 m s21 and the mean wave and
wind direction differed by about 30 degrees. Estimated

values of the wind energy input in the model frequency
band [WAMDI Group 1988, Eq. (2.9)] are below 2 W
m22 on most of the shelf, while the predicted bottom
dissipation rate is generally between 2 and 10 W m22

(both terms are maximum near the coast). Hence, al-
though bottom dissipation appears to be the dominant
source term, neglecting the wind input in this case may
cause significant errors.

At time III the model predicts a gradual turning of
the mean wave direction from 1158 in deep water to 888
in 8 m depth (Fig. 10), in good agreement with the mean
direction (888) observed at the 8-m array (not shown).
Model predictions without bottom dissipation yield a
decrease in Hs from 8.5 m at site I near the shelf break
to 7.4 m at site B on the inner shelf. This attenuation,
associated with the time evolution of the storm and con-
servative shoaling and refraction processes, accounts for
only part of the observed decrease of Hs to 5.8 m at
site B. Including movable bed dissipation brings the
model in better agreement with the observations (Fig.
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FIG. 11. Ripple regimes, dissipation factors, and wave height
comparison at the peak of Hurricane Gordon (time III in Fig. 9).
Same format as Fig. 8, with the addition of the fe 5 0.01 contour,
and horizontal hatches for sheet flow conditions determined from the
threshold criterion csf 5 0.172D20.376, where D is in cm (Li and Amos
1999).

11b). The predicted values of the dissipation factor fe

are about 10 times smaller than the values for the Oc-
tober event, owing to larger Shields numbers. On most
of the shelf, fe predictions vary between 0.01 and 0.02
(Fig. 11a), corresponding to sheet flow. Active ripples
are predicted close to the shelf break in depths greater
than 40 m. The representative bottom velocity ub (a
linear function of Hs for a given spectral shape) is three
times larger than in the October event. In an absolute
sense, the dissipation rate |S | [proportional to ; Eq.3f ue b

(13)] is a factor 3 larger than in the October event, but
the relative decay rate |l | [proportional to feub; Eq.
(13b)] is a factor 3 smaller. As a result, the predicted
relative decay of Hs across the shelf, due to bottom
dissipation, is weaker for the Hurricane Gordon case
than the October swell event (a 14% decrease compared
to 36% in October, cf. Figs. 8d and 11b). The JONSWAP
parameterization yields Hs predictions for Hurricane
Gordon, which are close to both observed Hs and mov-
able bed predictions (Fig. 11b).

6. Discussion

a. Movable bed model

The comparisons between observations and model
predictions suggest that the observed decay of swell
energy across the shelf is primarily the result of refrac-
tion and energy dissipation in the boundary layer over
a movable sandy bed. Predicted wave frequency spectra
(not shown) are also in good agreement with observed
spectra, except at very low frequencies ( f , 0.06 Hz)
where energy levels are relatively low. The hindcast
results suggest large spatial and temporal variations of
the dissipation factor fe as the seabed transitions through
different roughness regimes (Fig. 3). Tests with different
sand grain sizes in the range of probable values for the
region (0.15 to 0.2 mm) indicated little sensitivity of
the results. Although more accurate offshore wave data
and detailed sediment distributions are needed for com-
prehensive tests of the bed roughness parameterization,
the present results show a model tendency to overpredict
swell damping, in particular in the active ripple regime
(Figs. 6 and 8d). The parameterization of the ripple
roughness kr was tuned to reproduce laboratory exper-
iments with irregular but unidirectional waves (Madsen
et al. 1990). Field conditions, with directionally spread
waves, are likely to generate more irregular and less
steep ripples, with smaller roughness kr, than laboratory
experiments (e.g., Nielsen 1981). Therefore the esti-
mates of kr may be biased high. A reduction of kr by
30% significantly improved the model accuracy (not
shown).

The JONSWAP parameterization gives a relative de-
cay in wave height H/Hoffshore that is constant for a given
dominant frequency. The observations presented here,
all for swell with a peak period Tp . 15 s, instead show
a variable relative decay in response to changes in the
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wave height (e.g., Fig. 6b). Equivalent values of G, the
JONSWAP coefficient, were inferred from the movable-
bed model hindcasts. At site F on the outer shelf, we
find 0.025 m2 s23, 0.11 m2 s23, and 0.050 m2 s23 at
times I, II, and III, respectively. For the same times at
site B on the inner shelf, G values are 0.11 m2 s23, 0.095
m2 s23, and 0.057 m2 s23, respectively. These values
generally fall between the JONSWAP average value G
5 0.038 m2 s23, and the one obtained from observations
in the Great Australian Bight (Young and Gorman
1995), G 5 0.152 m2 s23. Although the JONSWAP
formulation with the widely used value G 5 0.038 m2

s23 gives reasonable wave height predictions in most
conditions (Figs. 6, 8, and 11), it cannot reproduce the
observed variations in swell decay and significantly
overestimates wave heights in active ripple conditions,
as was also noticed by Weber (1991a). In contrast the
constant roughness (kN 5 4 cm) proposed by Weber
(1991a) yields values of Hs that are still too high (by
30 cm) in the 19 October case, but too low (by 2.5 m)
in the 18 November case (not shown). The movable bed
model, adopted from Tolman (1994) without any ad-
justments, captures this variability, and fine tuning of
all the empirical parameters should further improve
swell predictions. However, the movable bed parame-
terization requires site-specific sediment data that are
not always available. Without such data, operational
wave models may be better off with more robust dis-
sipation models (e.g., Weber 1991a; Tolman 1994; Luo
and Monbaliu 1994; Young and Gorman 1995).

b. Model efficiency

The new hybrid Eulerian–Lagrangian model CREST,
presented here, was used to investigate the effects of a
movable sandy seabed on the transformation of swell
across a continental shelf. Other physical processes such
as wave generation, resonant nonlinear interactions be-
tween waves (Hasselmann 1962), and resonant Bragg
scattering of waves by bottom features (Long 1973) can
be incorporated as additional source terms in the energy
balance equation. Hence the present model provides an
alternative to the Eulerian finite-difference scheme mod-
els commonly used for wave prediction. With NDt a typ-
ical number of time steps for a ray bundle, and Ns a
typical number of interpolation coefficients andn nA Bil il

for a given time step, the CREST wave model requires
memory space for storing the interpolation coefficients
that is a factor NDt 3 Ns (of the order of 200 in the
calculations presented here) larger than the space used
for storing the spectrum. Thus CREST requires much
more memory per grid point than an Eulerian model,
which only needs to store the spectrum. The hybrid
approach is attractive for applications where the spatial
scales LS of variations in the source terms are much
larger than spatial scales LR of refraction effects. An
Eulerian model describing refraction with a finite dif-
ference scheme in space requires a grid resolving both

LR and LS, whereas the Eulerian grid in the present model
needs to resolve only LS because LR is resolved by the
precomputed rays. If LS is much greater than LR, this
property reduces drastically the number Ngp of grid
points required for an accurate integration of the energy
balance equation. Reducing Ngp has the added benefit
that in coarser grids fewer grid points are used to in-
terpolate the source term for a given ray bundle, thus
reducing the number Ns of interpolation coefficients per
time step. The implementation of an Eulerian finite-
difference scheme with a resolution of about 500 m
would have similar memory needs as the calculations
presented here.

The considerable memory burden imposed by the
storage of the ray information can be reduced by di-
viding the model domain into subdomains. The use of
subdomains is clearly a compromise between a pure
Lagrangian advection scheme and practical consider-
ations. At the internal boundaries it reintroduces nu-
merical diffusion in the advection and recouples the rays
to the grid for t . 0. Although not necessary in the
application presented here it seems unavoidable for im-
plementations of CREST on very large areas (e.g., .106

km2).
The representation by refraction alone of the effects

of small-scale bottom irregularities is cumbersome in
the present model, and may not reflect the entire com-
plexity of that process. A statistical representation of
the interaction of waves with the smallest scale bathy-
metric features [e.g., the wave–bottom Bragg scattering
source term described in Hasselmann (1966) and Long
(1973)] appears attractive because it would improve the
physical description of wave–bottom interactions and
the rays computed on smoother bathymetry would be
less scattered thus requiring a smaller number Ns of
interpolation coefficients.

The small number of grid points in CREST is also
advantageous for complex source terms (e.g., quartet
interactions between wave components) that are pro-
hibitively expensive to evaluate accurately on a high-
resolution grid. Furthermore the flexible model grid gen-
erated from any arbitrary set of points can be tailored
to the bathymetry and shape of the model domain with
higher resolution in the shallowest parts of the domain.
In this respect CREST is similar to the TOMAWAC
model (Benoit et al. 1996).

For practical applications, computing ray trajectories
is too expensive to allow a time-dependent ray geom-
etry. This prevents the use of CREST in regions with
strong temporal medium variations such as unsteady
currents and tidal depth changes found in shallow es-
tuaries and macrotidal seas, unless an approximate rep-
resentation of these effects as source terms is found.

7. Summary

A nonstationary spectral wave model was developed
using a hybrid Eulerian–Lagrangian scheme to examine
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the damping of swell propagating across a wide, shallow
continental shelf. The model accurately represents re-
fraction by advecting wave energy from deep water
along a full spectrum of precomputed ray trajectories
to a large number of grid points on the shelf. The source
term in the energy balance is computed at each of these
grid points, based on the complete frequency-directional
spectrum. The source term is then interpolated from the
Eulerian grid onto the rays, thus allowing for nonlinear
coupling of wave components traveling along different
rays. The energy balance is averaged over ensembles of
rays to represent a finite spectral bandwidth. The (La-
grangian) computation of energy advection along rays
and the (Eulerian) source term evaluation are carried
out in parallel through the entire model domain. Source
term formulations can be adapted from existing third-
generation wave prediction models, whereas the finite
difference propagation schemes of these models are re-
placed with a Lagrangian ray method. This hybrid
scheme avoids the numerical diffusion and ‘‘garden
sprinkler’’ problems of existing models that use finite-
difference schemes. The ray calculations and source
term interpolation scheme add considerable computa-
tional effort, but both the ray trajectories and interpo-
lation coefficients are precomputed for a given coastal
region and model grid. The spectral energy balance is
integrated in time with an efficiency comparable to ex-
isting finite-difference schemes.

The model was implemented with a source term re-
stricted to energy dissipation in the bottom boundary
layer over a movable sandy bed, as parameterized by
Tolman (1994). The model was used to hindcast swell
evolution across the North Carolina continental shelf
for a range of wave conditions (significant wave heights
between 0.5 and 10 m, and peak periods between 8 and
17 s) observed during two storms in 1994. Good agree-
ment between observed and predicted variations of sig-
nificant wave heights and mean wave directions across
the shelf supports the hypothesis that refraction and
movable bed bottom friction dominate the evolution of
swell over a shallow sandy continental shelf.
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APPENDIX A

Parameterization of the Bottom Boundary Layer

The bulk amplitudes of wave orbital velocity ub and
displacement ab at the top of the bottom boundary layer
are evaluated using Eqs. (11) and (25) in Madsen et al.’s
(1988) model:

2 28p f
2u 5 F(k ) dk (A1a)b E 2sinh (kh)k

2
2a 5 F(k ) dk. (A1b)b E 2sinh (kh)k

For a linear profile of eddy viscosity, Grant and Mad-
sen (1979) determined the skin friction factor andf9w
total friction factor fw (ratio of bulk stress and ) as2ub

implicit functions of the grain size D and equivalent
grain roughness of the bedforms kN, respectively:

z 2 D or k0 N5 (A2a)!l f 9 or f 30kaw w b

2k
f 9 or f 5 , (A2b)w w

2 22[ker (2Ïz /l ) 1 kei (2Ïz /l )]0 0

where z0/l is a nondimensional roughness length, k is
von Kármán’s constant (k 5 0.4 for clear water), and
ker and kei are the zeroth-order Kelvin functions.

In the presence of active ripples or sheet low, kN is
taken to be the sum of a ripple roughness kr and a sheet
flow roughness ks. Madsen et al. (1990) gave empirical
values of kr for random waves in laboratory experiments
and Wilson (1989) extrapolated to waves values of ks

measured for river flows:

22.5
c

k 5 a 3 1.5 (A3a)r b 1 2cc

2.8 20.4u ab bk 5 0.57 . (A3b)s 1.4 2[g(s 2 1)] (2p)

APPENDIX B

Model Tests

The error in the ray computation is controlled by the
variable time step, but other errors are introduced by
the discretization in frequency and direction and the ray
ensemble average. The accuracy of the propagation
scheme was tested by applying the model with the
source term set equal to zero to an idealized shelf with
parallel depth contours, for a uniform and stationary
offshore boundary condition (Fig. B1a). The mean wave
directions and directional distributions of energy pre-
dicted by the model agree closely with analytical (Snel’s
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FIG. B1. Model tests with an alongshore uniform shelf. The offshore
wave energy is distributed uniformly over a narrow (0.0655–0.0685
Hz) frequency band. (a) Cross-shelf depth profile. (b) Predicted (1)
and analytical (solid line) mean wave direction vs cross-shelf dis-
tance. Results are shown for narrow offshore directional distributions
(standard deviation of 10 deg) with mean wave directions varying
between 308 and 1508. (c) An example directional distribution pre-
dicted by the model (1) in 20-m depth for a given offshore bimodal
distribution (dotted line) is compared to the analytical solution (solid
line).

FIG. B2. Interpolated vs directly computed values of S/F (inverse
of the bottom dissipation e-folding time) using (a) a quasi-linear
source term implementation that interpolates l [Eq. (13b)], and (b)
a nonlinear implementation of the same source term that interpolates
S [Eq. (13a)]. The source term estimates are averages over a 10-min
time step. Symbols represent different boundary layer regimes within
the grid cell: relict ripples (1), active ripples (n), and a transition
from relict to active ripples (M).

law) results (Fig. B1b and B1c), demonstrating that ray
integration and discretization errors are small.

The model formulation assumes that the source term
varies on scales comparable to or larger than the spacing
of the grid. This condition is required for a valid inter-
polation. The accuracy of the interpolation scheme was
tested by computing the source term directly at 20 ad-
ditional grid points located along a ray segment (for
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0.07 Hz waves) that covers a full source term integration
time step Dt 5 600 s. Source term estimates interpolated
onto this ray segment with Eqs. (B12d,e) in a hindcast
of wave evolution across the North Carolina shelf (sec-
tion 5) are compared with direct estimates at the ad-
ditional grid points in Fig. B2. Results (averaged over
a time step Dt) show that the linear spatial interpolations
give a good approximation of subgrid variations in the
source term. That is, the source term gradients are rather
well resolved by the grid. The interpolation is most
accurate when the ripple regime is the same at all the
neighboring grid points. Overall, a quasi-linear imple-
mentation of the movable bed source term [i.e., S 5
lF, R 5 0 in Eq. (10)] (Fig. B2a), yields smaller errors
than a nonlinear implementation of the same source term
[i.e., l 5 0, R 5 S in Eq. (10)] (Fig. B2b).
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