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ABSTRACT

The transformation of surface gravity waves propagating through shallow regions

is investigated with extensive field data from the North Carolina continental shelf. A spec-

tral energy balance equation is derived for a bidimensional bottom topography with ran-

dom small-scale irregularities, in which bottom friction is introduced heuristically whith

a parameterized source term, and solved numerically using a hybrid Eulerian-Lagrangian

scheme. This new model named CREST (Coupled Rays with Eulerian Source Terms) deter-

mines accurately refraction of waves by subgrid-scale depths variations using precomputed

rays, allowing applications to large coastal areas with relatively coarse grids. Hindcasts

of swell events during field experiments show large variations in wave heights caused by

refraction and bottom friction. Widespread observations of sand ripples confirm that the

bottom roughness is enhanced by wave-generated vortex ripples, thus sheltering the shore

from offshore swells by dissipating wave energy in the bottom boundary layer. Resulting

wave height attenuation up to 70 % (84 % of the wave energy) was observed in moder-

ately energetic conditions. Bragg scattering of waves by wavelength-scale bottom features

significantly increases (up to a factor two) the directional spread of waves.
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RESUMÉ

La transformation d’ ondes de gravité de surface est étudiée au moyen d’ une équa-

tion d’ évolution pour les densités spectro-angulaires, établie à partir des équations de con-

servation de la quantité de mouvement et de la masse, dans le cas d’ un fond lisse avec une

topographie irregulière. L’effet de la rugosité du fond est introduit de manière empirique.

Un modèle numérique hybride Eulerien-Lagrangien est présenté pour résoudre cette équa-

tion. Entre autres avantages ce nouveau modèle, dénomé Crêtes (Couplage de Rayons par

Termes de Source Euleriens) permet d’utiliser des maillages non-structurés pour le terme

de source, tandis que les effets de la réfraction et du levage causés par les variations de

profondeur aux échelles sous-maille sont précisement pris en compte grâce aux rayons pré-

calculés. Ainsi ce modèle peut être appliqué à de vastes zones côtières avec des maillages

relativement lâches.

Des observations de rides de sable sur le plateau continental de Caroline du Nord,

combinées à des simulations numériques d’ épisodes houleux observés au cours de cam-

pagnes à la mer, montrent que les variations de la hauteur des vagues à la traversée d’ un

plateau continental large, peu profond et sableux, sont essentiellement causés par la réfrac-

tion et la friction au fond, pour laquelle les rides crées par les vagues jouent un rôle déter-

minant. Ces rides protègent la côte des houles d’ amplitude moyenne, avec, pour les cas

décrits ici, une atténuation maximale de 70 % de la hauteur de vague, soit 84 % de l’énergie.

Les propriétés directionnelles de la houle sont modifiées par la présence d’ irregu-

larités bathymétriques d’ échelle horizontale comparable à la longueur d’ onde de la houle.

Cette interaction houle-topographie est décrite ici par la théorie de la diffusion de Bragg

pour des vagues aléatoires, et représentée par un terme de source, ou plus précisément

d’ échange, dans l’équation d’ évolution des densités spectro-angulaires. Sur le plateau

Nord-Carolinien cette diffusion peut augmenter l’étalement angulaire des vagues d’ un

facteur deux, contrariant le rétrécissement du spectre angulaire causé par la réfraction. Ces

prévisions correspondent aux observations, malgré la persistance d’ une erreur résiduelle

qui peut être attribuée en grande partie aux incertitudes sur les conditions à la limite au
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large, mais qui peut aussi être la trace d’ autres phénomènes non prepresentés dans le

modèle.
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I. INTRODUCTION

A. MOTIVATION AND OBJECTIVES

Surface gravity waves, in oceans, lakes, or ponds, often simply called ‘waves’, are

one of the earliest observed and studied among the many phenomena that physicists refer

to as waves. Waves inspired many of the greatest mathematicians, physicists, and oceanog-

raphers from the 19th and 20th centuries, from Boussinesq, Laplace, Stokes, and Rayleigh,

to Hasselmann, Munk, Phillips, Sverdrup, and Zakharov, to name only a few. Because of

their simple yet rich nature (waves are generally dispersive and weakly non-linear), and

the natural homogeneity of water bodies and the atmosphere above, waves were the natural

testing ground for many theories and ideas, from Fourier analysis, initially developed for

heat conduction, to Fermi-Pasta-Ulam recurrences or weak turbulence theory. In the view

of this enormous body of knowledge, one may think that everything about waves is already

perfectly known, but this is not the case. In particular the generation of waves by wind, and

the resulting highly non-linear breaking waves are still the subject of active research. As

waves propagate away from the area where they were generated by wind, they evolve into

regular swell that can radiate across large ocean basins with little energy loss, until they

reach the coast and finally dissipate in the surf zone, or reflect from a cliff. Both seabed ge-

ology and topography strongly influence the evolution of swell, across continental shelves,

shallow marginal seas, or lakes, in a way that is still poorly understood.

The goal of the present dissertation is to determine these effects quantitatively, from

theory and wave measurements in the field, using a numerical model. The mathematical

model and adapted numerical techniques to represent swell evolution proposed here will

hopefully not only improve conceptual understanding of the physical processes, but also

lead to more accurate predictions and hindcasts of swells near the shore.

In the marine environment all human activities depend on such wave predictions,

from fishing, shipping and naval or amphibious operations, to the development of coastal

regions and the offshore industry. Preparation for D-day during the second world war was

the driving force behind some of the first attempts at systematic wave prediction using

1



available theory (Sverdrup & Munk, 1947). Just like waves are driven by the wind, so were

wave models pushed by the advent of operational weather forecasting and its refinements

over the last sixty years. Observations and predictions of rising sea level and storm fre-

quency, both associated with global warming, are increasing the challenge posed by ocean

waves, and continue to call for better wave predictions. Current wave models used for engi-

neering design or operational predictions already provide immensely valuable information,

but some important physical processes at play in the evolution of waves in shallow water

are still poorly known. Models therefore rely on empirical relations that are derived from

limited data sets, and thus cannot be use with confidence in untested situations.

The dissipation of wave energy due to friction on a sandy bottom offers an inter-

esting example. Based on the ideas used for ocean currents and air flows, Hasselmann

& Collins (1968) proposed that this bottom friction may follow a quadratic drag law and

they derived the corresponding effect for random waves. Data from the 1968 JOint North

Sea Project (JONSWAP, Hasselmann et al., 1973), off the coast of Sylt in the North Sea,

provided a real-life test of their theory. The theory failed to explain the observed wave

dissipation variations, even after accounting for the dominant tidal currents. Lacking a

reliable physics-based bottom drag formulation, most wave models today use a simple pa-

rameterization of bottom friction based on the quadratic drag law for waves in the presence

of dominant tidal currents, with a tunable coefficient. This coefficient is usually set at the

average measured value during JONSWAP, although its variations span two decades in the

JONSWAP dataset. It is a tribute to human engineering genius that this parameterization

generally gives reasonable results, even in the absence of significant currents. However

this crude representation of bottom friction certainly lacks the reliability and accuracy of

theories based on first principles foundation on which one may like to build a multi-billion

dollar harbor, or plan for the next D-Day. Fortunately a better understanding of the bottom

friction is now available, as the thin bottom boundary layer where energy dissipation takes

place has been studied theoretically, in the laboratory, in numerical experiments, and, to a

lesser degree, in the field. However even the most elaborate boundary layer models (e.g.

Reichardt, 1951; Weber 1991b) need some information on the roughness that depends on
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the bottom geology and bedforms. The strong effect of wave generated sand ripples on

bottom drag was already measured in 1963 in the laboratory (Zhukovets, 1963), but the

introduction of this effect in wave forecasting models (Graber & Madsen 1988; Graber,

Beardsley & Grant, 1989; Tolman, 1994) had to await the first parameterizations of mov-

able sand bottom roughness by Grant & Madsen (1982), and Madsen et al. (1990). Before

the present work no field data was available to demonstrate the importance of sand rip-

ples for wave evolution and test these parameterizations. This slow progress should not

overshadow successes in other areas of wave research, such as depth-induced breaking,

but it illustrates how science may be hindered by the lack of good public data and the

fragmentation of the research community into very small groups, despite international fed-

erating efforts such as the meetings of the WAve Model Development and Implementation

(WAMDI) group, and the Waves In Shallow Environments (WISE) group.

The SHOaling Waves Experiment (SHOWEX), conducted in 1999 and funded by

the U.S. Office of Naval Research, provided a much needed impetus to take a fresh look at

the physics and the parameterizations of waves in shallow water. It provided a rich dataset

of wave measurements, bathymetric and geological surveys, that is used in the present

dissertation. The numerical wave model developed in chapter II was first validated with

data from a previous experiment (DUCK94), showing the effect of sand ripples on bottom

friction, but the theoretical results on wave scattering by irregular small scale topography

(chapter III), could not have been tested without the high-resolution bathymetric surveys

performed during SHOWEX. The presence of sand ripples, analyzed in chapter IV, was

determined for the first time on a large scale by sidescan sonar surveys conducted during

SHOWEX, providing a unique combination of wave measurements and bedform images.

The wide range of wave conditions during this three-month long experiment, including

major hurricanes and northeaster storms, allowed for a comprehensive statistical validation

of the representation of sand ripples and wave-topography scattering in the wave model,

in chapter V. Perspectives arising from that data set and the new numerical model are

presented in chapter VI, with a summary of the main results of this dissertation.
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Before getting into these new developments the non-expert reader may consult, for

an in-depth introduction, the following overview of related wave theories, models, and

observations.

B. STATISTICAL DESCRIPTION OF WAVES

Waves at the air-water interface modify the surface elevation, and the pressure and

velocity below and above the surface. Wave motion is characterized by oscillations around

a position of equilibrium, a ‘horizontal’ sea surface, under the action of gravity that tends

to restore the equilibrium. In the presence of wind or steep wave fronts, surface tension

may act as another restoring force for very short (capillary) waves (figure 56). This latter

force will be neglected in the present work where the focus is on long period waves (fre-

quency f less than 0.25 Hz), in the absence of wind. The position of the surface is defined

by the function z = ζ(x, t) where x is the horizontal position vector, z is the vertical coor-

dinate, pointing upward, with z = 0 the equilibrium position of the surface, and t is time.

Assuming irrotational wave motion, a very good approximation in general, the horizontal

velocity vector u and vertical velocity w can be expressed as gradients of a velocity poten-

tial φ(x,z, t): u = ∇φ, where ∇ is the horizontal gradient operator, and w = ∂φ/∂z. The

pressure perturbation p(x,z, t) can be given in terms of φ and ζ using Bernoulli’s equation

(e.g. § III.A). The wave motion is therefore completely described by φ(x,z, t), which obeys

Laplace’s equation, and ζ(x, t).

Since the objective of the present work is to describe the evolution of such waves

over distances that are generally much larger than the wavelength, it is not practical to

determine accurately ζ and φ everywhere. Instead a statistical representation of the sea

surface will be preferred (see Komen et al., 1994). The probability distribution of the sea

surface elevation ζ at any horizontal location is generally very nearly Gaussian as the result

of the superposition of many different waves with different frequencies and directions,

propagating at different speeds, except in very shallow water where the wave height is of

the same order as the water depth (Elgar & Guza, 1985). As a result of this property the

joint probability distribution of the surface elevation can be determined from the surface
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elevation covariance function

〈ζ(x1, t1)ζ(x2, t2)〉. (I.1)

A similar covariance can be used to describe the velocity potential.

The three-dimensional Fourier transform of (I.1) with respect to the two horizon-

tal space and the time coordinates yields the (vector) wavenumber-frequency spectrum

E (k, f ). Since wave properties usually evolve slowly in space and time, the Fourier trans-

form, a decomposition in sinusoidal waves, is advantageously replaced by a decomposition

of ζ and φ in slowly modulated sinusoidal waves, that may be based on the evolutionary

spectral theory of Priestley (1965) , giving a spectrum E (k, f ,x, t) that is also a slow func-

tion of horizontal space and time, (see Komen et al., 1994, and chapter III). This spectrum

can be evaluated by applying a three-dimensional Fourier Transform to time series of sur-

face elevation maps, ζ(x, t), or related quantities such as the surface slope, obtained by

continuously imaging the sea surface in a small region with a dwelling aircraft (Dugan

et al., 1996).

A projection of this three-dimensional spectrum into two, or just one, dimensions is

more readily accessible from simpler measurements. In linear theory, a very good approx-

imation for waves in general and swell in particular, the wave frequency f and wavenum-

ber magnitude k = |k| are related (in the absence of currents) by the dispersion relation

f /(2π) = gk tanh(kh), where g is the apparent gravity acceleration and h is the water

depth. Therefore the projection of the three-dimensional spectrum into a two-dimensional

wavenumber E (k) or frequency-direction E ( f ,θ) spectrum loses only the information on

the weak non-linear effects. The wavenumber spectrum can be estimated, more or less

directly and for different ranges of wavelengths depending on the platform, by surface

imaging instruments such as scanning altimeters (e.g. Hwang et al., 2000), Real Aperture

Radars (Jackson, Walton & Baker, 1985), and Synthetic Aperture Radars (e.g. Komen

et al., 1994). In-situ measurements of velocity, pressure, or surface elevation with coherent

arrays can provide estimates of E ( f ,θ) (e.g. Davis & Regier, 1977; Long & Hasselmann,

1979; Pawka, 1983; Herbers & Guza, 1990). E ( f ,θ) is convenient for practical use as f is

conserved during wave propagation (in the absence of currents and neglecting non-linear
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effects) whereas k is modified by depth shoaling. An example spectrum is given in figure 1,

using data from a coherent array of pressure sensors in 8 m depth at the U. S. Army Corps

Field Research Facility in Duck, North Carolina. These estimates are more precise as one

increases the number of sensors in the array. Most analysis methods for this type of data

involve the cross and auto-correlations between the various measurements, assuming uni-

form statistics over the length of individual records. Alternative analysis techniques have

been proposed to give higher resolution in the directional spectra by reducing the frequency

resolution. Such a technique developed by Donelan, Drennan & Magnusson (1996) gives

interesting results but interpretation is made difficult by the unfounded hypothesis that for

any given time and frequency band the wave field is dominated by one wave group coming

from a well-defined direction.

The projection of E ( f ,θ) on the frequency axis (the frequency spectrum, see figure

1b) can be evaluated from the time series of surface elevation (as measured by an infrared

laser mounted on a tower) or pressure at a fixed sub-surface elevation, for example at the

sea floor. It is the most common in-situ measure of the sea state but it gives no information

on the directional properties of waves.

The main wave properties are often quantified with a few parameters. The most

common are the significant wave height Hs, defined as four times the square root of the

elevation variance (the area under the curve in figure 1.b), the peak frequency f p at which

the spectrum E ( f ) is maximum, or its reciprocal, the peak period Tp = 1/ fp. In the limit

of a narrow frequency spectrum, Hs is equal to the average height H1/3 of the highest one

third of the waves. Hs is indirectly determined from the shape of satellite radar altimeter

pulses (e.g. Rao et al., 1990), back-scattered by the sea surface, providing the only wave

measurement available globally that is used for operational wave forecasting.

The elevation variance density spectra E defined above in wavenumber-frequency,

wavenumber, frequency-direction, or frequency spaces are commonly called wave energy

spectra. However they must be multiplied by the water density ρ and gravity g to have units

of energy. For the example spectrum shown in figure 1.a, the onshore energy flux, that is

the average rate (over many waves) at which wave energy is released on the nearby beach
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Figure 1. Wave spectra
(a) Example frequency-direction wave spectrum, determined from pressure array measure-
ments in 8 m depth at Duck, NC, October 19, 1994, 7:00–10:00 EST. (b) Corresponding
frequency spectrum, in which the first harmonic peak at f = 2 f p is probably due to non-
linear effects, which are enhanced in shallow water and for large amplitude waves such as
these (see § II.E.1 for more information on this event).
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per meter of coastline, is 13 kW. This estimate illustrates how powerful waves are, even

after losing 75% of their energy across the shelf because of bottom friction (see chapters II

and V).

Between coherent arrays providing detailed directional information, and single sen-

sors giving simple frequency spectra, intermediate self-contained devices have been devel-

oped to measure some representative directional properties of waves. The directional prop-

erties of the wave spectrum are usually summarized with a mean direction for the entire

spectrum, θ, for each frequency, θ( f ), or at the peak only, θp, as indicated on figure 1. The

corresponding directional spread σθ, σθ ( f ), or σθ,p, gives a measure of the half-width of

the directional distribution of the wave energy (Kuik, van Vledder & Holthuijsen, 1988).

In the present dissertation σθ is equal to the standard deviation in radians if the directional

distribution is narrow, and reaches a maximum value of 21/2 radians (that is 81 degrees)

for an isotropic distribution. These simple parameters can be determined from the first

Fourier components of the directional distribution at each frequency. Both the first and sec-

ond Fourier components can be estimated from collocated tri-axis acceleration time series

(as measured by a Directional Waverider buoy), or any combination of three independent

scalar quantities related to these by linear wave theory, such as the heave, pitch, and roll of

a floating platform (Longuet-Higgins, Cartwright & Smith, 1963; Long, 1980), or pressure

p and horizontal velocity components u and v. A ‘cloverleaf’ curvature buoy (Cartwright

& Smith, 1964), was designed to provide more Fourier components, but proved delicate to

use.

Moored surface-following buoys can be used in any water depth for accurate mea-

surement of the dominant swells (e.g. O’Reilly et al., 1996), but these large Lagrangian

sensors do not resolve short, nonlinear waves, and are suspected to miss extremely large

(so-called ‘freak’) waves by sliding off their top. Bottom-mounted pressure and p-u-v

gauges are more accurate but limited to shallow areas (' 20 m, depending on the fre-

quency of interest) because of the vertical exponential attenuation of the wave signal over

a height equal to the wavelength.

The directional information given by the first two Fourier components measured
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by all these instruments can be used to estimate a full frequency-direction spectrum. The

Maximum Entropy Method (Lygre & Krogstad, 1986), used in the present work, gives an

estimate that is constrained to fit the data exactly but the construction of a directional dis-

tribution from only four parameters calls for caution in interpreting the resulting estimates.

C. THE ENERGY BALANCE EQUATION

The evolution of the wave spectrum E (k,x, t), can be described with a spectral

energy balance (Gelci, Cazalé & Vassal, 1957). Neglecting the effects of currents, it is

given by (e.g. Whitham 1974):

∂E
∂t

+∇x · (CgE)+∇k · (CkE) = S (I.2)

where ∇x and ∇k are horizontal divergence operators in geographical and wavenumber

space respectively, and Cg (the group speed) and Ck are the corresponding energy transport

velocities. The source term S (k,x, t) is the net rate of energy transfer to component k

resulting from interactions between wave components, or interactions with the bottom,

the atmosphere, or other flows in the water column such as internal waves. The effects of

currents can be added by replacing the energy spectrum by the action spectrum N = 2πE/ f ,

and replacing S with the corresponding action source term (e.g. Bretherton and Garret,

1969; Komen et al, 1994).

The spectral energy balance can also be formulated from a Lagrangian point of

view:
dE
dt

= S (I.3)

where the left-hand side is the rate of change of E following a wave component along its

ray trajectory. (I.2) and (I.3) are equivalent for waves that obey a dispersion relation of the

form f = W (k,x, t) where f is the wave component frequency. However, in contrast to

the Eulerian balance (I.2), the along-ray conservation of spectral densities for S = 0 is valid

only in k-space (Longuet-Higgins, 1957). In both cases the left hand sides represent the ad-

vection of wave energy accounting for refraction (the turning of wave crests around shoals

and depressions) and shoaling (the increase in energy when the group speed decreases).
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The stochastic representation outlined above, generally referred to as weakly non-

linear and ‘phase averaged’, assumes that phases of spectral wave components are uncor-

related. This is appropriate for waves in intermediate and deep water where nonlinearity is

weak and phases are randomized by dispersion (Benney & Saffman, 1966). This simplifica-

tion is not applicable in very shallow water, inside or very near the surf zone, where waves

are weakly dispersive and non-linearity is enhanced. The reader may follow Freilich &

Guza (1984) and Herbers & Burton (1997) for spectral approximations used in this regime,

or Osborne et al. (1998), for a different approach based on inverse-scattering theory.

The energy balance (I.2) or (I.3) provides a simple prognostic equation for the evo-

lution of the wave spectrum. In shallow to intermediate water depths, surface gravity waves

are affected by sea bed features with a wide range of scales (figure 2). Wave refraction over

large scale (nominally 1 to 10 km) bottom features can induce dramatic variations in wave

energy along the coast that are readily observed (e.g. Munk and Traylor, 1947). The effects

of refraction on the evolution of wave spectra are generally well understood, and accurately

represented in the left-hand sides of (I.2–I.3) by geometrical optics models (e.g. Longuet-

Higgins, 1957; Mei, 1989; O’Reilly & Guza, 1993; § II.A).

However the ray trajectories followed by wave groups, predicted by the geometrical

optics approximation, may be modified by the strong non-linearity of steep waves (Wille-

brand, 1975). This effect will be neglected in the present work as it is weak for the low

steepness swell observed outside storm wave-generation regions. The present analysis is

focused on swell, with small surface slopes in light wind conditions, so that generation of

waves by the wind, dissipation of energy due to wave breaking, and mutual interaction of

different wave trains can be neglected. These processes that control wave evolution in deep

water are usually represented in the right-hand side source terms of (I.2–I.3), by the sum of

three parameterized source terms, Sin for the wind energy input, Sdis for the wave breaking

dissipation, and Snl for the non-linear wave-wave interactions. Although the latter is never

completely absent even without wind, it can be discarded here as it modifies the wave spec-

trum on a time scale of the order of
(
ε4 fp

)−1
where ε is the mean wave slope, and fp is

the peak frequency (Hasselmann, 1962). This time scale for the lowest order interactions

10



10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

l / (2π) (m−1)

B
ot

to
m

 s
lo

pe
 v

ar
ia

nc
e 

de
ns

ity
 (

m
)

Bragg back 
scattering

Bragg   
forward 

scattering

Refraction Higher order Bragg 
scattering

Sand ridges

Wavelength
               10 km                    1km                      100 m                    10 m                      1 m                     10 cm 

Wave−generated  
active ripples

Surface
wavelength 

2π/k

Near−bottom 
significant orbital diameter ds 

energy 
dissipation

Plane 
bed 

(sheet 
flow)

Fig. 1

relic ripples

Figure 2. Wave-bottom interactions
Summary of the effects of different bottom undulation scales (the bottom x-axis coordi-
nate 2π/l is the reciprocal bottom wavelength), for typical moderate swell motion scales
(wavelength k/2π and significant near-bed orbital displacement diameter ds, indicated by
vertical dash-dotted lines). The thick curve is a typical bottom slope spectrum for the North
Carolina shelf derived from bathymetry surveys for bottom wavelengths larger than 40 m.
A variety of bedforms of wavelengths less than 10 m can be generated by the waves de-
pending on the forcing conditions. Of particular interest are steep and active vortex ripples
(solid curve, with wavelengths and heights estimated from sidescan sonar surveys) main-
tained by the wave orbital motion. They strongly enhance the turbulent dissipation of wave
energy on the shelf. These ripples become relic in benign wave conditions, or are oblit-
erated in strong forcing conditions, turning the sea bed into a sheet flow layer with lower
drag (dashed curve).
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is generally much longer (of the order of 20 days for 0.1 Hz swell with ε = 0.05) than the

propagation time of swell over the regions of interest in the present work (about three hours

for 0.1 Hz swell crossing the North Carolina continental shelf). Higher order interactions

are even weaker (Krasitskii, 1994).

Swell evolution is therefore determined primarily by wave-bottom interaction pro-

cesses. Small scale (one half to several wavelengths) bottom features can scatter waves,

and bottom irregularities shorter than the typical orbital diameter of the wave motion at the

bottom, can be considered as roughness elements that are responsible for the dissipation of

wave energy in the bottom boundary layer (figure 2). These latter two effects are discussed

in the next two sections together with their representation as source terms in the right hand

sides of (I.2–I.3).

D. WAVE-BOTTOM SCATTERING

Hasselmann (1966) proposed a statistical theory for the evolution of random sur-

face gravity waves over an irregular bottom assuming spatially homogeneous conditions

(i.e. uniform surface wave and bottom elevation spectra). At the lowest order, two wave

components with the same radian frequency ω but different wavenumber vectors k and k′

exchange energy in a resonant triad interaction with the bottom component that has the

difference wavenumber l = k−k′ (figure 3). This Bragg scattering process is potentially

important for the directional properties of the waves. Long (1973) applied Hasselmann’s

theory to swell in the North Sea with some assumptions about the unknown statistical prop-

erties of the bottom topography. His results suggested that back scattering of surface waves

from bottom undulations with wavelengths close to half the surface wavelength (k ≈−k′,

l ≈ 2k) could explain the swell energy decay observed during the JONSWAP experiment

(Hasselmann et al., 1973), but subsequent bathymetric surveys (Richter, Schmalfeldt &

Siebert, 1976) showed that the amplitude of seabed undulations at the site of the JON-

SWAP experiment was too small to cause significant back scattering. Ewing & Pitt (1982)

observed reflected waves increasing in height away from a rocky coast, qualitatively consis-

tent with wave-bottom Bragg scattering. Yet the importance of wave scattering by natural
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Figure 3. Resonance condition for Bragg scattering
The interaction between a surface wave with wavenumber k′ and a bottom component with
wavenumber l excites a surface wave with the sum wavenumber k = k′ + l. For fixed k ,
the resonant k′ and l lie on the solid and dashed circles, respectively.

seabeds has remained unknown in general. It is believed to be weak, and the lack of detailed

bathymetric data has prevented further investigations (Komen et al., 1994).

Using a different deterministic approach, Davies (1979) derived an analytical solu-

tion for the weak reflection of a monochromatic wave train propagating at normal incidence

over a patch of sinusoidal bars, that was subsequently verified in laboratory experiments

(Heathershaw 1982; Davies & Heathershaw, 1984). Davies’ theory does not account for

the decay of the incident wave, losing energy to the reflected component, and therefore

overestimates strong reflections, in particular at resonance where l = 2k. Mei (1985) de-

rived a more accurate energy conserving solution, valid close to resonance, that was con-

firmed by experiments (Hara & Mei, 1987). The more general case of oblique incidence

was considered by Mei (1985), Dalrymple & Kirby (1986) and Kirby (1993). Mei (1985)
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further generalized his theory to bars superimposed on a sloping bottom. Kirby (1986a;

1986b) subsequently showed that Mei’s (1985) generalized theory can also be derived from

modified mild slope equations. Other related developments include non-linear effects in a

long wave approximation (Benjamin, Boczar-Karakiewicz & Pritchard, 1987), higher or-

der Bragg scattering (Mitra & Greenberg, 1984; Belzons, Rey & Guazzelli, 1991; Liu &

Yue, 1998; Agnon & Sheremet, 2000), extended mild slope equations for steep topography

(Athanassoulis & Belibakis, 1999), and investigations of Anderson localization of waves

on a random bottom (Devillard, Dunlop & Souillard, 1988; Belzons, Guazzelli & Parodi,

1988). Implications for sediment transport and the formation of multiple sand bar systems

just outside the surf zone were discussed by Heathershaw (1982) and Mei (1985).

Whereas Hasselmann’s (1966) stochastic theory gives an energy balance equation

that is an efficient tool for predicting the spectral evolution of random waves, it is restricted

to homogeneous wave and bottom topography properties, and has not been verified ex-

perimentally. In contrast, Mei’s (1985) deterministic theory is more general and has been

verified for simple cases, but it has not been applied yet to a natural sea bed because it

requires a numerical solution to an elliptic equation that is prohibitively expensive for large

domains. Kirby (1986a) discussed these two complementary theories but could not recon-

cile them for the case of monochromatic waves traveling over a sinusoidal bottom. Indeed,

Hasselmann’s theory assumes that the wave energy spectrum is continuous across the res-

onance manifold in order to determine its long-term evolution, and thus cannot be applied

to monochromatic waves (see Hasselmann, 1962, and Komen et al., 1994, for detailed dis-

cussions of the continuum approximation in random wave scattering theory).

In chapter III we examine the effects of wave-bottom scattering from natural seabed

topography by extending Hasselmann’s (1966) theory to a heterogeneous wave field and

sea bed topography. Hasselmann’s scattering source term is re-derived on a gently sloping

bottom with slowly varying wave and bottom spectral properties, correcting for an appar-

ent error in the wave-bottom coupling coefficients given by Hasselmann (1966) and Long

(1973), and further reducing the likely importance of Bragg scattering during JONSWAP.

In § III.B this result is verified through comparisons with analytic results of deterministic
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theories for waves propagating over a finite patch of sinusoidal bars, and the consequences

of introducing a large-scale bottom slope are investigated. The effects of Bragg scattering

on swell propagation across the North Carolina continental shelf are illustrated in § III.C

with an implementation of the scattering source term in the spectral wave prediction model

CREST (chapter II) using measured wave spectra and high-resolution bathymetric data.

Extensive comparisons with field data are performed in chapter V.

E. ENERGY DISSIPATION IN THE BOTTOM BOUNDARY LAYER
1. Bottom drag

In addition to the relatively well understood energy conserving wave-bottom inter-

action processes, wave evolution across continental shelves and in shallow marginal seas is

also believed to be strongly affected by non-conservative bottom boundary layer processes

(e.g. Shemdin et al., 1980; Bouws and Komen, 1983; Weber, 1988; Young & Gorman,

1995; Herbers, Hendrickson & O’Reilly, 2000).

For sea beds composed of non-cohesive sandy sediments, the dissipation of wave

energy in the bottom boundary layer was shown, in laboratory experiments, to be strongly

dependent on the presence of sand ripples formed by the near-bed wave orbital motion (e.g.

Zhukovets, 1963; Nielsen, 1992). Neglecting currents unrelated to the waves, the bottom

boundary layer can be classified in three regimes, based on the ratio of friction and buoyant

forces acting on a sand grain, and represented by the maximum Shields number ψmax (often

denoted θ′max)

ψmax =
f ′wu2

max

(s−1)gD
, (I.4)

where f ′w is a skin friction factor, s is the specific density of the sand grains, D is their

diameter, and g is the acceleration of gravity (Shields, 1936). For small values of ψmax,

the bottom morphology does not change, thus retaining the history of past wave events and

biological activity. In this ‘relic roughness’ regime wave energy dissipation is minimal as

bottom velocities are small and turbulence is weak.

In the following the magnitude of the wave energy dissipation will be measured by

the dissipation factor fe, an averaged drag coefficient that gives the energy dissipation from
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Figure 4. The three boundary layer regimes
(a) relic roughness. (b) active ripples. (c) sheet flow. In each the wavelength and water
depth should be much larger than indicated, typically 100 m, versus 1 m for the bottom
ripples. The horizontal arrows indicate the velocity profile under the wave crests (the flow
reverses under the troughs). Curved arrows in (b) represent vortices generated in the lee of
the ripple crests, to the right under wave crests and to the left under wave troughs.

a representative bottom velocity cubed. fe increases dramatically as surficial sediments,

intermittently set in motion by the wave orbital flow, organize into ripples that increase

bottom roughness. This transition occurs when ψmax increases past a threshold value ψc

(typically 0.03–0.1 for well-sorted quartz sand) (e.g. Nielsen, 1981). These ‘active ripples’

sharply increase the turbulent dissipation of wave energy, as vortices are shed by the orbital

flow at the ripple crests. According to experiments by Madsen, Mathisen & Rosengaus

(1990) with random waves, fe is maximum when ψrms ' 1.2ψc, where ψrms is computed

from the root mean square bottom velocity amplitude using a formulation similar to (I.4).

Example swell conditions with this maximum drag are a peak period Tp=12 s, and signif-

icant wave height Hs = 1.5 m in 25 m depth over well sorted quartz sand with grain size

D = 0.15 mm. For larger values of ψmax (larger wave height or frequency), fe gradually

decreases as ripple crests are eroded by stronger flow.

For very large values of ψmax, of the order of 10ψc (Li and Amos, 1999), a layer

of sediment, called ‘sheet flow’, moves with the water column, washing out ripples, giving

a relatively weaker energy dissipation in the bottom boundary layer. Both the thickness

of this ‘sheet flow’ layer and the dissipation factor fe increase with ψ. These three flow

regimes, relic roughness, active ripples, and sheet flow, are illustrated in figure 4.

16



2. Bedform dynamics

Since small-scale bedforms on the sandy sea floor play an important role in the

transformation of waves across the shelf, we give here a brief review of studies on their

properties. Bedforms not only affect waves but also have a strong impact on the transport of

sediments, either as a result of their migration or because of their influence on the flow that

shapes them. Their presence, formation, and evolution have been observed extensively in

nearshore environments (e.g. Hunt, 1882; Forel, 1888; Dingler, 1974; Vincent & Osborne,

1993; Gallagher, Elgar & Thornton, 1998; Traykovski et al., 1999). In the absence of mean

currents, waves can generate ripples that are symmetric in cross-section. The formation of

such wave ripples was first investigated in the laboratory by Darwin (1883) using a rotating

bath. He noted the important role of the vortices generated in the lee of the ripples, further

observed by Ayrton (1910), eroding the ripple troughs and building up the crests. Such

bedforms, termed ‘vortex ripples’ by Bagnold (1946), exert a much larger drag on the

flow than friction on sand grains. Vortex ripples occasionally have been called ‘orbital

ripples’ because their wavelength is related to the near-bed orbital diameter of the wave

motion, or ‘megaripples’ when they exceed some large wavelength, although they should

not be confused with nearshore short-crested megaripples generated by different processes

(Gallagher et al., 1998).

Based on dimensional analysis and numerical morphodynamic modeling Andersen

(1999) and Andersen & Fredsøe (1999) found that the wave flow over ripples is essentially

governed by two nondimensional parameters, λ/d and η/λ, where λ and η are the rip-

ple wavelength and height, and d is the diameter of the bottom orbital excursion of water

parcels (figure 5). Sediment motions are governed by two additional parameters, the ratio

ws/umax of the settling velocity of sand grains ws and the maximum near-bed orbital ve-

locity umax, and the maximum ratio of friction and buoyant forces acting on a sand grain,

represented by the Shields number ψmax (I.4). When ψmax is larger than a critical value ψc

the flow is able to move sand grains. If the bed is initially flat, ‘rolling-grain ripples’ will

form as a result of an instability of the flat bed. In this case each grain creates a region

of weaker flow (‘shadow’) in its lee, and grains tend to group and form ripples with larger

17



���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������λ

η

d

umaxumax

ws

vortex

Direction of θr

z

Figure 5. Schematic of ripples
Definition of ripple and wave forcing parameters. The cartoon corresponds to the passing
of a wave trough, propagating to the right. Turbulent eddies are generated in the lee of the
ripple crests. The wave flow (represented by the free-stream velocity umax) and the vortex
return flow (dashed arrow) converge at the ripple crest, building up the ripple profile. The
velocity of a water particle (open circle) at the top of the boundary layer is indicated by
umax, and its trajectory is a flat ellipsis. The velocity of a suspended sand grain (filled circle)
is a combination of the surrounding flow velocity, comparable to umax, and its settling
velocity ws.

shadows (Blondeaux, 1990; Vittori & Blondeaux, 1990; Andersen, 1999, 2001). These

rolling-grain ripples eventually evolve into vortex ripples (Sherer, Melo & Marder, 1999;

Faraci & Foti, 2001). The height η of vortex ripples is generally closely related to λ. The

ripples are steepest for 1 < ψmax/ψc < 4, when the vortices created in the lee of the crests

maintain η/λ values between 0.1 and 0.15.

Numerical model simulations of the morphodynamics of one-dimensional ripples

under sinusoidal waves confirm that the vortex forming in the lee of the crest with a size

of the order of the orbital diameter d exerts a strong shear on the lee-side slope of the

ripples that tends to build up the crests together with the flow on the upstream slope of the

ripple (Andersen, 1999). If two ripples are initially closer than a minimal stable wavelength

λm, the vortex in the lee of the upstream ripple will erode the downstream ripple and one

ripple may disappear creating a default in the regular spacing of the bed that will allow λ

to grow. Conversely, ripples that initially are much farther apart than λm will promote the

generation of ripples in the troughs, dividing λby a factor two. Values of λm were found
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to be related to the orbital diameter with λm = 0.4d when ws/umax < 0.07 and λm = 0.63d

when ws/umax > 0.07. The transition for ws/umax = 0.07corresponds to a shift in the

principal mode of sediment transport from suspended load to bed load, and the evolution

from two-dimensional to three-dimensional ripple patterns (Nielsen, 1979). The movement

of defects in the three-dimensional ripple pattern should tend to reduce the average crest

distance to λm (Andersen and Fredsøe, 1999). Other classifications and characterizations of

wave-generated ripples have been proposed based on empirical evidence (e.g. Mogridge,

Davies & Willis, 1994; Wiberg & Harris, 1994) but they generally failed to reconcile all

laboratory and field observations.

In the field ripples may be affected by the presence of wave groups (e.g. Madsen

et al., 1990), the mixture of grain sizes (e.g. Wallbridge et al., 1999), and the directional

distribution of the waves (Willis et al., 1993), although experiments support simple param-

eterizations using ‘equivalent parameters’, e.g. the median grain size D50, and the velocity

us, orbital diameter ds and Shields number ψs based on the significant wave height Hs (e.g.

Traykovski et al., 1999).

The presence and characteristics of wave-formed ripples on the North Carolina

continental shelf is verified in chapter IV with simultaneous wave and bottom morphol-

ogy measurements acquired in 1999 during the SHOaling Waves EXperiment (SHOWEX).

These observations were motivated by earlier analysis of wave data (Herbers, Hendrick-

son & O’Reilly, 2000), and numerical modeling studies (chapters II) of strong damping of

swell propagating across the shelf. The new data presented in chapter IV includes sediment

samples, repeat sidescan sonar images of the bottom, and three-month-long observations

of wave frequency-directional spectra. The analyzed ripples direction and wavelength, in

relation with preceding wave forcing conditions and sediment properties, are reconciled

with the parameterization of Andersen & Fredsøe (1999) and previous observations by

Traykovski et al.(1999).
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3. Parameterization

The representation of sand bedforms in wave models (e.g. Graber & Madsen, 1988;

Tolman, 1994) usually involve a ‘ripple roughness predictor’ which, based on the wave

conditions and sediment nature, determines the flow regime, the type of bottom features

(e.g. Clifton, 1976; Wiberg & Harris, 1995) and their equivalent sand grain roughness

kN (e.g. Grant & Madsen, 1982; Madsen et al.1990; Li & Amos 1998). This roughness

predictor is combined with a hydrodynamic model of the bottom boundary layer flow that

predicts the corresponding wave energy dissipation. Most hydrodynamic models param-

eterize turbulence with a vertical profile of the eddy viscosity (Kajiura, 1968; Grant &

Madsen, 1979; Weber, 1991a, 1991b; see Wiberg, 1995, for a review). The use of a single

roughness length for spectral waves was validated in laboratory experiments by Mathisen

and Madsen (1999). The general parameterization of (non-linear) spectral dissipation term

(the bottom friction ‘source’ term) in terms of the wave spectrum was considered by Weber

(1991) and simplified for practical application using a narrow spectrum approximation that

was also used by Madsen (1994).

Grant & Madsen (1982) provided the first comprehensive parameterization of the

interaction of waves with a mobile sandy bed (i.e. relic roughness, active ripples and sheet

flow). The present dissertation considers a later parameterization proposed by Tolman

(1994) that combines a ripple roughness predictor proposed by Madsen et al. (1990), with

Grant and Madsen’s (1979) hydrodynamic model, extended to spectral waves by Madsen,

Poon & Graber (1988) based on a narrow spectrum approximation. For the sheet flow

regime Tolman used Wilson’s (1989) extrapolation of river flows to oscillatory boundary

layers. The source term S is expressed as a quasi-linear function of the energy density E

with a directionally isotropic (negative) growth rate λ:

S ( f ,θ) = λ( f )×E ( f ,θ) (I.5a)

λ( f ) = − feub,rms
(2π f )2

2gsinh2 (kh)
(I.5b)

where g is the gravity acceleration, h is the local water depth, k is the wavenumber mag-

nitude, and fe is the local dissipation factor representing the ripples or sheet flow effect
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depending on sediment and wave characteristics. The sediment parameters are a represen-

tative grain size D, specific density s = ρs/ρ, where ρs and ρ are the densities of sediments

and water respectively, and the critical Shields number for sediment motion ψc. The wave

parameters are a representative orbital velocity ub,rms and a horizontal displacement ab,rms

at the top of the bottom boundary layer, evaluated using (11) and (25) in Madsen et al.’s

(1988) model:

u2
b,rms =

∫

k

8π2 f 2

sinh2 (kh)
E (k)dk, (I.6a)

a2
b,rms =

∫

k

2

sinh2 (kh)
E (k)dk. (I.6b)

For a linear profile of eddy viscosity, Grant and Madsen (1979) determined the skin friction

factor f ′w, giving the Shields number ψrms = f ′wu2
b,rms/ [g(s−1)D], and total friction factor

fw (ratio of bulk stress and u2
b,rms) as implicit functions of the grain size D and equivalent

grain roughness of the bedforms kN , respectively:

z0

l
=

√
2

f ′w or fw

D or kN

30κ ab,rms
, (I.7a)

f ′w or fw =
κ2

2
[
ker2

(
2
√

z0/l
)

+kei2
(

2
√

z0/l
)] . (I.7b)

where z0/l is a nondimensional roughness length, κ is Von Karman’s constant (κ = 0.4 for

clear water), and ker and kei are the zeroth order Kelvin functions.

The dissipation factor fe is assumed equal to the total (skin friction and form drag)

friction factor fw (e.g. Nielsen, 1992), determined by solving iteratively (I.7a,b) The equiv-

alent grain roughness kN of the bedforms is parameterized as a function of ψrms, ψc, ab,rms,

and ub,rms. For ψrms/ψc < 1.2 (i.e. in the ‘relic roughness’ regime), kN is taken to be 0.01

m and fe is limited to a maximum value of 0.30 (Jonsson, 1980). Beyond 1.2ψc, in the

‘active ripple/sheet flow’ regime, kN is the sum of a ripple roughness kr and a sheet flow

roughness ks. Madsen et al.(1990) gave empirical values of kr for random waves in labora-

tory experiments and Wilson (1989) extrapolated to waves values of ks measured for river

flows:

kr = ab,rms ×1.5

(
ψrms

ψc

)−2.5

, (I.8a)
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Figure 6. Examples of dissipation factors fe as a function of the Shields number ψrms

The solid line is Tolman’s (1994) parameterization for a representative grain size D =
0.15 mm, and wave period T = 14 s. The dashed line shows corresponding values of fe

using the JONSWAP parameterization.

ks = 0.57
u2.8

b,rms

[g(s−1)]1.4

a−0.4
b,rms

(2π)2 . (I.8b)

The first evaluation of Tolman’s (1994) parameterization against field data is per-

formed in § II.E, followed by a systematic evaluation using all swell-dominated data sets

from DUCK94 and SHOWEX in chapter V. Slight modifications to Tolman’s (1994) for-

mulation are proposed in chapter V, with empirically calibrated coefficients that improve

the accuracy of swell hindcasts on the North Carolina continental shelf.

Also considered in § II.E and V is the simpler empirical ‘JONSWAP’ parameteri-

zation of bottom dissipation used in many operational wave prediction models. It assumes

that fe is inversely proportional to ub,rms so that the attenuation coefficient Γ = g feub,rms/2
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is constant and the source term is given by:

S ( f ,θ) = −Γ
[

2π f
gsinh(kh)

]2

E ( f ,θ) (I.9)

An average value Γ = 0.038 m2s−3 was inferred from the JONSWAP North Sea experi-

ment (Hasselmann et al., 1973), despite a wide scatter of the attenuation coefficient Γ (from

0.0019 to 0.160 m2s−3). This parameterization has encountered some success (Bouws and

Komen, 1983), and replaced quadratic drag formulations proposed previously (Hasselmann

and Collins, 1968). The reason for this success over sandy bottoms, in spite of very few

physical arguments, probably comes from the fact that this parameterization gives dissi-

pation factors fe that decrease as a function of the Shields number (figure 6), following

the movable-bed model for relic roughness and sheet flow conditions, although it clearly

misses the amplification of fe in active ripple generation conditions.

F. NUMERICAL WAVE MODELS

Most numerical models for the evolution of surface gravity waves across ocean

basins, marginal seas, and continental shelves that account for non-conservative processes

(e.g. wave generation by winds, wave breaking, and bottom friction) are based on imple-

mentations of the spectral energy balance (I.2), or a similar wave action balance, with finite

difference schemes. These models are efficient in deep water applications where large

spatial and temporal scales of wave evolution allow for relatively coarse grids (e.g. The

SWAMP group, 1984; Komen et al, 1994).

In shallow water accurate representation of refraction may require grid resolution

of the order of 100 m. If the region of interest is small (less than 100 km2), a high reso-

lution Eulerian model is feasible and gives good results (Booij, Ris & Holthuijsen, 1999),

but the computational cost is presently too large for larger shelf areas, even in a steady state

formulation. Additionally, finite difference approximations in these models cause numeri-

cal diffusion, artificially spreading wave energy in time, x, and k space, in a way unrelated

to the physical evolution of a wave spectrum over bottom topography. High-order finite

difference schemes and piecewise ray methods, using local ray trajectories to estimate the
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advection terms of (I.2), have been developed to mitigate this effect (Sobey, 1986; Young,

1988; Lavrenov & Onvlee, 1995; Benoit, Marcos & Becq, 1996).

Lagrangian wave prediction models based on (I.3) usually assume a source term S

equal to zero. This approach is suitable for narrow shelf regions where propagation dis-

tances are too short for significant wave generation or decay (O’Reilly & Guza, 1991).

Lagrangian models avoid the numerical diffusion of finite difference schemes, but the ray

trajectories are highly sensitive to topography details. The scattering of rays over rough bot-

tom topography causes physical diffusion of wave energy that may broaden wave spectra

in shallow water. The accurate representation of these fine scale bathymetry effects in a ray

model requires averaging over a large number of rays, whether the rays be computed from

initially parallel directions (forward refraction, e.g. Bouws and Battjes, 1982) or from fixed

points (back-refraction, e.g. O’Reilly & Guza, 1993). Back-refraction models are not based

on finite area elements, unlike forward refraction and finite-difference schemes in Eule-

rian models, and thus have different conservation properties. For example finite-difference

schemes are generally constrained to conserve energy fluxes through the model domain,

but the energy fluxes obtained through spatial interpolation in a back-refraction model bal-

ance exactly only in the limit of high spatial and wavenumber resolution. Nevertheless

if a detailed bathymetry is available, a back-refraction ray model with high wavenumber

resolution gives a potentially more accurate representation of wave propagation than finite

difference schemes.

Cavaleri and Malanotte-Rizzoli (1981) included wind input and dissipation source

terms in a ray model. Their model parameterizes the source terms for each individual wave

component, and solves the energy balance equation independently for each ray, without any

coupling. Lavrenov (Personal communication, 2000) used a similar approach but restricted

the source terms to those that only depend on the energy at the same wavenumber, such

as the damping of waves by sea ice, so that rays are indeed independent. In chapter II

we present a new model that includes coupling between rays through a source term that is

parameterized in terms of the full energy spectrum.

24



II. THE CREST WAVE MODEL

tIn this chapter, published in a slightly different form in the Journal of Physical

Oceanography (Ardhuin, Herbers & O’Reilly, 2001), a new numerical model is presented

for solving the spectral energy balance (I.3). The source term S (k, t) is evaluated at each

point of a coarse Eulerian grid, and subsequently interpolated from this grid onto ray tra-

jectories. The energy balance (I.3) is integrated along a full spectrum of rays traced back-

ward from each grid point to the model boundary. Spectral components are advected from

the model boundary along the precomputed rays while being modified by the interpolated

source terms, until they reach a grid point where all components are combined into a full

spectrum E (k, t) from which S (k, t) can be evaluated (figure 7). The advection and source

term computations are performed simultaneously for the entire model domain. This hybrid

Eulerian-Lagrangian model essentially couples a Lagrangian energy advection scheme with

an Eulerian source term computation scheme. The formulation of the source term compu-

tations is not constrained in any way by the advection scheme and thus can be adapted from

existing third-generation models.

A. NUMERICAL SCHEMES

The model consists of two parts. First wave rays are traced backwards from fixed

Eulerian grid points, with positions xi, to the model boundary. Second, these trajectories

are used to integrate (I.3) in time, using an ensemble average over a large number of rays.

Along each ray, arriving at xi with a wavenumber vector k, we define a Lagrangian energy

density EL (t,τ) as the energy density ‘upstream’ of xi at time t, where τ is the energy ad-

vection time from the local ray position to the grid point xi (figure 7). The spectral densities

EL are averaged over ensembles of rays within finite bands k j of the arrival wavenumbers

k at xi. The full Eulerian energy density spectrum EE (xi,k, t) at xi is evaluated by com-

bining the average Lagrangian density predictions EL (t,0) at xi for all bands k j. A source

term S
(
xi,k j, t

)
is determined at each grid point from the full Eulerian spectrum EE and

other local parameters (e.g. wind stress and bottom roughness). S is then interpolated in
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Figure 7. Numerical scheme of CREST
The Lagrangian energy balance is integrated from t to t +∆t along a single ray (solid curve)
using a spatially interpolated source term. Filled circles symbolize the magnitude of the
energy density, and dashed arrows indicate the interpolation of the source term from the
Eulerian grid (squares) onto the ray at increments δτ. See § II.A for further details.

x and k space to yield an approximate source term S̃ (t,τ) at the local ray positions and

wavenumbers which in turn modifies EL (t,τ) along the rays (figure 7). Rays and grid are

thus coupled at τ = 0 only.
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The entire set of interpolation coefficients, representing the influence of the topog-

raphy on waves is precomputed once, and stored in files. Using these files and a time series

of wave spectra at the model open boundaries the energy balance equation is integrated in

time.

Although the Lagrangian energy balance (I.3) holds only for energy density in

wavenumber (k) space, the propagation of waves is formulated more conveniently using

wave frequency f and direction θ as variables. In the following f and θ are used through-

out in ray calculations, grid discretization and result displays, but the energy density in k

space is used in the energy balance calculations.

1. Model domain and boundary conditions

The model domain covers a region of known bottom topography. From an arbitrary

set of Ngp grid points (hereinafter called ‘model grid’) with locations (xi)i=1,Ngp
a triangular

mesh is generated using Delauney’s tessellation technique. The outermost points of the

mesh form the model boundary, which is therefore a polygon. Additional interior polygons

can be added to the boundary in order to represent islands in the model domain (figure

8). Ray trajectories are traced backward in time from the grid points xi until they cross a

boundary. For each xi, rays are computed for a large number of frequencies f j and arrival

directions θl . Depending on the geographical region covered by the model domain, rays can

be trapped in shallow water and end at the coast, or reach a deep water region where they

become straight, or cross the model boundary in a region of intermediate depth. In all cases

a ray is terminated when it crosses a triangle side connecting two boundary grid points, and

the Lagrangian energy density carried by the ray into the model domain is approximated

by a linear interpolation of the spectral densities at these two grid points (figure 8).

The boundary condition for the model is therefore fully prescribed by the spec-

tral densities at the grid points along the boundary, for directions toward the inside of the

boundary. On the open part of the boundary, spectra may be estimated from deep water

wave measurements or obtained by nesting the model within a larger scale wave model.

On the closed coastal part of the boundary, the energy entering the domain may be set
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Figure 8. Treatment of the boundary condition
In this schematic squares represent grid points. The boundaries (dashed lines) separate and
couple adjacent model subdomains. Examples are shown of rays transporting energy into
the model domain from four different types of boundaries (a: shelf break, b: island, c: coast,
d: internal boundary between model subdomains) to a given grid point (large square). In
cases a and d energy is advected through the boundary, whereas in cases b and c energy is
reflected from the boundary. In all cases, the energy is interpolated (dotted arrows) at the
boundary from the adjacent two boundary grid points.
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equal to zero (i.e. wave energy impinging on the coast is dissipated in the surf zone) or,

in the case of a steep coastline, determined by partially reflecting the shoreward energy

flux. In order to reduce the scattering of rays over large propagation distances, the model

domain can be subdivided into subdomains that are coupled through their common bound-

aries. This technique reduces memory requirements by shortening the rays, at the expense

of some local numerical diffusion, as the energy that is transmitted through the boundary

is interpolated from boundary grid points (e.g. ray d in figure 8).

2. Precomputations
a. Rays

In applications presented here the model domain is small enough to neglect

the curvature of the earth, and use local Cartesian (x,y) coordinates. The geometry of wave

rays is determined by Fermat’s geometrical optics principle that the integral of the phase

speed C along a curve is minimum when this curve is a ray, which yields Snel’s law 1 when

bottom contours are parallel. The ray equations are:

dx
ds

= cos(θ) (II.1a)

dy
ds

= sin(θ) (II.1b)

dθ
ds

=
1
C

dC
dh

[
dh
dx

· sin(θ)−
dh
dy

· cos(θ)

]
(II.1c)

with s a curvilinear coordinate along the ray, h the water depth, and θ the angle between the

x axis and the tangent to the ray. Wave energy is transported along the ray with the group

velocity Cg and the frequency f is conserved. In the linear approximation we have:

(2π f )2 = gk tanh(kh) (II.2)

1The dutch mathematician Willebrord Snel discovered the law of refraction in 1621, but it was only
published in 1703 in Dioptrica, by Christiaan Huygens, in which Snell is given the Latin name Snellius,
which is often misspelt in English as ‘Snell’. The French philosopher René Descartes gave Snel’s law in La
dioptrique, an appendix to his famous Discours de la méthode pour bien conduire sa raison et chercher la
verité dans les sciences, published in Leiden in 1637, but it was apparently taken from Snel’s work although
he repeated Snel’s experiments in 1626 or 1627. Snel’s law is wrongly attributed to Descartes in the French
scientific literature.
Source: the MacTutor history of mathematics archive, University of St Andrews, Scotland, http://www-
groups.dcs.st-andrews.ac.uk/ history
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C =

√
g
k

tanh(kh) (II.3)

Cg = C

(
1
2

+
kh

sinh(2kh)

)
(II.4)

where k = |k| is the wavenumber magnitude.

Along the ray the local depth and bottom slopes are evaluated from a bi-

quadric fit to the bathymetry grid (Dobson, 1967). The wavenumber magnitude k is com-

puted from f using (II.3) and used to determine C, Cg and dC
dh . With these parameters (II.1)

are integrated using an error-controlled Cash-Karp Runge-Kutta scheme (Press et al., 1992)

with a variable step size.

Along each ray the position and direction (xm,θm) are computed at small

distance intervals δs =
∫ τm+δτ

τm Cgdτ that correspond to a fixed advection time step δτ. A

δτ was chosen for each frequency such that δs = 200 m in deep water. The result of the

ray computation is a series of positions and directions (xm,θm) for each of the rays with m

ranging from 0 at the initial grid point to M at the domain boundary, with typical values

M ∼ 1000 in the implementation presented in § II.D.

M, xM and θM give the time lag, position and direction at the end of the ray,

needed to specify the boundary condition. Although waves can travel along the same ray

in both directions, the rays are used here only to advect energy from the boundaries to the

grid points.

b. Interpolation of boundary conditions and source term

At each position xm along a ray, a local source term estimate S̃ (xm) is given

by the linear interpolation in space of source term predictions at the three grid points xi of

the local triangle. Since the source term is computed only at discrete directions θl , another

linear interpolation, with weights wm
l , is performed over the two directions θl that enclose

the local direction θm of the ray. The same procedure is used for deriving an estimate ẼB

of the energy density EL
(
τM

)
at the boundary:

S̃ (xm) = ∑
i,l

αm
i wm

l S (xi,θl) (II.5)

ẼB = ∑
i,l

βiw
M
l EE (xi,θl) (II.6)
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where the spatial weighting coefficients αm
i and βi are nonzero only for the three grid points

xi on the vertices of the local triangle, and the two points of the boundary segment crossed

by the ray, respectively.

In order to resolve the refraction of a single wave component and interpolate

accurately the source term onto the ray, a small time step δτ is required that is of the order

of 10 to 100 s for typical swell group velocities (Cg = O(10 m s−1)) and scales (O(1−

10 km)) of bottom features. This time step is too small for an efficient time integration of

the energy balance equation (I.3). This integration is performed here with a fixed larger

time step ∆t (10 minutes in the calculations presented here), that resolves the typically

slower evolution of the wave energy and source terms in space, and temporal changes of

the offshore boundary conditions. The source term S̃ (II.5) is averaged over an advection

time interval ∆tn, that covers values of τ from (n−1)∆t to n∆t:

S̃n = ∑
i,l

An
ilS (xi,θl) (II.7)

with An
il =

δτ
∆t ∑

i′=i,l′=l,m

αm
i′ w

m
l′ (II.8)

where the summation over m includes all ray segments that fall within the time step ∆t n.

In the applications presented here the timestep index n ranges from 0 at the grid point

to 10-50, depending on the location of the grid point, the frequency of the waves, and the

complexity of the topography. Higher frequency waves and rough topography require more

timesteps than low frequency waves and smooth topography, because the group velocity

decreases with increasing frequency and bending of rays over rough topography lengthens

the propagation path.

c. Finite bandwidth approximation

So far we have considered the evolution of the spectral energy density EL (t,τ)

along a single ray. Since individual ray trajectories are highly sensitive to the underlying

bathymetry, the energy balance equation is ensemble-averaged over a ‘bundle’ of rays orig-

inating from xi with frequencies and directions covering a small but finite bandwidth. The

rays that form a bundle can be scattered and follow different paths away from xi, there-

fore the ray ensemble has a physical interpretation only at the grid points xi as a finite
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bandwidth average. The ensemble averaged energy density EL and associated source term

interpolation coefficients An
il are given by weighed averages of single-ray values:

EL (t,τ) = ∑
r

brE
L
r (t,τ) (II.9)

An
il = ∑

r
brA

r,n
il (II.10)

where the summation is over all the rays in the bundle, and br is the fraction of the finite

bandwidth attributed to the individual ray r.

Different rays from the same bundle may reach the boundary during differ-

ent timesteps, so that the ensemble average ‘boundary energy’ Ẽn
B must be defined for each

time step n:

Ẽn
B = ∑

i,l

Bn
ilE

E (xi,θl) (II.11)

Bn
il = ∑

r,i′=i,l′=l

brβr
i′w

r,M
l′ (II.12)

where the summation is restricted to those rays that reach the boundary during time step n.

Averaging over finite frequency-direction bands not only accounts for the

scattering of rays by refraction over bottom irregularities, but also has the advantage of

avoiding the ‘garden sprinkler effect’ of Eulerian models formulated for a discrete spectrum

(e.g. SWAMP group, 1984). A large number of ray computations (of the order of 1000 for

applications presented here) may be needed to obtain a stable ensemble average but these

time-consuming computations can be performed in parallel for different bundles and grid

points.

The results of the precomputation are the ensemble averaged interpolation

coefficients An
il and Bn

il . Theses coefficients are written to files that are used in the time-

integration scheme described below.

3. Integration in time

The energy balance equation (I.3), averaged over ray ensembles, is a unidimen-

sional time evolution equation that can be integrated using standard finite difference schemes.

However, a more accurate formulation is possible for linear or quasi-linear source terms.
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The total source term S is split into a (quasi-)linear part λE and a residual term R that

includes constant and non-linear (in E) contributions:

dE
dt

= λE +R (II.13)

For λ and R constants, (II.13) has an exact solution for the evolution of E over one time

step:

E (t +∆t) = E (t)exp(λ∆t)+R

[
exp(λ∆t)−1

λ

]
(II.14)

For λ and R varying slowly in time and space an approximate solution is obtained by

replacing λ and R in (II.14) with average values. The interpolation of the total source term

λE +R is more accurate with this formulation, provided that the gradients of λ, in k-space,

x-space and time are smaller than those of E (see § II.C). For fully non-linear source terms

(i.e. λ = 0) (II.14) reduces to a first order Euler scheme.

λ and R are assumed to be known functions Ω and Θ of the local wave spectrum

that can be adopted from parameterizations in existing Eulerian models. λ and R are inter-

polated from the Eulerian grid onto the rays using the precomputed coefficients An
il . The

complete integration scheme is given by:

Source term evaluation (on the grid) :

λ(t) = Ω
(
EE (t)

)
(II.15a)

R(t) = Θ
(
EE (t)

)
(II.15b)

Interpolations (grid to rays coupling) :

Ẽn
B (t) = ∑

i,l

Bn
ilE

E (xi,θl , t) (II.15c)

λ̃n (t) =

[

∑
i,l

An
ilλ(xi,θl , t)EE (xi,θl , t)

]
/∑

i,l

An
ilE

E (xi,θl , t) (II.15d)

R̃n (t) = ∑
i,l

An
ilR(xi,θl , t) (II.15e)

Prognostic equation (along the rays) :

EL (t +∆t,(n−1)∆t) = En
B (t)+EL (t,n∆t)exp

(
λ̃n (t)∆t

)
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+R̃n (t)




exp
(

λ̃n (t)∆t
)
−1

λ̃n (t)


 (II.15f)

Rays to grid coupling (at τ = 0) :

EE (t +∆t) =





EL (t +∆t,0)

or

EB (t +∆t)

(II.15g)

where the frequency variable f j is omitted. Variables xi, and θl are written explicitly only

in the interpolations (II.15c–e). In (II.15d) the weighting of λ by the corresponding energy

density EE allows the conservation of the source term λE in the interpolation. The prog-

nostic equation (II.15f) applies the interpolated boundary condition and source term to the

Lagrangian energy balance to determine EL at the next time step. The Eulerian spectrum

EE is advanced to time t +∆t with (II.15g), closing the set of equations. For grid points xi

located on model domain boundaries, the spectral densities EE , for waves traveling into the

model domain, are prescribed by the boundary condition EB. On the deep water boundary

EB is set equal to the observed deep water spectrum. At other external boundaries EB is set

equal to zero. At internal boundaries EE , for waves traveling into one domain, is prescribed

by EE , for waves traveling out of the other domain. For all other components and interior

grid points EE follows from EL. Each equation can be evaluated in parallel for all the ray

ensembles and all grid points, and different frequency bands are only coupled by the source

term.

The accuracy of this scheme depends on the relative size of the Eulerian (TE) and

Lagrangian (TL) time scales of wave evolution. For TE � TL (e.g. a sudden and uniform

change in forcing conditions over the entire model grid) the dominant source of error is the

low order time integration scheme. If TE � TL (e.g. strong energy dissipation at a fixed

location, with quasi-stationary boundary conditions and source term) the largest errors may

result from spatial interpolation of the source term. Large errors occur if either TE or TL are

comparable to, or smaller than, ∆t. For all cases presented in § II.E, ∆t is small compared

to both TE and TL. An alternative predictor-corrector scheme was tested, giving results that

are indistinguishable from those of the scheme used here.
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B. SOURCE TERM

In the present chapter the source term is restricted to the energy dissipation caused

by bottom friction. The detailed parameterization, that represents the rate of change of the

energy of the spectral components, is taken from Tolman (1994), as presented in chapter I

and discussed again in chapter V. The numerical scheme of the present model assumes that

this source term varies smoothly on the scale of the Eulerian grid. This assumption may be

violated in the case of bottom friction, and the spatial interpolation of the source term onto

ray trajectories may cause large errors in the transition region from the ‘relic roughness’ to

the ‘active ripple’ regime where fe increases by one order of magnitude (figure 6). Tolman

(1995) proposed a subgrid model of the source term that accounts for subgrid variations

of the Shields number ψ resulting from variations over each grid cell of the water depth h,

grain size D, critical Shields number for sediment motion ψc, significant wave height Hs,

and peak wave period Tp. For simplicity these five random variables were assumed to be

Gaussian and independent. Because no quantitative information on the spatial variability

of sediment characteristics was available, a simpler subgrid model was implemented here.

If uniform sediment properties are assumed then both D and ψc are uniform within each

grid cell, leaving only three random variables h, Hs and Tp. In model simulations of swell

evolution on the North Carolina shelf, using observed incident wave conditions, most of

the subgrid variability of the source term resulted from the subgrid variations of water

depths h rather than the wave parameters Hs and Tp, and Hs was correlated with h. This

predominance of the depth variability was also noted by Tolman (1995) and used in his

computations.

In the present subgrid model spatial variations in the water depth h are represented

by forming a histogram of depths for a grid cell that consists of the triangles surrounding

the grid point xi, using ten depth bins that span the mean ± 2 standard deviations of h. A

corresponding linear theory shoaling correction of the wave spectrum is added to account

for correlations of Hs with h. A subgrid-averaged value of λ is obtained by averaging

estimates of λ (I.5b) for each depth bin, based on the corresponding shoaling-corrected

wave spectrum, weighted by the depth histogram values.
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There is no strong justification for neglecting the subgrid variability of the sediment

properties and simplifying sediment description by using the median grain size D50 and a

constant critical Shields number ψc = 0.05. This problem is further discussed in chapter IV

where we show evidence of significant changes in sediment properties over short distances

(O (100 m)) on the North Carolina continental shelf.

C. MODEL TESTS

The error in the ray computation is controlled by the variable time step, but other

errors are introduced by the discretization in frequency and direction and the ray ensemble

average. The accuracy of the propagation scheme was tested by applying the model, with

the source term set equal to zero, to an idealized shelf with parallel depth contours, for a

uniform and stationary offshore boundary condition (figure 9a). The mean wave directions

and directional distributions of energy predicted by the model agree closely with analytical

(Snel’s law) results (figure 9 a,c), demonstrating that ray integration and discretization

errors are small.

The model formulation assumes that the source term varies on scales comparable

to or larger than the spacing of the grid. This condition is required for a valid interpolation.

The accuracy of the interpolation scheme was tested by computing the source term directly

at 20 additional grid points located along a ray segment (for 0.07 Hz waves) that covers a

full source term integration time step ∆t = 600 s. Source term estimates interpolated onto

this ray segment with (II.15d,e) in a hindcast of wave evolution across the North Carolina

shelf (§ II.E), are compared with direct estimates at the additional grid points in figure

10. Results (averaged over a time step ∆t) show that the linear spatial interpolations give

a good approximation of subgrid variations in the source term. That is, the source term

gradients are rather well resolved by the grid. The interpolation is most accurate when

the ripple regime is the same at all the neighboring grid points. Overall, a quasi-linear

implementation of the movable bed source term (i.e. λ = S/E, R = 0 in (II.13)) (figure 9a),

yields smaller errors than a non-linear implementation of the same source term (i.e. λ = 0,

R = S in (II.13)) (figure 9b).
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Figure 9. Model tests with an alongshore uniform shelf
The offshore wave energy is distributed uniformly over a narrow (0.0655-0.0685 Hz) fre-
quency band. (a) Cross-shelf depth profile. (b) Predicted (+) and analytical (solid line)
mean wave direction versus cross-shelf distance. Results are shown for narrow offshore di-
rectional distributions (standard deviation of 10 degrees) with mean wave directions vary-
ing between 30◦ and 150◦. (c) An example directional distribution predicted by the model
(+) in 20 m depth for a given offshore bimodal distribution (dotted line) is compared to the
analytical solution (solid line).
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Figure 10. Comparison of semi-implicit and explicit schemes
Interpolated versus directly computed values of S/E (inverse of the bottom dissipation e-
folding time), using (a) a quasi-linear source term implementation that interpolates λ (I.5b),
and (b) a non-linear implementation of the same source term that interpolates S (I.5a). The
source term estimates are averages over a 10 minute time step. Symbols represent different
boundary layer regimes within the grid cell: relic ripples (+), active ripples (4), and a
transition from relic to active ripples (squares).

38



D. MODEL IMPLEMENTATION AND FIELD DATA

The hybrid Eulerian-Lagrangian model ( § II.A) with a movable bed bottom dissi-

pation source term ( § II.B) was implemented for the North Carolina shelf region between

35◦ N and 37◦ N (figure 11). During the DUCK94 experiment a 100 km cross shelf tran-

sect of nine bottom mounted pressure sensors was deployed extending from 12 m depth

(site A) to 87 m depth (site I) (figure 11; Herbers et al., 2000). The instrument deployed at

site H in 49 m depth was located within 2 km of 3-m discus buoy 44014 operated by the

National Data Buoy Center (NDBC). Between site A and the shore a pressure sensor array

was operated in 8 m depth by the Army Corps of Engineers Field Research Facility, Duck,

North Carolina. Other instruments on the inner shelf included current meters, thermistors

and conductivity sensors in depths ranging from 4 m to 26 m. Data from these instruments

show that outside the surf zone the depth-averaged currents are mostly wind-driven with

speeds usually in the range 10 to 20 cm s−1, and occasional stronger currents (> 50 cm s−1)

in storm conditions (Lentz et al., 1999). These currents are generally much weaker than

both the wave speeds and the near-bed orbital velocities of energetic swell in shallow water.

The effects of currents on the propagation of swell and on the wave bottom boundary layer

are neglected here.

Bathymetry data was derived from the National Ocean Service digital database and

additional bathymetric surveys conducted during the DUCK94 experiment (Herbers et al.,

2000). These data sets were merged and linearly interpolated onto a regular 6” longitude

by 6” latitude grid, using a standard Delauney tessellation technique (11). This grid was

then linearly transformed into a Cartesian x (west-east) and y (south-north) coordinate grid

(resolution 152 and 185 m respectively) that is used in the Lagrangian ray integrations (eqs.

II.1). Errors introduced by neglecting the curvature of the earth, are small for the size (128

by 211 km) of our domain (O’Reilly & Guza, 1993).

The Eulerian model grid, much coarser than the bathymetry grid, consists of 329

grid points arranged in triangles that vary in size from 5 km on the inner shelf to 10 km

on the outer shelf (figure 11). Slightly coarser grids gave similar results, suggesting that

the resolution chosen here is adequate. The model domain was made as small as possible
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Figure 11. Bottom topography and model grid
The grid points where the source term is evaluated are the nodes of the triangular mesh.
A linear interpolation is applied in each triangle to approximate the source term along
the rays (figure 1). The entire model domain is subdivided into subdomains separated by
thicker lines. Grid points denoted with dots labeled A to I are the locations of pressure
sensors deployed during the DUCK94 field experiment.
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while covering the shelf region through which most of the wave energy, measured by the

pressure sensors, has propagated. The model boundaries were chosen to be the 11 m iso-

bath (except around the 8 m array, where a grid point is collocated with the array), the 400

m isobath, and the 35o12’ N and 37o58’ N parallels. Swell energy enters the model domain

only through the deep water boundary where the spectrum EB
(

f j,θl , t
)

is assumed to be

spatially uniform. The model domain is subdivided into a main subdomain, around sites

A to I and additional subdomains (figure 11). This allows for the representation of waves

coming from high incidence angles, and reduces the memory required to store all the in-

terpolation coefficients, including those for trapped rays, to one gigabyte. Trapped rays

are not necessary for the applications presented in § II.E, since energy enters the model

domain only through the deep water boundary, but were implemented for applications with

other source terms (chapters III and V) and reflective boundaries. The use of subdomains,

described in § II.A, introduces some numerical diffusion for waves propagating across the

internal boundaries, but these waves, with high incidence angles, generally carry a small

fraction of the total energy in the present applications.

For each grid point xi, rays are initially traced for 162 frequencies, at arrival di-

rection intervals of 0.25◦. For each frequency the arrival directions are subsequently bi-

sected (O’Reilly & Guza, 1993), until neighboring rays have directions and positions at the

boundary within 2◦ and 5 km of one another, respectively. If the number of rays for a 3◦

sector exceeds 500 the bisection is stopped. The rays are grouped in 19×120 bundles, that

represent finite bandwidths of the spectrum EE
(
xi, f j,θl , t

)
with 19 frequencies f j spaced

exponentially with a 5% increment from 0.05 Hz to 0.12 Hz, and 120 directions θl spaced

linearly over a full circle with a 3 degree resolution. The number of rays per bundle varies

from N f × 13 (initial number of rays before bisecting) to N f × 500 (an upper limit set for

broadly scattered bundles), where N f is the number of frequencies per frequency band. N f

decreases from 9 for 0.05 Hz to 3 for 0.12 Hz.

Wave frequency spectra E
(

f j, t
)
, integrated over directions, are estimated from

the measured bottom pressure records at sites A-I, using a linear theory depth correction.

The offshore frequency-direction spectrum EB
(

f j,θl , t
)

is estimated by combining the fre-
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quency spectrum obtained from the pressure sensor at site H, with directional distributions

estimated from the nearby NDBC buoy cross-spectra using the Maximum Entropy Method

(Lygre & Krogstad, 1986). This spectrum is back-refracted from site H to deep water,

assuming parallel bottom contours, and neglecting the time lag between site H and the

offshore model boundary. Although the offshore conditions generally varied slowly on

time scales of several hours, this spectrum is determined at 10 minute intervals, in order to

match the model time step ∆t. Frequency-directional wave spectra on the inner shelf were

estimated from the 8 m depth array near site A (Herbers, Elgar & Guza, 1999).

Based on core samples collected in 1997 on the inner shelf (Rebecca Beavers, Duke

University, personal communication, 1999), and earlier geological data covering the entire

shelf (Milliman et al., 1972; Swift and Sears, 1974) we crudely approximate the bottom

sediments in the entire area encompassed by the model with a thick uniform layer of fine

quartz sand (s = 2.65), with a representative grain size D = 0.15 mm and a critical Shields

number ψc = 0.05. These approximations are further discussed in chapter IV.

E. HINDCASTS

Hindcasts are presented for two time periods in 1994, October 17 through 21 and

November 16 through 19, that are representative of fall weather patterns causing large

waves on the North Carolina coast. Wind sea and swell were observed in October, gener-

ated by a storm that moved across the eastern United States into the North Atlantic, whereas

in November large swells arrived from Hurricane Gordon which remained in the western

Atlantic, south of Cape Hatteras (see figure 43 in chapter V). In both cases, the model was

run both with and without the bottom dissipation source term. Runs without the source

term isolate the effects of refraction and shoaling in the evolution of wave spectra, and the

difference between runs with and without the source term can be used to assess energy

dissipation caused by bottom friction.

1. October storm

On October 14 and 15 local winds from the north-east were strong enough to con-

tribute significantly to the energy balance on the shelf at the dominant (8-10 s) wave periods
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(figure 12). Strong wind forcing is evident at the NDBC buoy where the mean wave direc-

tion θ (defined here as the direction of the first-order moment vector
∫ ∫

k/k E (k)dkxdky)

follows the local wind direction. As wave generation is not represented in the present

model, predictions are not expected to be accurate during the spin-up of this storm.

On October 15 the significant wave height observed at site H reached a maximum

value Hs = 5.3 m (4.3 m in the restricted model frequency range), with a peak period

Tp = 11 s (figure 12b). After October 16 local winds subsided and Tp shifted to 15 s,

indicating a transition from wind sea to swell. Between October 15 and 18, Hs decreased

to 2.3 m (time I) followed by an increase to 2.8 m on October 19 (time II), with a narrow,

swell dominated spectrum (not shown). After October 19 Hs and Tp gradually decreased to

0.6 m and 10 s respectively.

Model predictions are presented only for the swell-dominated period October 17

to 21. Predictions of Hs with bottom dissipation are generally in good agreement with

observed Hs on the outer (e.g. figure 13a) and inner shelf (e.g. figure 13b). The model

predicts the expected turning of θ towards the shore-normal direction, owing to refraction

by the large scale shelf slope (figure 14). The observed shift in θ, up to 25 degrees between

the offshore buoy and the nearshore (8 m depth) array, is reproduced by the model (figure

13c). Observed and predicted θ in 8 m depth differ by less than 5 degrees.

Model predictions without bottom dissipation show a small decrease in wave height

across the shelf that is caused by refraction and shoaling effects (figure 13a,b). The model

with movable bed friction predicts a strong attenuation of Hs across the shelf (figures 13b,

14) that is comparable to the observed attenuation. The observed and predicted decay

across the outer shelf is negligible except for a slight (10%) decrease of Hs on October 19

when swell energy was maximum (time II in figure 13a). Strong decay of Hs is observed

and predicted across the inner shelf, up to a factor 2 (equivalent to a 75% energy reduction)

(figure 13b). The observed and predicted decrease of Hs across the shelf is generally smaller

when Hs is smaller (e.g. compare times I and II in figures 13a,b). On October 21 when Hs

was less than 0.5 m, the observed and predicted Hs (with and without bottom dissipation)

are nearly uniform across the shelf.
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FIG. 5

Figure 12. Wind and wave conditions, October 1994
Three-hour averages. (a) Wind speed (solid line), wind direction (squares), and mean wave
direction (×) measured by NDBC buoy 44014 (near site H) (b) Significant wave height and
peak period estimated from pressure sensor H (peak periods were replaced by the NDBC
buoy values when smaller than 8 s). Vertical dash-dotted lines labeled ‘I’ (17 October at
23:30 EST) and ‘II’ (19 October at 08:30 EST) indicate times for which more detailed
analyses are presented in figures 14, 15.
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FIG. 6Figure 13. Hindcasts, October 1994
Three-hour averages of observed (solid line) and predicted (+: with movable-bed source
term, 3:without) significant wave heights at sites F (a) and B (b) after the October storm.
The dotted lines represent model results at the same sites based on the JONSWAP linear
damping formulation. The offshore Hs is indicated with a dashed line. (c) The mean
wave direction θ measured at the 8 m depth array (solid line) is compared to the model
prediction with the movable bed source term (+). The offshore θ is indicated with a dashed
line. Vertical dash-dotted lines labeled ‘I’ and ‘II’ indicate times for which more detailed
analyses are presented in figures 14, 15.
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Figure 14. Hindcasts of Hs and θ, October 19, 1994
Model predictions (with movable bed source term) of significant wave height (colors) and
mean wave direction (arrows) at time II (figures 12, 13). Dotted lines indicate the 30 m and
50 m isobaths.

46



Details of the representation of bottom friction in the model are illustrated in figure

15. The predicted variation of the dissipation factor fe on the scale of the grid resolution

confirms the importance of subgrid modeling of the movable bed (Tolman, 1995). Predicted

boundary layer regimes (relic roughness or active ripples) are sensitive to the offshore wave

conditions. On October 17 (time I in figures 12, 13), the model predicts relic roughness

over most of the shelf with dissipation factors fe close to the relic regime minimum ( fe =

0.04) and a sharp transition to active ripples (0.08 < fe < 0.18) in depths shallower than

25 m (figure 15a). The boundary between active and relic ripples generally follows the

depth contours. The corresponding local decay rate |λ| proportional to feub sinh−2 (kh)

(I.5b) is enhanced not only by the large increase in fe, but also by the increase of the

bottom orbital velocity ub in shallow water. Seaward of site D, predicted Hs with and

without bottom dissipation are nearly equal to the observed Hs, whereas further inshore,

predicted Hs with and without bottom dissipation diverge sharply and predictions of Hs

with bottom dissipation reproduce the observed decay of Hs across the inner shelf (figure

15b). The strongly enhanced dissipation predicted by the movable bed model on the inner

shelf is consistent with the observed variations in wave heights. However, the JONSWAP

parameterization also gives reasonable predictions of Hs in this case.

On October 19 when the swell energy was maximum (time II in figures 12, 13),

the movable bed model predicts active ripples on the entire shelf (figure (figure 15c). The

corresponding values of fe are maximum close to the shelf break (0.1 < fe < 0.12), and

decrease inshore ( fe = 0.04 at site B). A strong decay of wave energy inshore of site G is

evident in the difference between model predictions of Hs with and without bottom dissi-

pation and these energy losses (on average 0.35 W m−2 over the entire shelf) are consistent

with the observations (figure 15d). Inshore of site D the model with the source term under-

predicts Hs (overpredicts decay) by about 25 to 50 cm. The JONSWAP parameterization

on the other hand overpredicts Hs by 40 to 60 cm, as might be expected from figure 6.
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Figure 15. Ripples and dissipation factors, October 1994
(a) Ripple regime based on local mean water depth (hatched for active ripples, blank for
relic roughness), and dissipation factor fe (contour interval is 0.02) at time ‘I’ (figures
12, 13). (b) Observed (solid line) and predicted (3: without bottom dissipation, +: with
movable-bed source term, dotted: with JONSWAP source term) Hs at time I, as a function
of cross-shelf distance. (c) Same as (a) for time II (figures 12, 13). (d) Same as (b) for time
II.
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2. Hurricane Gordon

Although the eye of Hurricane Gordon remained south of Cape Hatteras, local

winds were strong (10-15 m s−1) on November 17 through the morning of November 18

(figure 16a). During the peak of this event (time III) when Hs ' 10 m and Tp ' 15 s (fig-

ure 16a), the local wind speed was about 13 m/s and the mean wave and wind direction

differed by about 30 degrees. Estimated values of the wind energy input in the model fre-

quency band (The WAMDI Group, 1988, (2.9)) are below 2 W m−2 on most of the shelf,

while the predicted bottom dissipation rate is generally between 2 and 10 W m−2 (both

terms are maximum near the coast). Hence, although bottom dissipation appears to be the

dominant source term, neglecting the wind input in this case may cause significant errors.

At time III the model predicts a gradual turning of the mean wave direction from

115◦ in deep water to 88◦ in 8 m depth (figure 17), in good agreement with the mean

direction (88◦) observed at the 8 m array (not shown). Model predictions without bottom

dissipation yield a decrease in Hs from 8.5 m at site I near the shelf break to 7.4 m at

site B on the inner shelf. This attenuation, associated with the time evolution of the storm

and conservative shoaling and refraction processes, accounts for only part of the observed

decrease of Hs to 5.8 m at site B. Including movable bed dissipation brings the model in

better agreement with the observations (figure 18b). The predicted values of the dissipation

factor fe are about 10 times smaller than the values for the October event, owing to larger

Shields numbers. On most of the shelf, fe predictions vary between 0.01 and 0.02 (figure

18a), corresponding to sheet flow. Active ripples are predicted close to the shelf break in

depths greater than 40 m. The representative bottom velocity ub (a linear function of Hs for

a given spectral shape) is 3 times larger than in the October event. In an absolute sense, the

dissipation rate |S| I.5a, proportional to feu3
b, is a factor 3 larger than in the October event,

but the relative decay rate |λ| (I.5b), proportional to feub, is a factor 3 smaller. As a result,

the predicted relative decay of Hs across the shelf, due to bottom dissipation, is weaker

for the Hurricane Gordon case than the October swell event (a 14% decrease compared
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FIG. 9

Figure 16. Wind and wave conditions, November 1994
Same format as figure 12). The vertical dash-dotted line labeled ‘III’ (18 November at
08:30 EST) indicates the time when Hs was maximum offshore.
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mean wave direction (arrows) at the peak of Hurricane Gordon (time ‘III’ in figure 16).
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Figure 18. Ripples and dissipation factors, November 1994
Time ‘III’ in figure 16. Same format as figure 15, with the addition of the fe = 0.01 contour,
and horizontal hatches for sheet flow conditions determined from the threshold criterion
ψs f = 0.172D−0.376 where D is in cm (Li and Amos, 1999).
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to 36% in October, cf. figures 15d and 18b). The JONSWAP parameterization yields Hs

predictions for Hurricane Gordon, that are close to both observed Hs and movable bed

predictions (figure 18b).

F. DISCUSSION
1. Movable bed model

The comparisons between observations and model predictions suggest that the ob-

served decay of swell energy across the shelf is primarily the result of refraction and energy

dissipation in the boundary layer over a movable sandy bed. Predicted wave frequency

spectra (not shown) are also in good agreement with observed spectra, except at very low

frequencies ( f < 0.06 Hz) where energy levels are relatively low. The hindcast results

suggest large spatial and temporal variations of the dissipation factor fe as the seabed tran-

sitions through different roughness regimes (figure 6). Tests with different sand grain sizes

in the range of probable values for the region (0.15 to 0.2 mm) indicated little sensitivity of

the results. Although more accurate offshore wave data and detailed sediment distributions

are needed for comprehensive tests of the bed roughness parameterization, the present re-

sults show a model tendency to overpredict swell damping, in particular in the active ripple

regime (figures 13, 15d). The parameterization of the ripple roughness kr was tuned to

reproduce laboratory experiments with irregular but unidirectional waves (Madsen et al.,

1990). Field conditions, with directionally spread waves, are likely to generate more ir-

regular and less steep ripples, with smaller roughness kr, than laboratory experiments (e.g.

Nielsen, 1981). Therefore the estimates of kr may be biased high. A reduction of kr by

30% significantly improved the model accuracy (not shown).

The JONSWAP parameterization gives a relative decay in wave height

H/Hoffshore that is constant for a given dominant frequency. The observations presented

here, all for swell with a peak period Tp ' 15 s, instead show a variable relative decay, in

response to changes in the wave height (e.g. figure 13b). Equivalent values of Γ, the JON-

SWAP coefficient, were inferred from the movable-bed model hindcasts. At site F on the

outer shelf, we find 0.025 m2s−3, 0.11 m2s−3, and 0.050 m2s−3 at times I, II and III respec-
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tively. For the same times at site B on the inner shelf, Γ values are 0.11 m2s−3, 0.095 m2s−3,

and 0.057 m2s−3 respectively. These values generally fall between the JONSWAP average

value Γ = 0.038 m2s−3 , and the one obtained from observations in the Great Australian

Bight (Young & Gorman, 1995), Γ = 0.152 m2s−3. Although the JONSWAP formulation

with the widely used value Γ = 0.038 m2s−3 gives reasonable wave height predictions in

most conditions (figures 13, 15 and 18), it cannot reproduce the observed variations in swell

decay, and significantly overestimates wave heights in active ripple conditions, as was also

noticed by Weber (1991a). In contrast the constant roughness (kN = 4 cm) proposed by

Weber (1991) yields values of Hs that are still too high (by 30 cm) in the October 19 case,

but too low (by 2.5 m) in the November 18 case (not shown). The movable bed model,

adopted from Tolman (1994) without any adjustments, captures this variability, and fine

tuning of all the empirical parameters, should further improve swell predictions. However,

the movable bed parameterization requires site-specific sediment data that are not always

available. Without such data, operational wave models may be better off with more robust

dissipation models (e.g. Weber, 1991a; Tolman, 1994; Luo & Monbaliu, 1994; Young &

Gorman, 1995).

2. Model efficiency

The new hybrid Eulerian-Lagrangian model CREST, presented here, was used to

investigate the effects of a movable sandy sea bed on the transformation of swell across a

continental shelf. Other physical processes such as wave generation, resonant non linear

interactions between waves (see for example Herterich and Hasselmann, 1980) and res-

onant Bragg scattering of waves by bottom features (chapter III) can be incorporated as

additional source terms in the energy balance equation. Hence the present model provides

an alternative to the Eulerian finite difference scheme models commonly used for wave

prediction. With N∆t a typical number of time steps for a ray bundle, and Ns a typical num-

ber of interpolation coefficients An
il and Bn

il for a given time step, the CREST wave model

requires memory space for storing the interpolation coefficients that is a factor N∆t ×Ns (of

the order of 200 in the calculations presented here) larger than the space used for storing
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the spectrum. Thus CREST requires much more memory per grid point than an Eulerian

model, that only needs to store the spectrum. The hybrid approach is attractive for appli-

cations where the spatial scales LS of variations in the source terms are much larger than

spatial scales LR of refraction effects. An Eulerian model describing refraction with a finite

difference scheme in space requires a grid resolving both LR and LS whereas the Eulerian

grid in the present model needs to resolve only LS because LR is resolved by the precom-

puted rays. If LS is much greater than LR this property reduces drastically the number Ngp

of grid points required for an accurate integration of the energy balance equation. Reducing

Ngp has the added benefit that in coarser grids fewer grid points are used to interpolate of

the source term for a given ray bundle, thus reducing the number Ns of interpolation coef-

ficients per time step. The implementation of an Eulerian finite difference scheme with a

resolution of about 500 m would have similar memory needs as the calculations presented

here.

The considerable memory burden imposed by the storage of the ray information

can be reduced by dividing the model domain into subdomains. The use of subdomains is

clearly a compromise between a pure Lagrangian advection scheme and practical consid-

erations. At the internal boundaries it re-introduces numerical diffusion in the advection

and re-couples the rays to the grid for τ > 0. Although not necessary in the application

presented here it seems unavoidable for implementations of CREST on very large areas

( e.g. > 106 km2). Further economy on the computer resources can also be achieved by

specifying a maximum number of time steps along the rays after which the energy is inter-

polated from the neighboring grid point. This scheme also increases numerical diffusion.

For one-timestep-long rays the numerical scheme becomes a finite bandwidth version of

the piece-wise ray methods.

The representation by refraction alone of the effects of small scale bottom irregu-

larities is cumbersome in the present model, and may not reflect the entire complexity of

that process. A statistical representation of the interaction of waves with the smallest scale

bathymetric features (e.g. the wave-bottom Bragg scattering source term described by Has-

selmann (1966), and Long (1973) appears attractive because it would improve the physical
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description of wave-bottom interactions, and the rays computed on smoother bathymetry

would be less scattered, thus requiring a smaller number Ns of interpolation coefficients.

This improvement is described in chapter III.

The small number of grid points in CREST is also advantageous for complex source

terms (e.g. quartet interactions between wave components) that are prohibitively expensive

to evaluate accurately on a high-resolution grid. Furthermore the flexible model grid gen-

erated from any arbitrary set of points can be tailored to the bathymetry and shape of the

model domain with higher resolution in the shallowest parts of the domain. In this respect

CREST is similar to the TOMAWAC model (Benoit et al., 1996).

For practical applications, computing ray trajectories is too expensive to allow a

time-dependent ray geometry. This prevents the use of CREST in regions with strong

temporal medium variations such as unsteady currents and tidal depth changes found in

shallow estuaries and macrotidal seas, unless an approximate representation of these effects

as source terms is found.

G. SUMMARY

A non-stationary spectral wave model was developed using a hybrid Eulerian-La-

grangian scheme to examine the damping of swell propagating across a wide, shallow

continental shelf. The model accurately represents refraction by advecting wave energy

from deep water along a full spectrum of precomputed ray trajectories to a large number

of grid points on the shelf. The source term in the energy balance is computed at each

of these grid points, based on the complete frequency-directional spectrum. The source

term is then interpolated from the Eulerian grid onto the rays, thus allowing for nonlinear

coupling of wave components traveling along different rays. The energy balance is aver-

aged over ensembles of rays to represent a finite spectral bandwidth. The (Lagrangian)

computation of energy advection along rays and the (Eulerian) source term evaluation are

carried out in parallel through the entire model domain. Source term formulations can be

adapted from existing third-generation wave prediction models, whereas the finite differ-

ence propagation schemes of these models are replaced with a full Lagrangian ray method.
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This hybrid scheme avoids the numerical diffusion and ‘garden sprinkler’ problems of ex-

isting models that use finite difference schemes. The ray calculations and source term

interpolation scheme add considerable computational effort, but both the ray trajectories

and interpolation coefficients are precomputed for a given coastal region and model grid.

The spectral energy balance is integrated in time with an efficiency comparable to existing

finite-difference schemes.

The model was implemented with a source term restricted to energy dissipation in

the bottom boundary layer over a movable sandy bed, as parameterized by Tolman (1994).

The model was used to hindcast swell evolution across the North Carolina continental shelf

for a range of wave conditions (significant wave heights between 0.5 and 10 m, and peak

periods between 8 and 17 s) observed during two storms in 1994. Good agreement between

observed and predicted variations of significant wave heights and mean wave directions

across the shelf supports the hypothesis that refraction and movable bed bottom friction

dominate the evolution of swell over a shallow sandy continental shelf.
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III. BRAGG SCATTERING OF RANDOM WAVES
BY BOTTOM IRREGULARITIES

The energy balance (I.3) implicitly assumes that depth variations are small at scales

comparable to the wavelength. Topographic features at those scales should therefore be

excluded from refraction calculations but their effect on the waves can be represented in the

energy balance in the form of Bragg scattering source terms. This stochastic representation

of energy exchanges between wave components, was first developed by Hasselmann (1962)

for wave-wave scattering, and later extended (Hasselmann, 1966) to wave scattering by

external perturbations using a decomposition of the bottom elevation in Fourier modes.

This theory is extended in the present chapter to heterogeneous wave and bottom properties,

using decompositions in slowly modulated Fourier modes. Only the lowest order wave-

bottom Bragg scattering process is considered. The present chapter reproduces with more

details an article currently in press in the Journal of Fluid Mechanics (Ardhuin & Herbers,

2001).

A. SCATTERING THEORY FOR RANDOM WAVES IN HET-
EROGENEOUS CONDITIONS

The present derivation of the energy balance equation for random waves propagat-

ing over an irregular sea floor uses a perturbation expansion of the wave energy, closely

following Hasselmann’s (1962) derivation of energy transfers in quartet wave-wave inter-

actions, and a ray approximation of medium variations adapted from Mei (1989, ch. 3). The

result is a local energy balance equation that incorporates refraction and shoaling by large

scale depth variations, and a source term describing Bragg scattering by seabed topography

with small horizontal scales (of the order of the surface wavelength).

1. General formulation

We consider weakly nonlinear random waves propagating over an irregular bottom

with a slowly varying mean depth and random small scale topography. For the sake of
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Figure 19. Random waves and irregular bottom: definition sketch.

simplicity we will neglect the effects of mean currents on wave propagation (see for ex-

ample Bretherton & Garrett, 1969) and on wave scattering by bottom undulations (Kirby,

1988; Ting, Lin & Kuo, 2000). All variables are non-dimensionalized with a representa-

tive wavenumber k0, gravity acceleration g and water density ρ. The bottom elevation is

represented by z = −H (x)+ h(x), where h is a zero-mean small deviation from the gen-

tly sloping large scale bottom features represented by −H (x), x is the horizontal position

vector, and z is the elevation relative to the mean water level. The vertical position of the

ocean free surface is given by ζ(x, t) with a zero mean value (figure 19). Assuming irro-

tational flow for an incompressible fluid, the horizontal velocity field u is equal to ∇φ, the

horizontal gradient of a velocity potential, and the vertical velocity w is equal to ∂φ/∂z. We

further assume that ρ is constant. The governing equations for φ are

∇2φ+
∂2φ
∂z2 = 0 for −H +h ≤ z ≤ ζ, (III.1)

∂φ
∂z

= ∇φ · (∇h−∇H) at z = −H +h, (III.2)

∂2φ
∂t2 +

∂φ
∂z

= ∇φ ·∇ζ−∇φ ·
∂∇φ
∂t

−
∂φ
∂z

∂2φ
∂t∂z

at z = ζ. (III.3)

(III.1) is Laplace’s equation, (III.2) is the ‘free slip’ bottom boundary condition, and the

‘combined’ surface boundary condition (III.3) is obtained by eliminating linear terms in-

volving ζ from the dynamic (i.e. Bernoulli’s equation) and kinematic conditions at the free
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surface (see for example Hasselmann, 1962). ζ is given by Bernoulli’s equation,

ζ+
∂φ
∂t

= −
1
2

[
|∇φ|2 +

(
∂φ
∂z

)2
]

at z = ζ. (III.4)

Assuming that h varies on scales of the order of the surface wavelength, we in-

troduce three small parameters: the wave slope ε = k0a0, the small scale bottom slope

η = k0h0, and a measure β of the large scale bottom slope |∇H|. (III.1)–(III.3) are scaled

as

∇2φ+
∂2φ
∂z2 = 0 for (−H +ηh) ≤ z ≤ εζ, (III.5)

∂φ
∂z

= ∇φ · (η∇h−β∇H) at z = −H +ηh, (III.6)

∂2φ
∂t2 +

∂φ
∂z

= ε∇φ ·∇ζ− ε∇φ ·
∂∇φ
∂t

− ε
∂φ
∂z

∂2φ
∂t∂z

at z = εζ. (III.7)

Following Keller (1958) we introduce slow space x̃ = αx and time t̃ = γt variables. h and

φ are assumed to be semi-stationary random processes in horizontal space and time (for φ

only), with evolution scales (αk0)
−1 and γ−1k

− 1
2

0 respectively (Priestley, 1965), that can be

decomposed into Fourier modes with slowly varying amplitudes. Following Hasselmann

(1962) we shall approximate h and φ with discrete sums, and take the limit to continuous

integrals after deriving expressions for the evolution of the phase averaged wave energy.

We write

h(x) = ∑
l

Bl (x̃)eil·x, (III.8)

where l are regularly spaced wavenumbers of bottom undulations and Bl are slowly varying

amplitudes. Anticipating the effects of refraction, φ is decomposed as

φ(x, t) = ∑
k

Φk (x̃, t,z)eiSk(x), (III.9)

where k are regularly spaced surface wavenumbers, and each k-component has an ampli-

tude Φk, an eikonal Sk, and a local wavenumber

kr (k,βx) = ∇Sk (x) (III.10)

such that kr = k at the origin x = 0. Φk and kr are Lagrangian variables following a wave

component along a ray trajectory. The spectral decomposition (III.9) for an evolutionary
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process is ‘unique’, in a sense defined by Priestley (1981, theorem 11.2.3), only for a finite

region in space and time, and is used here only to evaluate local variations of Φk.

The slow spatial variations of Φk can result from shoaling, refraction, and scatter-

ing processes, as well as non-stationary and non-uniform wave conditions. Since φ and h

are real it follows that Φk = Φ−k and Bl = B−l, where the overbar denotes the complex

conjugate.

In the vicinity of x = 0 the decomposition (III.9) reduces to a Fourier sum

φ(x, t) = ∑
k

Φk (0, t,z)eik·x +O(α |x| ,β |x|) . (III.11)

The simplified decomposition (III.11) will be used when no space differentiation is in-

volved, taking advantage of the orthogonality of Fourier modes.

The goal of the present derivation is to determine from (III.1)–(III.4) the energy

balance at x̃ = 0 for each k-component of the wave spectrum (III.9). The solution depends

on the relative magnitudes of the five small parameters: α, β, γ, η, and ε. Here we use

α ≈ β ≈ γ ≈ η2 ≈ ε2 � 1. (III.12)

The choice of a small scale bottom slope η much larger than the large scale slope β is

usually well suited to sandy continental shelves, with the exception of the steeper beach

and shelf break regions. This choice makes the present derivation a priori different from

Mei’s (1985) theory in which β ≈ η.

Following the method of Hasselmann (1962), the solution to (III.5)–(III.7) is ob-

tained through a perturbation expansion in powers of ε,

φ = φ1 + εφ2 + ε2φ3 +h. o. t. (III.13)

The boundary conditions (III.6) and (III.7) are expressed at z =−H and z = 0, respectively,

using Taylor series expansions of φ about z = −H and z = 0, e.g. at the bottom,

φ|z=−H+h = φ|z=−H +ηh
∂φ
∂z

∣∣∣∣
z=−H

+η2 h2

2
∂2φ
∂z2

∣∣∣∣
z=−H

+h. o. t. (III.14)

Each term in (III.13) will be found to be of the form

φi = ∑
k,s

cosh(krz+ krH)

cosh(krH)
Φs

i,k (x̃,t)eiSi,k(x) +bound wave terms , (III.15)
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where kr is the magnitude of the local wavenumber vector kr, s is a sign index (+ or −),

Φs
i,k is the amplitude of the free wave component (k,s) that propagates in the direction of

skr, and Φs
i,k = Φ−s

i,−k.

The slowly evolving spectral statistics of free wave components can be expressed

in terms of the covariances FΦ
i, j,k of the velocity potential amplitudes:

FΦ
i, j,k =

〈
Φ+

i,kΦ−
j,−k +Φ−

i,−kΦ+
j,k

〉
. (III.16)

where the angular brackets denote an average over many realizations of the wave field,

and in local space and time over a region that is large compared to the ‘fast’ scales k−1
0 of

sea surface excursions but small compared to the slow scales (αk0)
−1 and γ−1 (gk0)

−1/2 of

spectral variations. The contribution of the complex conjugate pairs of components (k,+)

and (−k,−) are combined in (III.16) so that Fi, j,k is the covariance of waves propagating

in the direction of k. Note that the wavenumber separations kr=(∆kr,x,∆kr,y) in the sum

(III.9) vary along rays owing to refraction. In the limit of small wavenumber separation a

continuous cross-spectrum can be defined at x̃ = 0 (e.g. Priestley, 1981 ch. 11)

FΦ
i, j

(
0, t̃,k

)
= lim

| k|→0

FΦ
i, j,k

(
0, t̃

)

∆kx∆ky
. (III.17)

The definitions of all spectral densities are chosen so that the integral over the entire

wavenumber plane yields the total covariance of φi and φ j.

The slowly varying bottom elevation spectrum in discrete form is given by F B
l =

〈BlB−l〉 and in continuous form by

FB (x̃, l) = lim
| l|→0

FB
l (x̃)

∆lx∆ly
, (III.18)

so that
〈
h2 (x̃)

〉
=

∫ +∞

−∞

∫ +∞

−∞
FB (x̃, l)dlxdly. (III.19)

This definition differs by a factor 2 from the one chosen by Hasselmann (1966) and Long

(1973).

The total wave energy at x̃ = 0, in non-dimensional form,

E
(
0, t̃

)
=

〈∫ ζ

−H+h

1
2

[
|∇φ|2 +

(
∂φ
∂z

)2
]

dz

〉
+

1
2

〈
ζ2〉 , (III.20)
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can be written as

E
(
0, t̃

)
=

∫ ∞

−∞

∫ ∞

−∞

[
ε2E2 (k)+ ε3E3 (k)+ ε4E4 (k)

]
dkxdky +O

(
ε5

)
, (III.21)

where

E2 (k) = E1,1 (k) , (III.22)

E3 (k) = E2,1 (k)+E1,2 (k) , (III.23)

E4 (k) = E2,2 (k)+E3,1 (k)+E1,3 (k) . (III.24)

Here Ei, j (k) is the (i+ j)th order energy contribution from correlations between ith and

jth order components with wavenumber k. Since the average in (III.20) is over several

wavelengths, correlations between wave components with different wavenumbers that re-

sult from reflections (i.e. standing wave patterns of nodes and antinodes) are averaged out

and do not contribute to (III.21). For all (i, j) pairs Ei, j (k) = E j,i (k). Hasselmann (1962)

discarded odd-power energy terms E3 and E5 under the assumption that the sea surface is

Gaussian. It was later found that this assumption is unnecessary (Benney & Saffman, 1966

; Newell & Aucoin, 1971) as dispersion decorrelates the wave components during their

propagation. Here additional terms involving correlations between two wave and one bot-

tom component contribute to E3, but these terms are shown to be bounded in appendix A.

The dynamically important growing terms will be found in the 4th order energy E4 (III.24).

For freely propagating waves the potential and kinetic energy contributions to (III.20)

are equal and Ei, j is approximately given by the linear relation

Ei, j
(
0, t̃,k

)
= kFΦ

i, j

(
0, t̃,k

)
tanh(kH) . (III.25)

Neglected in (III.25) are the contributions to the kinetic energy integral (III.20) from the z-

intervals [−H +h,−H] and [0,ζ]. Although these contributions are O
(
ε4

)
and thus should

be included in E4, their magnitude is bounded and thus their time derivative is O
(
ε6

)
.

All O
(
ε4

)
bounded terms resulting from the surface and bottom boundary conditions can

be discarded in the following analysis of energy transfers within the wave spectrum (see

Hasselmann, 1962, for a detailed discussion).
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2. First order solution

Substitution of the first order wave field φ1

φ1 = ∑
k,s

cosh(krz+ krH)

cosh(krH)
Φs

1,k (x̃,t)eiS1,k(x) (III.26)

in the surface boundary condition (III.7) yields

Φs
1,k (x̃,t) = Φ̂s

1,k
(
x̃,t̃

)
e−isωt, (III.27)

where the radian frequency ω(k) is constant along rays, and is given by the linear dispersion

relation (in non-dimensional form):

ω(k) = [kr tanh(krH)]
1
2 . (III.28)

The slow space and time modulations of Φ̂s
1,k and the associated variations of the energy

spectrum E2 (kr) are not constrained by the first order equations, but can be determined

from the fourth order energy E4 (kr) (III.24), that depends on both second and third order

waves.

3. Second order solution

Substituting (III.13) in (III.5)-(III.7) and collecting terms of order ε and η yields

the governing equations for the second order velocity potential φ2

∇2φ2 +
∂2φ2

∂z2 = 0 for −H ≤ z ≤ 0, (III.29)

∂φ2

∂z
= −h

∂2φ1

∂z2 +∇φ1 ·∇h at z = −H, (III.30)

∂2φ2

∂t2 +
∂φ2

∂z
= NL2 at z = 0. (III.31)

where NL2 contains the non-linear terms in the surface boundary condition that force a

bound wave solution φnl
2 (Hasselmann, 1962, (47)). Note that refraction and shoaling terms

associated with the large scale bottom slope ∇H are of higher order and do not contribute

to the second order equations. Therefore ray curvature effects on φ1 can be neglected, and

we can use kr ≈ k and Sk (x)≈ k ·x in the vicinity of x = 0. A general solution to Laplace’s
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equation (III.29) is formed with a Fourier sum of free and bound wave components with

amplitudes Φs
2,k and Φsi,s

2,k:

φ2 = ∑
k,s

[
cosh(kz+ kH)

cosh(kH)
Φs

2,k (t)+
sinh(kz+ kH)

cosh(kH)
Φsi,s

2,k (t)

]
eik·x +φnl

2 , (III.32)

Φsi,s
2,k follows from substituting the first order wave field (III.26), (III.27) in the right hand

side of the bottom boundary condition (III.30).

Φsi,s
2,k (t) = −∑

k′,s

k ·k′

k
Bk−k′Φ̂s

1,k′e−isω′t, (III.33)

where (ω′,k′) obey the dispersion relation (III.28). The bound wave Φsi,s
2,k effectively cou-

ples the bottom and surface waves. Substitution of (III.32) and (III.33) in (III.31) yields a

forced harmonic oscillator equation for the free wave amplitude Φs
2,k,

(
d

dt2
+ω2

)
Φs

2,k (t) = ∑
k′

[
k−ω′2 tanh(kH)

] k ·k′

k
Bk−k′Φs

1,k′ (t) . (III.34)

Following the method of Hasselmann (1962), the time derivative of the energy density

E2,2 (k) of the second order waves in the limit of large t at x̃ = 0, can be written in the form

(appendix A)

∂E2,2 (k)

∂t
= K (k,H)

∫ 2π

0
cos2 (

θ−θ′
)

FB (
k−k′

)
E2

(
k′

)
dθ′, (III.35)

where k = (k cosθ,k sinθ), k′ = (k cosθ′,k sinθ′), and

K (k,H) =
4πωk4

sinh(2kH) [2kH + sinh(2kH)]
. (III.36)

4. Third order solution

Slow modulations of φ1 yield third order terms in Laplace’s equation. Substituting

(III.13), (III.26), and (III.27) in (III.5)–(III.7), collecting terms of order ε2, εη, η2,α, β,

and γ, and using the approximations (in the vicinity of x = 0) kr = k+O(βx), and Sk (x) =

k ·x+O(αx,βx), yields the following equations for the third order velocity potential φ3

∇2φ3 +
∂2φ3

∂z2 = −i

I︷ ︸︸ ︷

∑
k,s

k ·∇
(

Φ̂s
1,k

cosh(krz+ krH)

cosh(krH)

)
ei(k·x−sωt)
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−i

II︷ ︸︸ ︷

∑
k,s

∇ ·

(
krΦ̂s

1,k
cosh(krz+ krH)

cosh(krH)

)
ei(k·x−sωt)

for −H ≤ z ≤ 0, (III.37)

∂φ3

∂z
= −

III︷ ︸︸ ︷
h

∂2φ2

∂z2 +

IV︷ ︸︸ ︷
∇φ2 ·∇h −i

V︷ ︸︸ ︷
∑
k,s

k ·∇HΦ̂s
1,kei(k·x−sωt) at z = −H, (III.38)

∂2φ3

∂t2 +
∂φ3

∂z
= i

VI︷ ︸︸ ︷

∑
k,s

2sω
∂Φ̂s

1,k

∂t̃
ei(k·x−sωt) +NL3 at z = 0, (III.39)

Note that third order terms involving φ1 in the bottom boundary condition (III.38) vanish

because ∂3φ1/∂z3 = 0 and ∂φ1/∂z = 0 at z = −H. The right hand side forcing terms of

(III.37-III.39) include Bragg scattering terms (III and IV), effects of spatial heterogeneities

(I,II, and V), non-stationarity (VI), and third order nonlinear surface terms that are gathered

here in the term NL3. This set of equations is linear in φ3. Therefore φ3 is the sum of a

homogeneous solution (absorbed in φ1) and four particular solutions,

φ3 = φsc
3 +φhe

3 +φns
3 +φnl

3 , (III.40)

where sc, he, ns and nl, stand for scattering, heterogeneity, non-stationarity, and non-

linearity, respectively. Each solution satisfies (III.37)–(III.39) forced respectively by the

scattering terms (III and IV) only, the heterogeneity terms (I, II and V) only, the non-

stationarity term (VI) only, and the surface non-linearity terms (NL3) only. Although φnl
3 is

resonantly forced, it contributes only bounded terms to E4 (Hasselmann, 1962). Similarly,

nonlinear contributions to the scattering terms III and IV (the O
(
ε2η

)
products involving

φnl
2 and bottom undulations) yield only bounded contributions in E4. The remaining solu-

tions φsc
3 , φhe

3 , and φns
3 contribute growing terms, E sc

3,1, Ehe
3,1, and Ens

3,1, to E4. Following the

method used to obtain ∂E2,2
4 /∂t, at x̃ = 0 we have (appendix A)

∂
[
Esc

3,1 (k)+Esc
1,3 (k)

]

∂t
= −K (k,H)

∫ 2π

0
cos2 (

θ−θ′
)

FB (
k−k′

)
E2 (k) dθ′, (III.41)

∂
[
Ens

3,1 (k)+Ens
1,3 (k)

]

∂t
= −

∂E2 (k)

∂t
, (III.42)
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∂
[
Ehe

3,1 (k)+Ehe
1,3 (k)

]

∂t
= −Cg (k) ·∇E2 (kr) , (III.43)

where Cg (k) is the group velocity of linear waves (A.27), and E2 (kr) is a Lagrangian

variable that describes energy evolution along the ray trajectory [x(k,βr) ,kr (k,βr)] of

wave component k, where r is the along-ray coordinate. E2 (kr) is defined by

FΦ
1,1

(
x̃, t̃,kr

)
= lim

| kr|→0

FΦ
1,1,k

(
x̃,t̃

)

∆kr,x∆kr,y
, (III.44)

E2
(
x̃, t̃,kr

)
= krF

Φ
1,1

(
x̃,t̃,kr

)
tanh(krH) . (III.45)

Note that the advection term Cg (k) ·∇E2 (kr) describes the divergence of the energy flux

in Lagrangian coordinates, and thus incorporates refraction and shoaling effects. All other

terms in (III.42)–(III.43) depend only on the energy at x̃ = 0 where the Lagrangian wavenum-

ber kr is equal to the Eulerian wavenumber k, and E2 (kr) = E2 (k).

5. Energy balance

Combining (III.35), and (III.41)–(III.43), the rate of change of the fourth order

spectrum (III.24) at x̃ = 0 is given by

∂E4 (k)

∂t
= −

∂E2 (k)

∂t
−Cg (k) ·∇E2 (kr)

+K (k,H)
∫ 2π

0
cos2 (

θ−θ′
)

FB (
k−k′

)[
E2

(
k′

)
−E2 (k)

]
dθ′,

(III.46)

where K (k,H) is given by (III.36).

To assure that E4 is bounded for large t, that is ∂E4/∂t = O
(
ε5

)
, the right-hand side

terms of (III.46) must balance. Recognizing the first two of these terms as the total deriva-

tive of E2 (kr) along a ray trajectory, and replacing E2 by E, we obtain (using dimensional

and unscaled variables from now on) the Lagrangian energy balance equation at x̃ = 0,

accurate to order ε4:
dE(kr)

dt
= SBragg (k)+O

(
ε5

)
, (III.47)

SBragg (k) = 4πg
1
2 H− 9

2 χ(kH)
∫ 2π

0
cos2 (

θ−θ′
)

FB (
k−k′

)[
E

(
k′

)
−E (k)

]
dθ′, (III.48)
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Figure 20. Values of χ(kH), as defined by (III.49).

with

χ(kH) =
(kH)

9
2 [tanh(kH)]

1
2

sinh(2kH) [2kH + sinh(2kH)]
. (III.49)

(III.47) describes the net energy transfer at x̃ = 0 to a wave component with wavenumber

k (propagating in direction θ), resulting from triad interactions involving a wave of the

same radian frequency ω and a different wavenumber k′ (direction θ′), and a bottom com-

ponent with the difference wavenumber l = k−k′ (figure 3). The energy transfer between

components k and k′ is proportional to the energy difference of the wave components and

the bottom spectrum density at l = k−k′. The factor cos2 (θ−θ′) in (III.48) indicates that

there is no energy transfer between waves propagating in perpendicular directions. The fac-

tor χ(kH) has a single maximum, approximately equal to 0.049 for the intermediate water

depth kH ≈ 1.27 (figure 20). In addition to directional and wavenumber dependencies,

the scattering strength is proportional to H− 9
2 , increasing strongly with decreasing water

depth. Taking into account their different normalization of the bottom elevation spectrum,
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the present expression (III.48) of SBragg is 4 and 8 times smaller than the expressions given

by Long (1973) and Hasselmann (1966), respectively.

6. Conditions of validity

The present theory is both a spectral generalization and higher-order energy con-

serving form of the solution given by Davies (1979) for sinusoidal bed undulations. Davies

describes the generation of second order waves φ2, but uses constant amplitudes for φ1, and

thus does not account for the associated energy losses of the primary waves. In the present

theory the extension of the perturbation expansion to third order provides the balancing

terms E1,3 and E3,1 (III.41), necessary for the conservation of the total energy in (III.47).

Whereas Davies’ theory assumes small reflected wave amplitudes, (III.47) can describe

finite cumulative reflections over large distances and even complete localization of waves

over rough bottom topography. However the present theory assumes that significant wave

amplitude variations occur over scales of O(α) wavelengths with α ≈ ε2, and thus cannot

accurately describe strong localized scattering that modify the wave amplitudes over scales

of only a few wavelengths (see Mei, 1985, for a discussion of those effects over sinusoidal

bottom topography, including in particular the importance of near-resonant interactions in

that case).

It should be noted that the wavenumber spectrum E (k) =
∫ 2π

0 kE (k)dθ was as-

sumed continuous in order to derive (III.47) in the limit of large times, removing the sin-

gularities for perfect resonance in (A.6), and reducing the bandwidth of important near-

resonant interactions to a region of the spectrum where E (k) can be considered constant.

Thus (III.47) is not valid for monochromatic waves. Whereas the initial growth of the scat-

tered energy is proportional to t2 for resonant monochromatic waves, it is only proportional

to t for waves with a continuous spectrum, because resonance becomes more selective with

time, affecting a wavenumber bandwidth that narrows proportionally to t−1.

Another consequence of the asymptotic large time limit taken in appendices A–D,

is that the stochastic model (III.47) may not describe accurately wave evolution over natural

sea beds which are often not homogeneous over scales of many wavelengths. The robust-
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ness of (III.47) for short propagation distances is examined in § 3 through comparisons with

deterministic models for wave evolution over a finite patch of sinusoidal bars. (III.47) in-

cludes wave-bottom interactions with |k−k′| � k, violating our scaling assumption l ≈ k.

This particular aspect is discussed in § 3.4.

7. Extensions of the present theory

The present energy balance (III.47) may be extended to higher orders of η and/or ε

by closing the energy Taylor expansion at E6, giving an evolution equation for E2 +E4. In

the case of steeper waves, say α≈ β≈ γ≈η2 ≈ ε4, it can be seen that all the energy transfer

terms derived here (III.35, III.41–III.43) are moved from E4 to E6, joining the additional

source term Snl that represents resonant quartet wave-wave interaction (Hasselmann, 1962;

Herterich and Hasselmann, 1980). Extensions to steeper waves and steeper topography,

for example α ≈ β ≈ γ ≈ η4 ≈ ε4, should yield at least two additional source terms, cor-

responding to higher order Bragg scattering (class II and III, see for example Liu & Yue,

1998).

Furthermore it can be expected that including higher order heterogeneity effects

and non-linearity should introduce nonlinear effects on the left hand side of (III.47), as

described by Willebrand (1975). For example in the present theory E6 contains correlations

between the tertiary waves φnl
3 and the heterogeneity and non-stationarity terms φhe

3 and φns
3

. Thus it may be possible to derive a more complete energy balance equation with not only

the source terms for the individual physical processes that contribute to the evolution of the

wave spectrum, but also the cross-interactions of these processes that are usually neglected

in wave prediction models (Komen et al., 1994).

B. RANDOM WAVES OVER SINUSOIDAL BARS

Following Davies (1979) we consider a simple seabed consisting of sinusoidal bars

on an otherwise flat bottom for which analytical results exist that have been verified in

laboratory experiments. Waves arriving from x = −∞ at an incidence angle θI are partially

reflected, in a direction θR = π−θI by a patch of m sinusoidal bars of amplitude b, aligned

with the y axis. The barred profile h = bsin(lx) covers the region −L < x < L where
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Figure 21. Wave scattering by sinusoidal bars
Schematic of incident waves (dashed crests) and reflected waves (dotted crests) on a patch
of sinusoidal bars (gray shades).

L = mπ/l and l is the bar wavenumber (figure 21). The incident wave field is assumed

to be a continuous spectrum EI (k) of unidirectional (θ = θI) waves. The total reflected

energy ER in the far field (x �−L) predicted by the stochastic and deterministic theories

are compared for both normal and oblique incidence cases, in the limit of large m and for

finite m.

1. Stochastic source term approach

In a steady state uniform along the y-axis, the energy balance (III.47) for the bottom

profile described above simplifies to

Cg cosθ
dE(k)

dx
= SBragg (k) . (III.50)
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Figure 22. Resonant wavenumbers for sinusoidal bars.
Resonant triads for waves over sinusoidal bars represented on the wavenumber plane. The
bar wavenumbers are fixed at (l,0) and (−l,0) and all possible pairs of resonant surface
wavenumbers kI and kR lie on the vertical dashed lines. For the wave direction θ shown
here, the directional spectral density E (θ) (the integral of kE (k) along the thick arrow) is
affected by energy transfers in the resonant (kI,kR, l) triad.

In order to evaluate SBragg (III.48) we approximate the finite patch of sinusoidal bars as

a subsection of a sinusoidal bottom extending to infinity, for which the bottom variance

spectrum FB is a double Dirac distribution

FB (l) =
b2

4
[δ(l,0)+δ(−l,0)] . (III.51)

Outside the barred section (|x| > L) FB is set equal to zero. The singularity in (III.51) is

removed in SBragg by integrating (III.50) over k for a fixed direction θ (Figure 22). Changing

variables from (k,θ′) to the corresponding resonant bottom wavenumber

(lx, ly) = k (cosθ− cosθ′,sinθ− sinθ′) we obtain

dE(θ)

dx
=

8π
cosθ

∫ ∫

k·l>0

cos2 (θ−θ′)Fb (l) [E (k− l)−E (k)]k5

[1− cos(θ−θ′)] [2kH + sinh(2kH)]2
dlxdly, (III.52)

where

E (θ) =
∫ ∞

0
kE (k cosθ,k sinθ)dk (III.53)
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is the directional spectrum integrated over all wavenumbers, and the Jacobian

J = 1/{k [1− cos(θ−θ′)]} of the transform from (k,θ′) to (lx, ly) is used. Note that the

integration over l is restricted to the half plane where k · l > 0 (figure 22).

For −π/2 < θ < π/2 (III.52) describes the evolution of an incident component

with direction θI = θ. Only interactions in the neighborhood of the resonant triad kI =

l (1, tanθ)/2, kR = l (−1, tanθ)/2, l = (l,0) contribute to this integral (figure 22). For

π/2 < θ < 3π/2, (III.52) describes the evolution of a reflected component with direction

θR = θ resulting from the resonance of kI = l (1,− tanθ)/2, kR = l (−1,− tanθ)/2, l =

(−l,0). Substitution of (III.51) in (III.52) yields

dER

dx
= −Dx [E (kI)−E (kR)] for −L < x < L, (III.54)

where

Dx =
πb2 cos2 (2θI) l5

16cos6 θI [1+ cos(2θI)]
[

lH
cosθI

+ sinh
(

lH
cosθI

)]2 . (III.55)

For weak reflection (E (kI)� E (kR)) we can neglect changes in E (kI). Integrating

(III.54) from L to −L yields

ER = 2LDxE (kI) for x < −L. (III.56)

For unidirectional incident waves with a spectrum EI (k) = δ(θ−θI)EI (k)/k, the total

reflected energy is given by

ER = DlEI (kI) , (III.57)

where D is an non-dimensional coefficient

D =
2LDx

lkI
=

mπ2b2 cos2 (2θI) l2

4cos5 θI [1+ cos(2θI)]
[

lH
cosθI

+ sinh
(

lH
cosθI

)]2 . (III.58)

For the particular case of normal incidence (θI = 0) D reduces to

D =
mπ2b2l2

8 [lH + sinh(lH)]2
. (III.59)
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2. Comparison with deterministic theory for normal incidence

In Davies’ (1979) theory for weak reflection of a normally incident monochromatic

wave train by a patch of m sinusoidal bars with amplitude b, the ratio of the reflected and

incident wave amplitudes is given by

κDH =
2bk

2kH + sinh(2kH)

(−1)m 2k
l

sin(2kL)
(2k

l

)2
−1

. (III.60)

Theoretical values of κDH have been verified experimentally by Heathershaw (1982; see

also Davies & Heathershaw, 1984), even in cases with large reflection coefficients.

For random waves with a wavenumber spectrum EI (k) the reflected energy ER,DH

is the convolution of |κDH (k)|2 and EI (k),

ER,DH =
∫ ∞

0
|κDH (k)|2 EI (k)dk. (III.61)

The response function |κDH|
2 has a ‘resonant lobe’ of width π/L and height proportional

to m2 centered at the resonant wavenumber k = l/2, and narrower side lobes at higher and

lower wavenumbers (figure 23,dotted curve) . In the limit of large m (equivalent to the large

t limit in the stochastic theory), |κDH|
2 approaches a Dirac distribution

|κDH|
2 ∼

mπ2l
8

(
2bk

2kH + sinh(2kH)

)2 (
2k
l

)2

δ
(

l
2

)
. (III.62)

Since EI (k) is continuous, the substitution of (III.62) in (III.61), yields

ER,DH ∼
mπ2b2l3

8 [lH + sinh(lH)]2
EI

(
l
2

)
, (III.63)

which is identical to the stochastic theory prediction (III.57),(III.59). The exact agreement

of the stochastic and (experimentally verified) deterministic theories in the limit of large m,

where both are valid, confirms that the coupling factor χ (III.49), which differs by factors

of 8 and 4 from previous publications (Hasselmann, 1966; Long 1973), is correct.

3. Oblique incidence and finite numbers of bars

Davies’ (1979) theory for wave reflection from sinusoidal bars was generalized to

oblique incidence and finite reflection coefficients by Mei (1985), using an approximation
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Figure 23. Reflection of waves by sinusoidal bars
Response function |κDK|

2 for H = 25 m, 2π/l = 300 m, b = 0.05 m, m = 4, and three
incidence directions: · · · · · , θI = 0; – – –, θI = 60◦;——, θI = 75.5◦. (corresponding to
resonant wavenumbers k = l/2, k = l, and k = 2l). The response functions are normalized
by their maximum values indicated on the figure. For reference a generic wave spectrum
is included (◦, arbitrary units) with a Pierson-Moskowitz shape, a peak period of 14 s, and
uniform infragravity energy levels. The total reflected energy is the convolution of |κDK|

2

and the wave spectrum.

76



for weak detuning from resonance. Dalrymple & Kirby (1986) applied Mei’s theory to a

finite patch of bars and derived the amplitude reflection coefficient κDK (their equations 5

and 9). For normal incidence κDK is in good agreement with the experimental results of

Davies & Heathershaw (1984), and reduces to κDH in the limit of small bar amplitude b.

For oblique incidence no experimental verification exists but Mei’s theory was verified nu-

merically with solutions of Kirby’s generalized mild slope equations (Kirby, 1993). Values

of |κDK|
2 for a patch of four bars of wavelength 2π/l = 300 m, and amplitude b = 0.05 m

in 25 m depth, are shown in figure 23 as a function of k/l for different incidence an-

gles θI . The interaction between the bottom undulations and the surface gravity waves is

dominated by near-resonant triads, for which |κDK|
2 is maximum. The Bragg resonance

condition k = 2l/cosθI determines the wavenumber for which reflection is maximum, as

a function of the incidence angle. For example, for the wave spectrum shown in figure 23,

back scattering (θI ≈ 0, θR ≈ 180◦) is confined to the low wavelength (infragravity) part

of the spectrum, and shorter swells are scattered forward (see the response functions for

θI = 60◦, θR = 120◦ and θI = 75.5◦, θR = 104.5◦ in figure 23).

To determine the accuracy of the stochastic theory for a finite patch of bars, the

total reflected energy ER predicted by (III.57)–(III.58), valid only in the limit of large m, is

compared to the ‘exact’ ER,DK predicted by the deterministic theory (III.61 where κDH is

replaced by κDK), valid for arbitrary m. In these calculations EI (k) is taken to be a Pierson–

Moskowitz (1964) spectrum with a peak period Tp = 14 s. A white background spectrum

E (k) = 0.04EI (kp) is added to represent contributions of longer wavelength infragravity

waves (figure 23). The convolution integral (III.61) is computed numerically over the range

0.005 < k/l < 4, for incidence angles θI = 0, 60◦ and 75.5◦. Other parameters are H = 25 m

and b = 0.05 m. A small b value was chosen to have a small reflection coefficient (κDK <

0.1) because (III.57) neglects variations in the incident energy EI and thus is valid only for

weak reflections. The relative difference between stochastic and deterministic theories is

shown in figure 24 as a function of m. This difference is sensitive to the variations of the

wave spectrum across the resonant lobe and the relative magnitude of the side-lobes of the

response function |κDK|
2. It vanishes in the limit m → ∞ as the width of the resonant lobe
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Figure 24. Comparison of stochastic and deterministic theories
Relative differences between the reflected energy predicted by the stochastic theory and the
spectral form of the deterministic theory, (III.61, replacing κDH by κDK), as a function of
the number of bars m. All other parameters are the same as those used in figure 23. The
incident wave spectrum is shown in figure 23.

and the height of the side-lobes go to zero. As m increases the predictions of both theories

converge, as expected since both theories are valid for large m. For all three incidence

angles θI = 0, 60◦ and 75.5◦, the difference in reflected wave energy predicted by the

stochastic and deterministic theories is less than 25% for more than three bars. This rapid

convergence not only provides a further consistency check of the coupling factor χ (III.49)

for cases of oblique incidence, but also indicates that the stochastic Bragg scattering theory

is surprisingly robust. Although formally valid only in the asymptotic limit of many bottom

wavelengths, it yields reasonable estimates of energy transfers resulting from scattering by

only a few bottom undulations.
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4. Bottom slope effects

The large time limit used to evaluate fourth order energy terms in appendices A–

D requires implicitly that the large scale bottom slope does not significantly change the

interaction over a distance ∆r that allows waves to propagate across a sufficiently large

number of bars ma to approach the asymptotic limit of the energy transfer (figure 24).

Wave refraction by the large-scale bottom slope changes the surface wavenumbers and

thus introduces a detuning of near-resonant wave-bottom interactions. This detuning effect

can be neglected only if changes in the surface wavenumbers are small compared to the

width of the resonant lobe of the response function |κDK|
2 (figure 23).

For simplicity we consider a finite patch of ma sinusoidal bars aligned with the y-

axis, with wavenumber l, superimposed on a plane bottom with a downward slope β in

a direction θb. The along-ray gradient of the resonance mismatch u = (2k cosθ− l)/l is

given by
∂u
∂r

=
2
l

(
cosθ

∂k
∂r

− k sinθ
∂θ
∂r

)
. (III.64)

Using Snel’s law we have
∂u
∂r

=
−4βk2 cosθb

l [2kH + sinh(2kH)]
. (III.65)

For small bottom slopes the distance traveled by the waves across the bar field is ∆r ≈

2maπ/(l cosθ), giving a change in the resonance mismatch

∆u ≈−
2πmaβcosθb

cos3 θ [2kH + sinh(2kH)]
. (III.66)

Detuning of resonant interactions by refraction can be neglected if |∆u| is small compared

with the (normalized) width of the resonant lobe 1/ma, that is

ma |∆u| � 1. (III.67)

(III.67) also follows from considering the phase difference between waves reflected by

the first and mth
a bars, which should be small compared to π/2 to allow the constructive

interference that causes resonance.

(III.67) is a necessary condition for the application of the stochastic theory. For

a given bottom slope β, (III.67) imposes a maximum incidence angle θmax. For practical
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purposes we assume that the largest acceptable value of ma |∆u| is about 0.5, giving

cos3 θmax >
4πm2

aβcosθb

2kH + sinh(2kH)
. (III.68)

For example, considering 14 s period waves in 25 m depth with a bottom slope β = 2×10−4

at an angle θb = 60◦, and taking ma = 2, the source term (III.48) is expected to significantly

overestimate the energy of scattered waves for incidence angles greater than θmax ≈ 83◦,

corresponding to a ratio k/l = 4.3.

It should be noted that (III.67) is consistent with the scaling of (III.1)–(III.4) requir-

ing that bottom and surface elevations have comparable horizontal scales. This scaling is

violated for large angle interactions (i.e. k � l for θ close to 90◦), even on a flat bottom.

In the following the contribution of wave-bottom interactions to (III.48) is taken to be ac-

curate for θ < θmax and is neglected for θ > θmax. This crude truncation of the interactions

is expected to give only qualitative results for the scattering of waves at large incidence

angles. Sensitivity of predicted spectral evolution to the choice of the cut-off angle θmax is

examined for natural shelf topography in § 4.

C. HINDCAST OF WAVE SCATTERING ON A NATURAL SHELF

The effect of Bragg scattering on directional wave spectra evolution is illustrated

here with a numerical model hindcast of swell evolution observed across the North Car-

olina shelf. The scattering source term SBragg (III.48) was implemented in the spectral

model CREST (chapter II), that integrates the energy balance (III.47) in time using a hy-

brid Eulerian–Lagrangian numerical scheme. In addition to SBragg a bottom friction source

term Sfric is included in the energy balance to account for energy dissipation in the boundary

layer over a sandy movable bottom. Details of the model formulation, numerical scheme,

treatment of boundary conditions, and parameterization of bottom friction are given in

chapter II. SBragg is evaluated using bottom elevation spectra that were estimated from

high-resolution bathymetry surveys. Processes not represented in the model such as wind

generation, effects of currents, wave breaking, and non-linear effects, are expected to be

negligible because at the time of the hindcast (21:00 Greenwich Mean Time, on October
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20, 1994) local wind speeds (3 m s−1), and current velocities (≈ 20 cm s−1, Lentz et al.,

1999) were weak, and the observed waves were long-period (≈ 13 s) swell with low sig-

nificant height (≈ 1 m).

1. Wave data

Frequency-directional wave spectra were estimated from measurements on the outer

and inner shelf near Duck, North Carolina (figure 25 a). An array of pressure sensors, lo-

cated 1 km from the shoreline in 8 m depth, was operated by the Army Corps of Engineers

Field Research Facility (FRF), in Duck, North Carolina, and a 3 m discus pitch and roll

buoy located close to the shelf break, in 49 m depth, was operated by the National Data

Buoy Center (NDBC). Standard techniques (Herbers et al., 1999; § II.D) were used to ob-

tain estimates of the frequency-directional wave spectra at both locations. The NDBC buoy

wave spectrum was transformed across the shelf break to deep water using Snel’s law, as-

suming parallel depth contours, in order to obtain the offshore boundary condition for the

model.

2. Bottom topography

Bathymetric data for most of the shelf was available from the National Ocean Ser-

vice (NOS). In regions not covered by the NOS archives, water depths were measured

during instrument deployment and recovery cruises in a series of experiments (DUCK94;

Sandy Duck; SHOWEX) on the North Carolina continental shelf, using a single precision

depth recorder. Additionally, high-resolution multibeam sonar bathymetric surveys were

conducted during the SHOWEX experiment in November and December 1999, in two 6

km × 6 km square regions of the inner shelf (labeled S1 and S2 in figure 25a). This data set

was processed with the MB-System software (Caress & Chayes, 1995) to obtain 10 m res-

olution grids shown in figure 25 (b,c). The vessel motion and tide were carefully removed,

although a slight but systematic measurement bias is still noticeable in the striped pattern of

figure 25 (c), yielding an artificial ridge of spectral densities on the x-axis of figure 26 (b).

Although the high-resolution bathymetry data was acquired five years after the wave data,

comparisons with depth soundings, performed within a few months of the wave data col-
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Figure 25. High resolution (10 m) bottom topography
Bottom topography of the North Carolina continental shelf (a). The squares marked S1
and S2 are the regions enlarged in (b, c). Other symbols indicate locations of the FRF 8 m
depth array (8M) and NDBC 3 m discus buoy (44014).
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Figure 26. Bottom elevation spectra
Contour plots of the bottom variance spectra estimates for regions S1 (a) and S2 (b). The
contour values are log10

(
4π2FB

)
with FB in m4rad−2, and the contour interval is 0.5.

Circles indicate the bottom components that interact with waves arriving from the east with
frequencies 0.05 (inner circle), 0.12 (middle circle) and 0.25 Hz (outer circle). Axes units
are reciprocal wavelengths lx/(2π) and ly/(2π). (c) direction-integrated spectra for S1 (—
—) and S2 (– – –). The vertical lines indicate the bottom scales responsible for scattering
0.08 Hz swell, for various incidence angles θI .
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lection, show good agreement, suggesting that bottom topographic features of scales larger

than 500 m have not moved in regions S1 and S2.

Bottom elevation spectra FB
1 (l) and FB

2 (l) (figure 26a,b) were estimated for regions

S1 and S2, respectively, based on bidimensional Fourier transforms of Hanning windowed

1.6 km × 1.6 km square segments with 50 % overlap. The large scale bottom slope was

previously removed from each segment using a bilinear fit. Spectra of the large scale shelf

topography (not shown), computed from the entire bathymetry grid, are consistent with

the spectral levels at small l shown in figure 26a,b. The bottom elevation spectra are not

isotropic, showing a preferential north-east/south-west orientation of intermediate scales

features (200–1000 m) that are most important for swell scattering. It also appears that

bottom spectral levels at these scales are about a factor 4 higher in region S1 (15–25 m

water depth, variance 1.4 m2) than in the deeper region S2 (20–40 m, variance 0.35 m2, see

figure 26c). Lacking detailed topographic information in other regions, the bottom eleva-

tion spectrum used in model hindcasts is taken to be uniform over the entire continental

shelf. Hindcasts are presented in § 4 based on both estimates F B
1 (l) and FB

2 (l), illustrating

the likely range of scattering effects.

3. Numerical model

The numerical wave model CREST used for the present calculations is described

in chapter II with unchanged spatial and wavenumber grids. The model consists of a pre-

computation of wave rays and a Lagrangian time integration scheme for the energy balance

(III.47). In contrast to more widely used finite-difference schemes (see for example the

WAMDI group, 1988; Booij et al., 1999) the Lagrangian approach avoids numerical diffu-

sion that could cause an artificial broadening of the wave spectrum in shallow water (not

related to physical scattering processes). The Eulerian model grid, shown in figure 27 is

unstructured and much coarser than the bathymetry grid. It consists of 329 points xn dis-

tributed over a large portion of the shelf between latitudes 35 and 37◦ N. Wave rays are

traced backwards from the Eulerian grid points to the model boundary, using a smoothed

(2 km scale) bathymetry grid that resolves wave refraction over the large scale shelf topog-

84



  8M

 44014

100

10
0

        76º 0‘75º48‘75º36‘75º24‘75º12‘75º 0‘74º48‘74º36‘
Longitude (W)

0 20 40 60 80 100 120
x (km)

 

 

 

 

 

35º 0‘  

35º30‘  

36º 0‘  

36º30‘  

37º 0‘  
La

tit
ud

e 
(N

)

0

50

100

150

200

y 
(k

m
)

FIG. 10

Figure 27. Model grid
The grid points where the source tem is evaluated are the nodes of the triangular mesh.
A linear interpolation is applied in each triangle to approximate the source term along the
rays. The 100 m depth contour is indicated by the dotted line.
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raphy. Along each ray the energy balance (III.47) is integrated in time. At the grid points

the full wave spectrum E (k) is evaluated using ensemble averages of rays within finite

wavenumber bands kq,i corresponding to 19 frequency bands fq spaced exponentially with

a 5% increment from 0.05 Hz to 0.12 Hz, and 120 direction bands θi spaced linearly over a

full circle with a 3 degree resolution. The spectral source terms Sfric (k), representing bot-

tom friction (§ II.B), and SBragg (k) , given by (III.48), are evaluated at the grid points based

on the local spectrum E (k) and other parameters. Sfric (k) and SBragg (k) are interpolated

onto the ray trajectories to account for the energy losses (bottom friction), and exchanges

with other wave components (scattering), of component k during propagation. Details of

the time integration and interpolation schemes can be found in § II.3.

The model was run here with uniform and steady offshore boundary conditions and

a fixed integration time step ∆t = 10 minutes, until a steady state was reached. To determine

accurately the contribution of SBragg over the time step ∆t, an implicit integration scheme

was used. Omitting other source terms and propagation effects, (III.47) can be written in

discretized form and for a given wavenumber magnitude k, as a set of linear equations

∂E (k,θi)

∂t
= 4πg

1
2 H− 9

2 χ(kH)∑
j

Li, j (k)E
(
k,θ j

)
for all i, (III.69)

where θi are the discretized directions with ki = k (cosθi,sinθi) and the matrix L(k) is

given by

Li, j (k) =

[
cos2 (

θi −θ j
)

FB (
ki −k j

)
−δi j ∑

n
cos2 (θi −θn)FB (ki −kn)

]
∆θ, (III.70)

with δi j = 1 for i = j and 0 otherwise. As discussed below in § III.4, F B (l) is replaced by

zero in (III.70) for k/l greater than (k/l)max. Since L is real and symmetric, it can be di-

agonalized and represented as the matrix product L = VDV
T where D is a diagonal matrix

with the eigenvalues λi as diagonal elements, the columns of V are the corresponding nor-

malized eigenvectors, and V
T is the transpose of V. Using this decomposition the solution

of (III.69) can be given in the form

E (k,θi, t +∆t) = ∑
j
∑

l

Vi, j (k)exp
[
4πg

1
2 H− 9

2 χ(kH)λ j (k)∆t
]

Vl, j (k)E (k,θl , t) . (III.71)
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The source term SBragg, R in (II.15), is given by the average change in E (k,θi, t) over a time

step ∆t

SBragg (k,θi) = [E (k,θi, t +∆t)−E (k,θi, t)]/∆t. (III.72)

The matrices V (k) and eigenvalues λi (k) are precomputed using Jacobi’s algorithm (see for

example Press et al., 1992) for 500 values of k covering the entire range of wavenumbers in

the model, and the resulting matrices V and D are interpolated on the spectral model grid.

The high accuracy of the implicit numerical scheme was confirmed through comparisons

with an explicit fifth order Cash-Karp Runge-Kutta scheme.

4. Hindcast

The model hindcast was performed both with and without the Bragg scattering

source term, to isolate the scattering effects from other processes (refraction, shoaling

and bottom friction), and using two different measured bottom elevation spectra (F B
1 (l)

and FB
2 (l), figure 26) to estimate the possible variability of the scattering effects. Bot-

tom components with wavelengths larger than 5 times the surface wavelength (k/l > 5)

are excluded in the evaluation of SBragg because, as discussed in § 3.4, the theory is not

expected to be accurate for near-grazing angle interactions. Figure 28 shows an example

wave spectrum predicted in region S1 (20 m depth, figure 25), and the corresponding Bragg

scattering source term. The source term has a 3-lobe shape with negative values near the

peak θp of the directional wave spectrum, and positive maxima on both sides of the peak,

at about θp ± 30◦. The interactions broaden the peak of the directional wave spectrum

(forward-scattering) and cause weak, almost isotropic back-scattering. Sign reversals of

SBragg within the main lobe (figure 28b) are caused by irregularities in the wave spectrum

(figure 28a) . Bragg scattering tends to smooth the directional wave spectrum, with an evo-

lution time-scale E/SBragg of the order of 103 and 104 s in 20 and 50 m depth, respectively.

The combined effect of Bragg scattering and refraction is shown in figure 29 with

the predicted cross-shore evolution of the mean wave direction (from) at the peak fre-

quency, θ, taken as the direction of the first-order moment vector

(a1,b1) =
∫ π

0
(cosθ,sinθ) E ( fp,θ)dθ, (III.73)
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Figure 28. Wave spectrum and Bragg scattering source term
(a ) Predicted wave spectrum E in region S1 (figure 26) and (b ) corresponding Bragg
scattering source term SBragg, based on bottom spectrum FB

1 . Contours in (b ) are solid
for positive values (yellow to red color shades), heavy solid for SBragg = 0, and dashed for
negative values (green to blue color shades).

and the corresponding directional spread,

σθ =
{

2
[
1−

(
a1 cosθ+b1 sinθ

)
/E ( fp)

]} 1
2 . (III.74)

σθ ranges from 0 for unidirectional waves, to 81 degrees for isotropic waves. Offshore

propagating waves (π < θ < 2π) are excluded in the analysis because the predicted back-

scattering is weak, and reflection from the beach (Elgar, Herbers & Guza, 1994), not rep-

resented in the model, is apparent in the 8 m data (figure 29b).

The model without Bragg scattering predicts the expected turning of θ towards

the shore-normal direction, caused by refraction (figure 29a). The introduction of Bragg

scattering shifts the mean wave direction by an additional 1 to 10 degrees to the north,

because the bottom spectrum is not isotropic (figure 26). This effect is strongest for the

hindcast which uses the bottom spectrum FB
1 with a larger variance. This small shift is not

evident in the observations, suggesting that other processes, not represented in the model,

may be important or the orientation of the bathymetric features in figure (26a) may not
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Figure 29. Directional properties across the shelf
Measured (•) and predicted (——, with Bragg scattering using F B

1 (l); – – –, with Bragg
scattering using FB

2 (l); · · · · · ·, without Bragg scattering) variations of θ (a) and σθ (b)
at the peak frequency fp. Results are shown for October 20, 2000, at 2100 GMT, along a
cross-shelf transect (c) extending from the 8 m depth array to deep water offshore of NDBC
buoy 44014 . A maximum value of k/l = 5 was used in the scattering calculations.
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be representative of other parts of the shelf, but it is unlikely that the statistical nature of

these features evolved significantly between 1994 when the wave data was collected and

1999 when the bottom bathymetry was surveyed, even if individual features may have

moved. Besides, this effect is still apparent for waves observed in 1999 (see § V.D.1). The

detailed directional spectra, shown in figure 30 demonstrate that rather than shifting the

entire spectrum, Bragg scattering skews the directional spectrum to the north (figure 30c,d)

by preferentially scattering waves that propagate in directions parallel to the crests of the

larger bedforms (i.e. waves from the north-east, figures 26, 26).

Bragg scattering strongly affects the directional spread, causing a gradual increase

of σθ across the shelf (figure 29a), that partly balances the reduction of the directional

spread of the incident waves caused by refraction. Results based on bottom elevation spec-

tra FB
1 and FB

2 are qualitatively similar but the increase in directional spread is much larger

for the more ‘energetic’ bottom spectrum FB
1 (about a factor 2.5) than predicted for FB

2 (a

factor 1.6). On the inner shelf, in 8 m depth, the observed σθ value of 14◦ is a factor 2

larger than the model prediction without Bragg scattering (7◦, figure 29b), but falls in the

range of model results with the source term SBragg based on bottom spectra FB
1 (18◦) and

FB
2 (12◦).

The cut-off value (k/l)max of the ratio between surface and bottom wavenumbers

was varied from 0.5 (no scattering) to 5, in order to examine the importance of different

bottom topography scales in the scattering process (figure 31). Increasing (k/l)max from 0.5

(no scattering) to 1 (maximum scattering angle θmax = 60◦) does not change significantly

the directional properties of the waves. These interactions, involving bottom components

with wavelengths smaller than the surface wavelength, are weak because of the sharp roll-

off of the bottom spectral levels at high wavenumbers. At the other end of the spectrum,

results for (k/l)max values of 4 and 5 are nearly identical, indicating that larger bottom

features also do not significantly affect directional properties. Although the bottom spectral

levels are relatively high at these small values of l, the angular separation of the interacting

wave components is small (11.5◦ for k/l = 5) and thus the energy transfers do not strongly

modify a directional spectrum that is already broad. A range of interactions involving
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Figure 30. Realistic test of the Bragg scattering source term
Observed wave spectra in (a ) 49 and (b ) 8 m depth, and predicted wave spectra in 8 m
depth, (c ) without Bragg scattering and (d ) with Bragg scattering, based on the bottom
spectrum FB

1 (figure 26a). Note that waves coming from the west in panel b are probably
reflections from shore (at 1 km of the 8 m site).
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Figure 31. Sensitivity to the wavenumber cut-off
Predicted variations of (a) θ( fp) and (b) σθ ( fp) across the shelf for six values of the cut-off
parameter (k/l)max: ——, 5; 3, 4; ×, 3; 4, 2; +, 1; · · · · · ·, 0.5 (i.e. no Bragg scattering).
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intermediate scale bottom components (k/l = 1 to 4) appears to dominate the scattering

process (i.e. note the gradual shift of θ and increase of σθ as (k/l)max increases from 1 to

4 in figure 31). Predictions of σθ are insensitive to the bathymetry smoothing scale used in

ray computations, with a typical 2 degrees difference between model runs using the original

150 m resolution grid, and the predictions presented here using a 2 km smoothed grid.

D. SUMMARY

The energy balance equation for random surface gravity waves, including Bragg

scattering (the lowest order resonant interactions between waves and bottom undulations),

was re-derived for non-stationary conditions and multiple-scale bottom topography, com-

bining Hasselmann’s (1962) perturbation expansion of the wave energy, with a ray approx-

imation for medium variations. The bottom topography is decomposed in a large scale

topography, responsible for wave refraction and shoaling, and random undulations with

smaller wavelengths (of the order of the surface wavelength), that cause Bragg scattering.

The effects of the large-scale and small-scale bottom slopes, surface non-linearity, wave

non-stationarity and non-uniformity are represented by five small parameters, β, η, ε, α,

and γ, respectively. Using α ≈ β ≈ γ ≈ η2 ≈ ε2, a closure of the fourth order energy yields

a spectral energy balance equation in which refraction, shoaling, and Bragg scattering pro-

cesses are all of the same order ε4.

The stochastic scattering theory was reconciled with a spectral application of deter-

ministic theories for waves propagating over sinusoidal bars (Davies & Heathershaw, 1984;

Mei, 1985; Dalrymple & Kirby, 1986). Agreement of the theories in the asymptotic limit of

a large number of bars supports the present derivation of the Bragg scattering source term

(III.48) which is a factor 8 and 4 smaller than expressions given by Hasselmann (1966)

and Long (1973), respectively. Analysis of the detuning of wave-bottom interactions by

the large scale bottom slope β shows that the present theory is valid only for small values

of β/cos3 θ, where θ is the wave incidence direction relative to the bedform-normal. In

the present application, wave-bottom interactions corresponding to θ larger than a cut-off

value θmax are neglected.
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The effect of bottom scattering on swell propagation was illustrated with a hindcast

for the North Carolina continental shelf using the numerical wave model CREST with high

resolution bathymetry and an efficient implicit scheme to evaluate the bottom scattering

contribution to the energy balance. Back-scattering of waves towards the open ocean was

found to be negligible in this region. However, forward scattering causes a diffusion of

wave energy about the mean direction that results in a dramatic increase of the directional

spread of the wave spectrum on the inner shelf. This weak back-scattering and strong

forward scattering is caused by the sharp roll-off of the bottom elevation spectrum at high

wavenumbers. The directional broadening of the swell spectrum predicted in shallow water

is qualitatively consistent with field measurements.
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IV. OBSERVATIONS OF WAVE-GENERATED
RIPPLES

This chapter was submitted for publication, with part of chapter I, in the Journal

of Geophysical Research (Ardhuin, Drake & Herbers, submitted manuscript). It describes

observation of bedforms in relation to wave measurements.

A. EXPERIMENT

Wave, bedform and sediment data were collected off the coast of Duck, North Car-

olina, from September to December 1999, as part of the SHOaling Waves EXperiment

(SHOWEX) a multi-institution effort to improve the understanding of the transformation

of waves in shallow water. The experiment site is a wide sandy continental shelf, exposed

to North Atlantic swells. The bottom slopes gently from 20 m depth, 5 km from shore, to 40

m, over a distance of 60 km (figure 32), and is characterized by the presence of sand ridges

with spacings and heights ranging from about 1–10 km and 1–10 m, respectively (Green,

1986; Wright, 1995; figure 25). The larger-scale ridges are oriented along a south-north

axis (figure 32).

Six Datawell Directional Waverider buoys, named X1 to X6, were deployed from

September 13 to December 13, 1999, along a cross-shelf transect. Buoys X1 through X5

span the shelf from 21 m to 39 m depth, and buoy X6 was located on the shelf break in 193

m depth. Wave frequency spectra and directional moments (mean propagation direction and

directional spread) as functions of frequency were computed internally by the buoys at 30

minute intervals, and transmitted continuously to shore by buoys X1 to X4 using HF radio.

Buoys X5 and X6, situated farther offshore, were equipped with internal data loggers. The

significant wave height H1/3 (four times the root-mean-square surface displacement) and

spectral peak frequency fp observed at X1 and X3 are shown in figure 33 for energetic

periods preceding three cruises when side-scan sonar images of the bottom were acquired.

Figure 33 also displays the mean wave direction θE ( f ), defined as the direction of the first
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Figure 32. Topography and SHOWEX sidescan sonar surveys
Squares numbered X1 to X6 indicate the positions of Directional Waverider Buoys
deployed during SHOWEX, the large filled circle indicates the National Data Buoy
Center buoy 44014, and the + symbol indicates the Field Research Facility 8 m depth
pressure sensor array (8M). Solid lines represent ship tracks for the sidescan sonar
surveys, and triangles indicate the locations where surficial sediments were sampled.

96



               
Days (September 1999)

0

1

2

3

4

5

6

7

H
1/

3 
(m

)

 1  2  3  4  5  6  7  8  9 1011121314

Fig 2

             
Days (September 1999)

 

 

 

 

 

 

 

 

151617181920212223242526               
Days (December 1999)

 

 

 

 

 

 

 

 

 1  2  3  4  5  6  7  8  9 10111213

a

               
0

30

60

90

120

150

180

θ E
(f

p)
 (

fr
om

, d
eg

re
es

)

 1  2  3  4  5  6  7  8  9 1011121314              
 

 

 

 

 

 

 

151617181920212223242526               
 

 

 

 

 

 

 

 1  2  3  4  5  6  7  8  9 10111213

             
 

 

 

 

 

151617181920212223242526               
 

 

 

 

 

 1  2  3  4  5  6  7  8  9 10111213               
0.05

0.10

0.15

0.20

0.25

f p
 (

H
z)

 1  2  3  4  5  6  7  8  9 1011121314

b

c

S1 S2 S3

H. Dennis

H. Floyd

H. Gert

8M

44014

X1

X3

X1

X3

<θ   >r 

Figure 33. SHOWEX observed wave conditions and ripples
(a) Evolution of significant wave height H1/3, (b) mean wave direction at the peak
frequency θE (fp), and (c) peak frequency fp. Observed are shown at buoys X1 (solid)
and X3 (dotted), spanning the inner shelf. Before survey S1 (conducted during the
buoys deployment), data from 8M and 44014 are shown. During Hurricane Dennis
θE (fp) is estimated to be 0–10o larger than θE (fp) measured at 8M, owing to refrac-
tion. For each survey the average of crest-normal ripple directions θr observed in the
vicinity of X1 is indicated with a solid horizontal bar. The dashed bar indicates more
southerly average θr of ripples observed close to X3 during S2.
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moment vector of the frequency directional surface elevation spectrum E ( f ,θ)

(a1 ( f ) ,b1 ( f )) =
∫ 2π

0
(cosθ,sinθ)E ( f ,θ)dθ (IV.1)

The large, long-period waves (peak frequencies ranging from 0.06 to 0.08 Hz) originated

from three category 4 hurricanes: Dennis looped offshore of the buoy transect (August 29 –

September 5) before coming ashore farther south, Floyd swept through the region, with the

eye passing a few tens of kilometers inland on September 15, and Gert remained more than

1200 km away from the experiment site, sending swell along the buoy transect (September

20 to 23). The month of December was marked by a strong northeaster (December 1 and 2).

The observed strong attenuation of wave energy between X3 and X1, particularly for low

frequency waves when H1/3 is in the range 1–2 m, is consistent with previous observations

and the large bottom roughness predicted for wave-formed ripples (Herbers et al., 2000;

Ardhuin et al., 2001).

Bedforms were surveyed with an EG&G model DF1000 side-scan sonar, towed

from the R.V. Cape Hatteras at night during cruises for buoy deployment, maintenance,

and recovery. The first survey (S1) took place between the passages of hurricanes Dennis

and Floyd from September 10 to 13. A second survey (S2) was conducted two weeks

later (September 24–26), after swells from Gert and a coincident Northeasterly wind sea,

had subsided. Repeating most of the tracks from survey S1, the objective of S2 was an

assessment of changes in bedforms after hurricanes Floyd and Gert. The final survey (S3)

took place as buoys were being recovered (December 12–15), after a series of northeasters.

The same tracks were repeated again, and a few additional regions were surveyed (all ship

survey tracks for S3 are shown in figure 32).

The dual frequency sonar (100 and 500 kHz), was towed 2–3 m above the bottom

in the shallower regions and 10–15 m in regions deeper than 30 m, at a speed of about

2.3 m s−1. The 100 kHz frequency was used throughout for larger area coverage, at the

expense of poorer resolution. All back-scatter sonograms, covering a 100-m wide swath

along a total track length of 420 km were both recorded in a digital format and printed

on paper scrolls. In selected regions where ripples were clearly visible, the digital data
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Figure 34. Example grain size distributions
A typical distribution (solid thick), and the distributions with the finest (asterisks) and
coarsest (triangles) sediments are shown.

was transformed into GEO-TIFF mosaics, fully corrected for slant range and speed, with

a resolution of 5 or 10 pixels per meter. Surficial sediments were collected with a Shipek

grab (46 samples), and by divers (5 samples), at locations indicated in figure 32.

B. SURFICIAL SEDIMENTS

The continental shelf between Cape Hatteras and the entrance to the Chesapeake

Bay (Cape Henry) is believed to be covered by fine quartz sand (Milliman et al., 1972;

Swift and Sears, 1974), with occasional coarser sands and gravel in fluvial paleochannels

flooded by Holocene sea-level rise (Swift et al., 1972). The Albemarle river paleochannel

coincides with the buoy transect (figure 32). Very fine sands with a silt and clay content of

10 to 26% are found between 8 and 18 m depth (Field et al., 1979; Wright, 1993; Madsen

et al., 1993), their origin can be traced to old lagoonal deposits (Wright, 1995).

The samples gathered during the three cruises confirm this pattern. Most samples

consisted of fine sand with a median diameter D50 of about 0.2 mm (figure 34). Samples

occasionally contained shell hash, particularly around X1 (figure 32). Grain sizes at neigh-
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boring sample sites can be significantly different (figure 35a, suggesting strong variability

of sediment properties on scales less than a few kilometers, in particular on the inner shelf

between X1 and X2. For example, the finest sand (D50 = 0.09 mm, asterisks in figure

34) was found offshore of the Field Research Facility pier in 12 m depth, and the coarsest

sample, a mixture of sand and small gravel with D50 = 4 mm (triangles in figure 34), was

found in the vicinity of X1, in 19 m depth. All samples taken near X2 were fine–medium

sand, except for one coarse sample collected by divers within 300 m of X2 that contained

pebbles several centimeters in diameter.

The variability of sediment properties also is evident in the side-scan sonograms.

For the range of grain sizes found in the samples, a stronger reflectivity (dark shades in

the sonograms) usually corresponds to coarser sands. A large portion of the regions sur-

veyed between X1 and X2 show alternating light and dark bands (the coarsest sand found

in the samples came from one of these dark bands), a few hundred meters wide, with sharp

transitions (e.g. figure 37a, discussed below). Offshore of X2 some dark bands are still

present, although they contrast less with their lighter surroundings. This alternating pattern

is similar to the one found by Green (1986) in a side-scan sonar survey conducted in 1984,

6 km south of X1. Green (1986) identified dark bands lying in the troughs between ridges

oriented north-south (with approximate heights and spacings of 5 and 500 m, respectively)

as the pre-Holocene ‘basement’ underlying the finer Holocene sand ridges. In the surveys

presented here the dark regions also correspond to relatively low-lying areas, at least in-

shore of X3 where high-resolution multibeam sonar surveys were conducted in December

1999 (submitted manuscript).

C. SIDESCAN SONAR IMAGES OF BEDFORMS

In addition to qualitative information on sediment grain sizes, the sidescan sonar

images document the presence and characteristics of bedform patterns. A qualitative in-

spection of the entire sonar data set for the three surveys (figure 35c–e) reveals the predom-

inance of long-crested ripples with wavelengths between 0.4 and 3 m, and crests approxi-

mately parallel to the coastline, consistent with the scales and orientation of vortex ripples
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Figure 35. Spatial variations of D50 and ripple coverage
(a) Geographical distribution of the median grain size D50, (b) depth profile along the
instrumented transect, and (c,d,e) fraction of sonar surveyed regions visibly covered by
ripples for surveys S1, S2 and S3, respectively.
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formed by large low-frequency surface gravity waves propagating across the shelf. In cross-

shore surveys ripple marks are generally faint or absent, probably because the alongshore

orientation of the sonar beams (perpendicular to the ship track) was at a grazing angle rela-

tive to the ripple crests, usually oriented alongshore. Images from part of the surveys were

blurred by excessive wave-induced towfish motion. In regions where ripples were not de-

tected, the bottom may be smooth, as a result of the shallow nature of the sediment cover or

some other unknown phenomenon, or the bottom may be covered with ripples that are too

small to be resolved. For example at a site in 12 m depth high-resolution mapping instru-

ments located on a bottom-mounted frame show the presence of short wavelength (10–20

cm) ripples (T. Stanton, Naval Postgraduate School, personal communication, 2000) in

fine sediments (D50 = 0.09 mm, asterisks in figure 34) that were not resolved in the sides-

can sonar surveys. The absence of ripples in alongshore ship tracks usually correspond to

regions with finer surficial sediments. Assuming that vortex ripples, for which the wave-

length scales with the near-bed wave orbital diameter, are formed by wave action during

a storm and become relic when the near-bed velocity decreases, ripples generated on finer

sand are ‘frozen’ later, when the waves are smaller, and thus are expected to have shorter

wavelengths (i.e. not resolved by the sonar) than ripples in coarse sand. A quantitative

analysis was performed for surveyed regions with clearly visible bedforms and relatively

uniform bedform geometry and sound reflectivity. For each region a representative 100 m

by 100 m image was processed. In some cases with faint ripples a smaller image with clear

ripple crests was analyzed. Although spectral analysis is well suited to characterize reg-

ular ripples, bidimensional variance spectra computed from sonar images exhibit multiple

peaks in many cases, either as the result of excessive sidescan towfish motions (along-track

modulations of ripple patterns on the sonar images), or because of the presence of many

defects in the ripple patterns. Therefore a different procedure was used that is less sensitive

to ripple defects and image artifacts (figure 36). For each image, after subtracting a piece-

wise bilinear fit to the pixel values, we computed the zero-crossing contours of the image

intensity, and formed a histogram of the contour length as a function of its orientation, at

one degree intervals, using the trigonometric (right-handed) convention.
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Figure 36. Extraction of ripple parameters from sidescan images
(a, b, c) example images from the sites where samples 111, 114 and 207 were collected
(see table I), (d, e, f) corresponding zero-crossing contours with an indication of
the mean crest orientation θc (thick dashed line), and (g,h,i), histogram of contour
direction with fitted cosine distribution (thick dashed line).

103



A function p(θ) = a0 + a2 cos [2(θ−θc)] was fitted to this histogram in a least-

squares sense, and θc was interpreted as the mean orientation of the ripple crests. The ratio

a2/a0 gives an indication of the presence, long-crestedness, and regularity of ripples. For

high contrast ripples with long crests and few pattern defects a2/a0 > 1 (e.g. figure 36a,b).

For faint ripples or ripples with short or brick-patterned crests a2/a0 < 0.5. An example

of marginally detectable and non-uniform ripples, with a2/a0 = 0.8, in shown in figure

36c. Once θc was determined, standard one-dimensional Fourier spectra were computed

for east-west image lines (usually within 30o of the crest-normal direction). The spectra

were then averaged over all lines, and the peak wavenumber kp was determined. The

average wavelength of the ripples λ was then taken to be 2πsinθc/kp, and the crest-normal

direction, using the (left-handed) nautical convention, was given by θr = 180(1−θc/π).

In cases with a2/a0 < 0.4, this procedure failed to determine θr and λ unambiguously, and

the bed was presumed featureless.

In most images with visible ripples the dominant bedforms are regular long-crested

ripples with an apparently sinusoidal profile (figure 36). Spatial variations observed in the

backscatter sonar intensity and ripple patterns are the result of non-uniformities in sediment

properties (e.g. variations in grain size (figure 37a) or small-scale (unresolved) ripples or

both. A few regions reveal intricate bedform patterns with second harmonic ripples (figure

37b) that may be the result of decreasing wave forcing conditions. Earlier observations

and numerical modeling studies have shown that when the mean wave direction is con-

stant, ripple wavelengths gradually increase with increasing wave orbital diameter d1/3,

but the converse is not true: when d1/3 decreases the ripple wavelengths typically remain

unchanged. For decreasing d1/3, if the Shields number threshold for sediment motion is still

exceeded, secondary ripple crests may appear in the troughs, reducing the wavelength by

half (Forel, 1894; Traykovski et al., 1999; Andersen, 1999). Other ripple patterns include

superpositions of two ripple systems (e.g. figure 37c,d) similar to previous observations

(e.g. Forel, 1894; Swift et al., 1972). As discussed below, these patterns are likely caused

by successive wave events with different wave directions. The wavelengths in some of

these ripple systems can be as large as 4 m, of the order of the wavelengths of long-crested
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c d

Figure 37. Examples of unusual ripple patterns
(a) sharp transition in sediment properties, (b) second harmonic ripples, and (c and
d) superposition of ripple patterns (see text).
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c  
S3, December 13−14

a  
S1, September 13−15

b  
S2, September 24−26

Figure 38. Time evolution of ripple directions and wavelengths
(a) for survey S1, (b) S2, and (c) S3. The thick bars indicate the crest-normal ripple di-
rection θr and the ripple wavelength λ with a scale given in the upper right corner of each
panel. Each bar is drawn in the middle of the survey segment for which the ripple param-
eters are representative. The colors along the survey line indicate the average back-scatter
strength of the sidescan sonar images: red is strong (generally coarse sand) and blue is
weak (generally very fine sand). Surveyed regions without a bar indicate the absence of
ripples or a failure of the analysis procedure to determine θr and λ.

features observed in this region and called ‘megaripples’ by Green (1986). The variety of

observed bedform patterns underscores the important effects of past bedform evolution on

their present state in the relatively mild forcing conditions prevalent during these surveys.

Temporal changes in ripple direction θr and wavelength λ are examined in figure

38 using repeated survey track lines close to X1. All surveys reveal widespread ripple

coverage with typical wavelengths λ of 0.5–2 m, and ripple crest-normal directions θr

between 60 and 120o (shore-normal is 70o). Changes observed between surveys S1 and S2

(figure 38a,b) are small, with a slight shift of the average value of θr from 91o to 85o. A
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larger change in ripple orientation is observed in S3 with an average θr of 73o (figure 38c).

This observed change in bedforms is related to a change in wave conditions, from

hurricane-generated waves from east to south-east propagation directions in September, to

northeasterly waves in December. The average values of θr in surveys S1, S2 and S3 (indi-

cated by thick horizontal bars in figure 33) correspond to the wave directions of preceding

large wave events on September 4–5 (Hurricane Dennis), September (22–23) (Hurricane

Gert), and December 1–2 (northeaster), suggesting that the observed ripples were formed

in these periods. The large oblique ripples observed in S2 (λ = 2.0 m, θr = 105o) and

S3 (λ = 2.0 m, θr = 132o) close to the northern end of the surveyed region are notable

exceptions. The corresponding sidescan image of the anomalous ripples in S2, shown in

figure 37c, indicates that the estimated λ and θr are averages of two superposed ripple sys-

tems: λ = 2.0 m, θr = 120o, probably generated during the passage of Hurricane Floyd, and

λ = 0.8 m, θr = 85o probably generated during the arrival of swell from Hurricane Gert.

Within 200 m of these ripples, a similar but smaller patch of large ripples was observed in

survey S3 (figure 38c) with a more oblique angle θr = 132o that does not match the wave

directions of any energetic wave event observed during the three months between surveys

S2 and S3 that would be capable of moving bottom sediments in that region, suggesting

that these ripples also were formed during Floyd and persisted throughout the experiment.

Spatial variations in θr and λ across the shelf during survey S2 are shown in fig-

ure 39. Observations on the middle and outer shelf show more southerly θr angles than

observations on the inner shelf (figures 39b,c and 39a). Some spatial variation of ripple

directions is expected associated with the refraction of the swell that probably generated

the bedforms. However, observed differences in wave direction θE between X3 and X1 are

small compared with the 15o difference between the average θr around X3 and X1. Tempo-

ral changes of the wave forcing conditions also may have contributed to the θr variations.

In deeper regions where the wave motion is more attenuated over the water column, ripples

may have become relic at an earlier stage when the swell was more energetic and arrived

from a more southerly angle (figure 33a,b). Indeed the average θr values of 100o and 85o

near X3 and X1, respectively (dashed and solid horizontal bars in figure 33b), are close to

107



1 m

     15.00‘ 14.00‘ 13.00‘ 12.00‘ 11.00‘
Longitude (75ºW)

68 69 70 71 72 73
x (km)

 

 

 

 

 9.00‘

10.00‘

11.00‘

12.00‘

La
tit

ud
e 

(3
6º

N
)

184

186

188

190

y 
(k

m
)

1 m

 X3

    33.00‘ 32.00‘ 31.00‘ 30.00‘
Longitude (75ºW)

40 41 42 43 44 45
x (km)

 

 

 

 

 

10.00‘

11.00‘

12.00‘

13.00‘

14.00‘

La
tit

ud
e 

(3
6º

N
)

184

186

188

190

192

194

y 
(k

m
)

1 m

 X1

     42.00‘ 41.50‘ 41.00‘ 40.50‘ 40.00‘
Longitude (75ºW)

27 28 29 30
x (km)

 

 

 

 

13.00‘

14.00‘

15.00‘

16.00‘

La
tit

ud
e 

(3
6º

N
)

190

191

192

193

194

195

196

y 
(k

m
)

Fig 8

c

a
b inner shelf

middle shelf
outer shelf

Figure 39. Cross-shelf distribution of ripple directions and wavelengths
Same as figure 38, for survey S2 only, at different locations across the shelf.

mean wave directions on September 22 and 23, respectively. Large variations of θr and λ

also are observed over much shorter distances, with estimates varying by as much as 30o

and a factor 2, respectively, within 1 km. These differences are caused primarily by the

superposition of ripple patterns (figures 39b and 39c), some of which are barely resolved

in our images. The relation between observed ripple geometry and changing wave forcing

conditions is analyzed in the next section.

D. EVALUATION OF RIPPLE PARAMETERIZATIONS

Bedforms observed in the sonar images usually are not related to the instantaneous

wave forcing (surveys were performed in relatively calm conditions), but are the result of

earlier wave events that were sufficiently energetic to move the sediments. Here, the ripple

properties observed in surveys S2 and S3 are compared with the wave forcing history es-

timated at the nearest buoy. Neglecting variations in the wave forcing conditions over the

1–5 km distance separating the locations of the wave and ripple measurements, we com-

puted a ‘significant’ Shields number ψ1/3 from (I.4), using a range of D50 values for the

grain size, and u1/3 defined as two times the root-mean-square velocity near the sea bed,

determined from the surface elevation frequency spectrum with linear wave theory. The
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skin friction factor f ′w was obtained with Grant and Madsen’s (1979, 1982) parameteriza-

tion, based on a linear profile of the eddy viscosity (see also the review by Tolman, 1994).

We assumed a threshold of ripple formation ψ1/3 = ψc (Traykovski et al., 1999), where ψc

is the threshold of sediment motion under sinusoidal waves. Madsen and Grant (1976) give

a review of values of ψc determined experimentally for well-sorted sand. Here we use a

piece-wise fit to the experimental data of Wallbridge et al. (1999) for mixed sands under

combined wave-current flow, that we apply to the median grain size,

ψc = 0.1exp [(S∗−2) ln(0.35)/10] for 2 < S∗ < 12, (IV.2)

S∗ = D50 [(s−1)gD50]
1
2 /(4ν) , (IV.3)

where ν is the kinematic viscosity of water. These values of ψc are slightly larger than

those given by Shields (1936) or Soulsby and Whitehouse (1997) for unidirectional and

combined wave-current flows (about 30 % larger in the range 3 < S∗ < 12), but follow the

same trend, decreasing with increasing grain size. Based on these assumptions, all but the

coarsest surficial sediments have moved on 22 September, and during the 1–2 December

northeaster, after which ripples became relic and remained unchanged until surveys S2 and

S3, respectively (figure 40a).

The interpretation of survey S2 is complicated by cross seas observed on September

22 (when the wave height was maximum). Different definitions of a representative wave

forcing direction yield different ripple predictions depending on the relative importance

they give to motions with higher and lower frequencies. Here the bulk mean directions of

the near-bed orbital velocity θu and displacement θd are defined as the directions of the first

spectral moment vectors are defined as

(au,bu) =
∫

2π f

sinh2 (kH)

∫ 2π

0
(cosθ,sinθ) E ( f ,θ)dθd f , (IV.4)

(ad,bd) =
∫

1

sinh2 (kH)

∫ 2π

0
(cosθ,sinθ) E ( f ,θ)dθd f , (IV.5)

where the angle θ is defined with the nautical convention. The superposition of a local

wind sea traveling at right angles to swell from Hurricane Gert caused θu to veer to the

north from 85 to 50o and then back to the east, whereas θd shifted gradually from 95 to 70o
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Figure 40. Wave forcing conditions during ripple formation
(a) ψ1/3/ψc computed at X1 using the full wave spectrum and various values of the median
grain size D50. (b) Corresponding values of the mean direction of the orbital displacements
at the top of the wave bottom boundary layer θd. For the complex September 22–23 wave
conditions the mean direction of the near-bed orbital velocity θu is also indicated, as well
as θd estimates for swell (0.05–0.11 Hz) and wind sea (0.11–0.25 Hz) only. (c) Corre-
sponding values of predicted ripple wavelength 0.7d1/3 for vortex ripples, where d1/3 is
the significant diameter of the orbital displacement at the top of the wave bottom boundary
layer. The gray band in (b,c) represent the mean value of the crest-normal ripple direction
θr and wavelength λ, respectively, plus or minus one standard deviation, observed in the
vicinity of X1 (figure 38b,c).
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(figure 40b). Although the high frequency seas contributed significantly to the near-bed

velocity variance and Shields number ψ1/3 (equal contributions from the 0.05–0.11 and

0.11–0.25 Hz frequency ranges when ψ1/3 is maximum), the orbital displacement direc-

tion θd remained aligned with the lower frequency swell. Observed ripple crest-normal

directions θr are closer to θd than θu at possible freezing times (ψ1/3 ' ψc, figure 40a).

These observations suggest that the mean direction of the orbital displacement θd, which

is less influenced by high frequency (wind sea) motion, may describe better the relation

between wave direction and ripple orientation (figure 40b). The ψ1/3 = ψc ripple freezing

threshold yields values of θd that are still 5-10o to the south of θr. Several factors may

contribute to this difference: a reorientation of the ripple pattern may require a larger forc-

ing (ψ1/3) than the initiation of sediment motion (ψc) (Werner & Kocurek, 1997), the time

of adjustment of the bedforms in conditions close to the threshold may be larger than the

time scale of the wave height decrease, θr may not be simply related to θd, or the values

of ψc are not well predicted by (IV.2)–(IV.3). Such ‘early freezing’ of ripples in conditions

of decreasing forcing also was observed by Traykovski et al.(1999) with frozen bedform

patterns occurring for ψ1/3 as large as 2ψc . Although the exact threshold for the cessa-

tion of ripples evolution is uncertain, the wavelength λ are generally close to 0.7d1/3 when

ψc < ψ1/3 < 3ψc for representative grain sizes (figure 40a,c), suggesting that the observed

ripples are probably of the ‘vortex ripple’ type, similar to those observed by Traykovski

et al.(1999).

Analysis of bedforms at sites that coincide with the location of sediment samples

shows that the ratio λ/D50 varies from 300 to 8100 (table I), extending the range of previ-

ously observed values (Wiberg & Harris, 1994), in particular for vortex ripples. Crude

estimates of active ripple forcing conditions can be obtained from the preceding wave

records by determining the most recent time when ripples and wave crests were aligned

(|θd −θr| < 5o), while surficial sediments were still in motion (assuming ψ1/3 > 0.8ψc).

This analysis gives values of ψ1/3/ψc between 0.9 and 3.5, and values of λ/d1/3 from 0.5 to

0.76 (table I). Although these estimates have a large uncertainty and should be considered

with caution, they are consistent with accurate measurements by Traykovski et al.(1999)
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Sample number 111 110 114 11 207 212 206 205
Nearest buoy X1 X1 X1 X1 X3 X3 X3 X3

Depth (m) 22.3 19.7 20.7 21.2 22.7 27.6 26.3 27.4
D50 (mm) 4.71 0.98 0.32 0.15 0.28 0.19 0.17 0.15
D85 (mm) 7.30 2.29 0.48 0.28 0.68 0.28 0.25 0.24

θr 94◦ 85◦ 80◦ 88◦ 101◦ 99◦ n.a. n.a.
λ (m) 1.25 1.20 0.77 1.22 1.30 1.37 n.a. n.a.

d1/3 (m) 2.55 1.85 1.34 1.60 2.73 2.34 n.a. n.a.
u1/3 (m s−1) 0.58 0.48 0.37 0.42 0.67 0.55 n.a. n.a.

ψ1/3/ψc 0.90 2.00 1.33 3.54 3.4 3.0 n.a. n.a.
ws/u1/3 0.50 0.25 0.10 0.03 0.08 0.04 n.a. n.a.
λ/d1/3 0.49 0.65 0.58 0.76 0.48 0.59 n.a. n.a.

d1/3/D50 540 1900 4200 10700 9800 12300 n.a. n.a.
λ/D50 270 1200 2400 8133 4600 7200 n.a. n.a.

Table I. Ripples at sites of sediment sample collection
The forcing conditions (orbital diameter d1/3 and corresponding velocity and Shields num-
ber) at the time of ripple ‘freezing’ were crudely determined by matching the bottom orbital
displacement direction θd at the nearest buoy to the direction normal to the ripple crests θr

(see text).

who observed that λ is close to 0.76d1/3 under moderate forcing conditions. These esti-

mates are also qualitatively consistent with the values of λ/d predicted in numerical simu-

lations with sinusoidal waves (Andersen, 1999). However there is no clear increase of λ/d

with the normalized fall velocity ws/u.

Estimates of ripple direction θr and wavelength λ in surveys S2 and S3 are sum-

marized in figure 41 for the region around X1. The observations in S2 show a clear trend

of increasing wavelength corresponding to more southerly angles (figure 41a). This trend

is consistent with the freezing of the largest ripples shortly after the peak of the event

(September 22), and a later freezing in finer sediments where the ripple patterns gradually

adjusted to the more northerly angles, and small orbital diameters of the waves observed

on September 23. Observations in S3 (figure 41b) do not indicate a clear relation between

θr and λ, possibly because the wave direction remained steady when the storm subsided

on December 2. However, with the exception of apparent ‘Floyd survivors’ (θr = 132o,

λ = 2 m), the longer ripples (λ > 1.5 m) in S3 consistently have crest-normal directions at
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Figure 41. Ripple wavelength λ versus crest-normal ripple direction θr

λ versus θr for ripples observed on the inner shelf in (a) survey S2 (figure 38b), and (b)
survey S3 (figure 38c).
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large northerly angles (60o < θr < 75o), suggesting they became relic on December 1 and

early December 2 when wave directions were similar, and the orbital diameter d1/3 was

maximum.

E. SUMMARY AND DISCUSSION

Widespread formation and evolution of sand ripples on the North Carolina conti-

nental shelf, observed in side-scan sonar surveys, were examined in relation to time-series

of directional wave measurements. Sediment samples confirm the ubiquitous presence of

very fine to fine quartz-dominated sand, with significant variability in the grain sizes over

distances less than 1 km, in particular in regions shallower than 25 m. Side-scan sonar sur-

veys reveal the presence of ripples in most surveyed areas, with wavelengths between 0.5

and 3 m, and crest-normal directions within 30 degrees of the west-east axis. The apparent

absence of any bedforms in some regions with finer sediments may be caused by their close

spacing (less than 40 cm) not resolved by the sonar images.

The ripple crest-normal directions θr are aligned approximately with the direction

of the near-bed orbital displacement θd when the ripples became relic. Although the precise

time of cessation of sediment motion is uncertain, estimated ripple wavelengths λ and

forcing conditions (the orbital diameter d1/3) are consistent with previous observations of

vortex ripples (λ/d1/3 ' 0.5–0.76), even for large values of d1/3/D50 and λ/D50.

The present observations extend the range of previous field observations of vortex

ripples (e.g. Traykovski et al., 1999) to larger adimensional orbital diameters d1/3/D50,

but equally moderate Shields numbers 1 < ψ1/3/ψc < 3, for which similar vortex ripples

(λ/d ≈ 0.8 with λ/D50 up to 2×104) have been observed in the laboratory (Southard et al.,

1990). Both the present observations and these earlier laboratory and field studies do not

support parameterizations of the ripples based on the grain size only (e.g. Wiberg & Har-

ris, 1994), but rather support a need for more complete parameterization of the physical

processes responsible for ripple formation, including a dependence of ripples character-

istics on the Shields number and possibly the sediment fall velocity (e.g. Nielsen, 1981;

Andersen & Fredsøe, 1999).
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The widespread presence of vortex ripples on the continental shelf lends support

for a dominant role of these rough bedforms in the strong attenuation of swells observed

in this and other coastal experiments, during periods of moderate to strong wave forcing

conditions (Hasselmann et al., 1973; Young and Gorman, 1995; Herbers et al., 2000), when

ripples should be generated (Ardhuin et al., 2001).
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V. VALIDATION OF THE ENERGY BALANCE
EQUATION

A. INTRODUCTION

As described in chapter I many processes affect the evolution of gravity waves

propagating at the surface of oceans, marginal seas or lakes, particularly in shallow water.

Winds directly force the high frequency (‘wind sea’) part of the wave spectrum, actively

generating waves with phase speeds slower than the wind speed, and a large fraction of this

energy input is immediately lost through wave breaking (whitecaps). The low-frequency

(‘swell’) part, with larger phase speeds, is influenced by local winds indirectly through non-

linear wave-wave interactions. In water shallower than the surface wavelength additional

wave-bottom interactions become important. As local winds dominate the wave climate in

marginal seas such as the North Sea, investigations of the spectral energy balance of waves

often have to deal with the full complexity of air-sea-bottom interactions (e.g. Bouws and

Komen, 1983; Weber, 1988; Johnson and Kofoed-Hansen, 2000). However, outside the

surf zone and in the absence of a wind-sea or strong currents, the steepness of swell is gen-

erally too small to induce wave breaking, and the propagation distances across continental

shelves are typically too short for significant nonlinear transfers of energy in the spectrum.

Hence swell transformation across the shelf is a much simpler problem controlled primarily

by wave-bottom interactions, and thus more tractable. Nevertheless, few studies of swell

evolution in shallow water have been presented (e.g. Hasselmann et al., 1973; Young and

Gorman, 1995; Herbers et al., 2000; chapter II).

Swell is modified by a wide range of bottom topography and roughness scales, from

the large scales (1–10 km) causing refraction and shoaling, and intermediate scales respon-

sible for wave-bottom Bragg scattering, to small scales (0.1–10 m) enhancing the bottom

roughness and wave energy dissipation, (figure 2). In earlier chapters a process-based ap-

proach was used to estimate the dissipation of wave energy across the shelf (chapter II),

related to the widely observed formation of sand ripples under waves (chapter IV), and to

evaluate numerically the directional diffusion of waves, predicted by Bragg scattering the-
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ory for random waves and irregular topography (chapter III). Here we propose to combine

these processes in general swell cases, and test the closure of the spectral energy balance

of swell with hindcasts of all swell-dominated periods observed during the experiments

DUCK94 and SHOWEX. A comprehensive statistical analysis of the results is presented to

evaluate different source term formulations. This work will hopefully lead to more accu-

rate operational swell forecasts on open ocean coastlines, and is a first step towards closing

the energy balance in more complex cases with wind forcing. An expanded version of the

present chapter will be submitted as a two-part paper to the Journal of Physical Oceanog-

raphy (co-authors: T. H. C. Herbers, P. F. Jessen, and W. C. O’Reilly).

We propose to test the following energy balance equation for the evolution of swell

spectra
dE (k)

dt
= Sfric (k)+SBragg (k) , (V.1)

where E is the wave energy spectral density, Sfric and SBragg are source terms representing

bottom friction and wave-bottom Bragg scattering (III.48). Equation (V.1) incorporates the

combined effects of all the scales of the bottom topography on a random wave field. The

Lagrangian time derivative on the left hand side follows a wave component along its ray

trajectory predicted by linear refraction theory (e.g. Mei, 1989). For Sfric = 0 energy is con-

served and (V.1) is identical to (III.47) derived in chapter III from the equations of motion

assuming irrotational flow. Sfric , based on Tolman’s (1994) movable bed parameterization

of wave-bedform coupling over a sandy bottom, is introduced heuristically in the energy

balance as a sink term. A formal derivation of (V.1) with bottom friction may be performed

by adding a rotational motion, following the approach of Weber (1991), to the irrotational

flow determined in § III.A, but other source terms may arise as the result of the coupling

of the rotational and irrotational flows. The bottom friction source term used here is further

simplified by assuming a narrow wave spectrum (see for example Weber, 1991; Madsen,

1994).

We integrate (V.1) in time from deep water to the shore with the Coupled Rays with

Eulerian Source Terms (CREST) wave model (chapter II), and the results are compared to

wave measurements acquired during DUCK94 and SHOWEX on the North Carolina conti-
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nental shelf. The wave data collected during the experiments, and the reduction of the data

set to swell cases are described in § V.B, while the model set-up is detailed in § V.C. The

results of hindcasts are given in § V.D, in the form of a statistical analysis of all observed

swell events, followed by a discussion and summary in § V.E, where practical advice is

given for swell forecasting in shallow areas.

B. SWELL OBSERVATIONS DURING DUCK94 AND SHOWEX
1. Instruments and data analysis

During the DUCK94 (August–December 1994) and SHOWEX (September–December

1999) experiments extensive wave measurements were collected across the wide shelf of

the Mid-Atlantic Bight, in the region between Cape Hatteras and the entrance to the Chesa-

peake Bay (figure 42). Bottom mounted pressure sensors were used during DUCK94 (Her-

bers et al., 2000; chapter II), and replaced by surface-following Datawell Directional Wa-

verider buoys in SHOWEX. For the periods covered by both experiments wave data is

also available from National Data Buoy Center (NDBC) 3-m pitch and roll discus buoy

number 44014, in 49 m depth, and a coherent array of bottom pressure sensors and a Wa-

verider buoy, in 8 and 15 m depth respectively, both maintained by the US Army Corps

of Engineers Field Research Facility (FRF), in Duck, North Carolina. In addition to these

instruments, the Diamond Shoals (DSLN7) and Chesapeake Lighthouse (CHLV2) C-MAN

stations, operated by NDBC, were equipped with infrared laser wave gauges at the time

of SHOWEX. The locations of the instruments are indicated in figure 42, and their basic

characteristics are summarized in table II.

The dataset includes both directional (buoys and coherent pressure array) and non-

directional (single pressure, buoy, and laser gauges) measurements. Although some instru-

ments are ideally equivalent (e.g. directional Waveriders and 3 m discus buoys), different

sampling frequencies, record lengths, and response characteristics, introduce some vari-

ations in quality. The model-data comparisons presented in § V.D are restricted to bulk

spectral moments (significant wave height, Hs, mean direction and directional spread at

the spectral peak, θp and σθ,p) that can be reliably estimated from the short records of
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Name water depth directional data availability Operated by
8M 8.0 m yes 02/1987 – present FRF

WR(FRF) 17.0 m no 10/80 – 11/96 FRF
WR(FRF) 17.0 m yes 11/96 – present FRF

44014 49 m yes 10/90 – present NDBC
CHLV2 15 m no 9/84 – present NDBC
DSLN7 18 m no 11/88 – present NDBC

A 12 m no DUCK94 until 17/11/94 NPS
B 21 m no DUCK94 until 17/11/94 NPS
C 26 m no DUCK94 NPS
D 34 m no DUCK94 NPS
E 35 m no DUCK94 NPS
F 33 m no DUCK94 NPS
G 46 m no DUCK94 NPS
H 49 m no DUCK94 NPS
I 87 m no DUCK94 NPS

X1 21 m yes SHOWEX NPS
X2 24 m yes SHOWEX NPS
X3 26 m yes SHOWEX NPS
X4 33 m yes SHOWEX NPS
X5 39 m yes SHOWEX NPS
X6 193 m yes SHOWEX NPS

Table II. Wave-measuring instruments during DUCK94 and SHOWEX
DUCK94 covers 1/8/1994 – 30/11/1994, and SHOWEX spans 13/9/1999 – 13/12/1999.
Occasional instrument failure or maintenance causing loss of data is not indicated

routine wave measurement systems. These parameters are determined from the wave fre-

quency spectra E ( f ), and the standard lowest order Fourier moments of the directional

spectrum a1 ( f ), b1 ( f ), a2 ( f ), and b2 ( f ), computed for all directional instruments. For

the high-resolution 8M array the full frequency-directional spectra E ( f ,θ) were estimated

and offshore propagating waves were excluded from the directional moments. E ( f ,θ)

spectra also were estimated from the directional moments at X6 and/or 44014 using the

Maximum Entropy Method (Lygre & Krogstad, 1986), in order to initialize the model at

the offshore boundary. All spectra and directional parameters were interpolated on a com-

mon frequency grid, also shared by the numerical model CREST in the hindcasts described

below. These parameters were averaged over 2–3 hour periods for the DUCK94 experi-
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ment (variable length data records were collected every 3 hours), and 1 hour periods for

SHOWEX (continuous data collection). The statistical parameters computed below from

observations and model results are weighted accordingly, on an record length basis.

2. Wave conditions

The dominant wave events in the mid-Atlantic bight are generally the result of trop-

ical storms and hurricanes in the summer–early fall, that follow a curved path to the north-

west along the coast, or Northeaster storms that develop over North America and move

offshore into the North Atlantic. 1994 was a moderate hurricane season, with only one ma-

jor hurricane (Gordon, 15-19 November, figure 43) that remained for a long period in the

Atlantic, south of Cape Hatteras, causing overwash of the barrier islands, and a maximum

observed wave height of 9 m at 44014. Other significant events observed during DUCK94

were Northeaster storms (figure 44). In contrast 1999 was a very active Hurricane season in

the Atlantic. SHOWEX was delayed by a few days due to category 4 Hurricane Dennis (30

August to 5 September) causing overwash in Hatteras Island. Instruments had just been

deployed when category 4 Hurricane Floyd made landfall south of Cape Hatteras, with

maximum significant wave heights Hs of 6.75 m at 44014, 9 m at X6, and 12.5 m at NDBC

buoy 41004 (34◦30′ N, located off Charleston, S.C., and not shown), and peak frequency

fp = 0.11 Hz (at X6). A maximum sustained wind speed U19.5 = 34 m s−1 was recorded

at the end of the FRF pier. Floyd was immediately followed by Hurricane Gert (category

4) that remained far offshore, sending large amplitude swell over the shelf ( f p about 0.07

Hz, Hs up to 3 m at X6, 3.4 m at 44014). and Hurricane Irene, that crossed the Florida

peninsula from the Gulf of Mexico into the Atlantic and passed 100 km offshore of Cape

Hatteras, moving to the northeast. Hurricane Jose followed a track close to that of Gert

(figure 43), sending only small amplitude swell to the instrument sites. SHOWEX was also

marked by Northeaster storms, with a particularly severe storm on 1 December (figure 45).
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Figure 43. Tracks of North Atlantic hurricanes
The dates indicate the position of the eye of the storms (Gordon during DUCK94, Floyd,
Gert, Irene, and Jose during SHOWEX), at 12:00 EST every day, after reaching the tropical
depression stage.
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events

H. Gordon

(a) 

(b) (c) (d) 

Figure 44. Wind and wave conditions during DUCK94.
(a) Mean direction at the peak frequency fp, and (b) significant wave height, for buoy 44014
and the 8M array. Dark bands in (b) indicate swell-dominated conditions, defined here as
periods when (c) the wind speed at 19.5 m is less than 60% of the wave phase speed at
the peak frequency on the inner shelf. (d) Frequency spectrum (high densities in red, low
densities in purple, with a normalized logarithmic scale), and f p at buoy 44014.
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Figure 45. Wind and wave conditions during SHOWEX.
Same format as figure 44.
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3. Dataset reduction

In order to restrict the present analysis to swell-dominated conditions in which the

effects of wind and wave breaking can be neglected, the following criteria where applied

to select hindcast periods:

• a peak frequency fp less than 0.12 Hz (reduced to 0.10 Hz for DUCK94, to avoid
potentially large errors in the depth correction of high frequency bottom pressure)

• a maximum wind speed less than 0.6 times the linear wave phase speed at the peak
frequency C ( fp).

The latter condition was chosen to exclude low-frequency wind-waves generated on the

shelf in high wind conditions, such as the Hurricane Floyd landfall. The estimate of C ( f p)

are based on data from the Waverider buoy WR(FRF), on the inner shelf, and the wind

speed is taken as the maximum of 1-hour averaged values U19.5 measured at 19.5 m above

sea level at the end of the FRF pier (close to the 8M array) and U5 measured at 5 m above

sea level on board NDBC buoy number 44014. These instruments functioned with very few

interruptions during both experiments. Wind speeds measured at the FRF pier and 44014

are generally close, in spite of the difference in anemometer height, except for a time lag

due to the motion of the weather systems and they are expected to bracket wind speeds at 5

m height over the entire shelf. The wave phase speed estimated in 15 m depth give a lower

bound for wave speeds on the shelf. Hence these criteria are expected to yield a conserva-

tive selection of swell dominated conditions. The swell criteria were applied not only for

the selected data record, but also during the preceding 3 hours, a period that corresponds

to the propagation time of 0.08 Hz waves across the shelf. These swell-dominated time

periods (indicated in black on figures 44b,45b) are generally associated with distant storms

or the early arrival of low-frequency waves from approaching storms (figures 44d,45d).

C. HINDCASTS ORGANIZATION
1. The CREST wave model

CREST is a hybrid Eulerian-Lagrangian spectral wave model described in chapter

II, and § III.C, that uses finite frequency-direction bands, and an unstructured geographical
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grid. The spectral energy balance equation is solved in its Lagrangian form (V.1), a simple

one-dimensional advection equation, by advecting the k-space spectral densities of the

wave energy along precomputed ray trajectories, from the model domain boundary to each

point of the geographical grid. The source terms in (V.1) are determined in Eulerian form

from the spectrum at each grid point and interpolated in space and directions on the rays to

give Lagrangian source terms. For each grid point and finite band of frequency and arrival

direction at that point (V.1) is integrated in time using a first order Euler scheme (§ II.A)

with a fixed 10-minute timestep.

2. Bathymetry and model grid

In order to encompass the instrumented sites in both experiments, and allow for

oblique swell arrivals, the model domain was set to cover the North Carolina and Virginia

shelf region, extending 400 km between 34◦30′ N, south of Cape Hatteras, and 38◦ N, at the

Virginia-Maryland border on Assateague Island (figure 46). The National Ocean Service

(NOS) database of depth soundings in that region generally has a resolution better than 200

m, with finer details resolved around shoals dangerous for navigation. A large gap in this

dataset, off Duck between X2 and X5, was filled with soundings acquired during instrument

deployment, maintenance, and recovery, and dedicated cruises on board R/V Cape Hatteras,

together with multibeam sonar surveys acquired on board the Canadian hydrographic vessel

Frederick G. Creed (figures 11, 25). This composite dataset was gridded with 6” resolution

in latitude and longitude (180 and 150 m, respectively). Before computing wave rays the

bathymetry was smoothed with an isotropic tapered filter with a radius equal to 5 times

the local wavelength (adapted to the wave frequency and local water depth), in order to

remove smaller scale topographic features that are represented in a stochastic form in the

wave-bottom Bragg scattering source term (see § III.B.4). The unstructured model grid

was constructed starting from the instrument positions. Points were added along the 8, 15,

20, 25, 30, 40, 60 ,100, and 1500 m isobaths, increasing spacings away from the coast

and away from the instrumented transects. This ensemble of points was complemented by

gradually introducing points at the centers of the corresponding Delaunay triangles, until
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Figure 46. Model grid.
The grid points from which rays are computed and where the source terms are evaluated
are the nodes of the triangular mesh. A linear interpolation is applied in each triangle to
approximate the source terms along the rays. The entire model domain is divided into
subdomains, numbered 1 through 9, separated by thicker lines. The locations of some
instruments are added for geographical reference, and a dotted line marks the 100 m depth
contour.
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all sides of these triangles were shorter than 2 to 20 km (depending on the water depth

and the alongshore location). The model uses 29 frequency bands from 0.05 to 0.15 Hz,

and 76 direction bands regularly spaced at 5-degree intervals. For each of these finite

bands, bundles of rays were traced from all grid points. The grid was subdivided into nine

subdomains (numbered 1 to 9 on figure 6) coupled at their mutual boundaries, where the

ray computations are stopped, as described in § II.A.1.

3. Boundary conditions

At the external boundaries bordering domains 1 (land), 2 (offshore), 3 and 4 (north

and south model limits) the following conditions were applied. The offshore frequency-

direction wave spectrum is interpolated from the MEM-estimated spectra at X6 and 44014

(back-refracted to deep water, assuming parallel bottom contours). To examine the sen-

sitivity to offshore boundary conditions, results are also presented using only X6 data.

Although the offshore conditions generally varied slowly on time scales of several hours,

the deep water spectra are computed at 10-minute intervals, in order to match the model

time step ∆t, using a linear interpolation. Time lags based on the deep water group speed

of linear waves are applied between the boundary grid points and the measurement loca-

tion for each frequency-directional band, assuming uniform conditions along wave crests.

This procedure was also used for the lateral boundary conditions (between subdomains 4

and 8, 9 and 3, see figure 46), crudely accounting for refraction of the offshore spectrum

by assuming parallel depth contours and applying Snel’s law. This treatment of the lat-

eral boundaries does not represent accurately the propagation of waves across shelf regions

outside the model domain, but avoids artificial shadow regions created by closed lateral

boundaries (a problem encountered in chapter II). At the boundaries with domain 1 (land)

a zero incoming flux was prescribed, corresponding to the absence of wave reflection from

the beach and surf zone.

4. Bottom sediments and small scale topography.

Qualitative inspection of 20 core samples collected in 1997 on the inner shelf (Re-

becca Beavers, Duke University, personal communication, 1999), and quantitative grain
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size analysis of 50 samples gathered during SHOWEX (see also § IV.B), give a good de-

scription of the surficial sediments in a narrow (20 km wide) region around the 8M–X5

transect (figure 47). The median grain diameter D50 varies between 0.09 and 4 mm. The

average value of D50 (binned as a function of distance from shore) is 0.22 mm, slightly

coarser than the average of D50 for the inner shelf (0.15 mm) used in chapter II. In order to

extrapolate these observations away from the 8m–X5 transect a 5th order polynomial was

fitted to the distribution of D50 as a function of the logarithm of the distance from shore

(figure 47). This fitted distribution is used in model hindcasts, although very similar results

obtained with a uniform value D50 = 0.22 mm suggest that the model is insensitive to the

weak spatial variations in median grain size.

The small-scale bottom topography is generally well resolved in the NOS bathy-

metric database, for water depths between 10 and 30 m, and wavelengths larger than 300

m. Estimates of bottom elevation spectra from a region with shoals on the inner shelf

south of the instrument transects, and a deeper (20–40 m) mid-shelf region to the south-

east of X2, give direction-integrated spectra with a slope close to k−3, and spectral levels

decreasing by a factor 3 from the shoals to the middle shelf (dotted lines in figure 48b).

The corresponding two-dimensional wavenumber spectra are not isotropic and show larger

variance along a north-west to south-east axis, (e.g. figure 48a). For wavelengths under 300

m, the topography is only resolved in the multibeam surveys conducted in small regions, in

20 and 25 m, giving the two spectra FB
1 and FB

2 , respectively (figure 26), and represented

as direction-integrated spectra in figure 48 (dashed lines). Other regions surveyed only

along individual tracks, with the EM1000 multibeam system or a ISIS100 sonar (data ac-

quired and provided by J. McNinch, FRF) gave unidirectional spectra comparable to these

direction-integrated spectra. All spectra decrease approximately as k−3 (not shown), with

variance levels between those of FB
1 and FB

2 .

In the model the topographic features that contribute to wave-bottom Bragg scat-

tering (with horizontal scales smaller than five times the wavelength, see § III.B.4) are

assumed to be statistically uniform on the entire shelf. A representative composite bottom

elevation spectrum at these scales was generated from spectra computed from the 6” reso-
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Figure 47. Distribution of median grain sizes.
D50 as a function of distance from the coast, for surficial sediments in vibracore samples
collected in the period 1994-1997 (Rebecca Beavers, Duke University, personal communi-
cation, 1999) and Shipek grab samples collected during SHOWEX (figure 35a). The dotted
line indicates D50 = 0.15 mm, used in II. The average grain size D50 = 0.22 mm is indi-
cated by the dash-dotted line, and the solid line is a polynomial fit used for hindcasts in the
present chapter.
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Figure 48. Bottom elevation spectra
(a) Composite two-dimensional bottom elevation spectrum F B, based on 10–30 m depth
bathymetry in the entire model domain, and high-resolution multibeam bathymetry in a 5
km × 5 km region in 20 m depth. Contour values are log10

(
4π2FB

)
with FB in m4rad−2,

at 0.5 intervals. Circles indicate the bottom components that interact in 20 m depth with
waves from the east with frequencies 0.05 (inner circle), 0.12 (middle circle) and 0.25 Hz
(outer circle). Axes units are reciprocal wavelengths lx/(2π) and ly/(2π). (b) Correspond-
ing direction-integrated spectrum (solid) and other spectra estimated from high-resolution
multibeam bathymetry (dashed), and well resolved regions in the NOS database (dotted).
The vertical lines indicate the bottom scales responsible for scattering 0.08 Hz swell, for
different incidence angles θI .
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lution bathymetry grid, ensemble averaging over regions with water depths between 10 and

30 m (figure 48a, and solid line in figure 48b). The variance at large scales is lower than for

the two spectra determined from regions well-resolved in the NOS database (dotted lines in

figure 48b), possibly due to the coarse resolution of the bathymetry data in some regions.

At higher wavenumbers, not resolved by the grid, the variance densities were taken from

the small-scale spectrum with the larger variance (FB
1 in figure 26). Computations of the

Bragg scattering source term using this spectrum may therefore overestimate scattering by

the smaller scales (l/2π > 0.002) and possibly underestimate scattering by the larger scales

(l/2π < 0.002). To investigate this effect the model was also run with a similar composite

spectrum in which the small scale part was replaced by FB
2 (figure 26).

5. Source terms

The wave-bottom Bragg scattering source term SBragg is estimated using a uniform

bottom elevation spectrum and integrated with a semi-implicit scheme, taking advantage of

the linear relation between E ( f , .) and SBragg ( f , .) (§ III.C). Implementation of the bottom

friction source term Sfric is made more complex by the empirical parameterizations of the

bottom Nikuradse roughness kN . In the present chapter we generalize Tolman’s (1994)

decomposition of kN in a ripple roughness kr and sheet flow roughness ks,

kr = ab ×A1

(
ψ
ψc

)A2

, (V.2)

ks = 0.57
u2.8

b

[g(s−1)]1.4

a−0.4
b

(2π)2 , (V.3)

where ab and ub are the r.m.s. amplitude of the bottom wave orbital displacement from the

equilibrium position (half of the orbital diameter) and velocity at the top of the boundary

layer, s is the sediment specific density and g is the gravity acceleration. While Tolman

(1994) used values of the empirical coefficients A1 and A2 determined by Madsen et al.

(1990), we will examine if adjustments to these coefficients improve hindcasts of waves on

the North Carolina shelf (figure 49).

When the wave motion is not strong enough to generate vortex ripples, i.e. for val-

ues of the Shields number less than a threshold ψrr, kN is given by a relic ripple roughness
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Figure 49. Dissipation factors
fe as a function of the Shields number ψ normalized by its critical value ψc for sedi-
ment motion. The original parameterization proposed by Tolman (1994) using Madsen
et al.(1990) ripple roughness, is compared to the JONSWAP linear damping source term,
and an improved roughness parameterization is given by A1 = 0.4, A2 = −2.5, A3 = 1.2
and A4 = 0.05, and it is used below in the source term S f ric,I , giving better hindcast results,
for the Shields number covered by the present data set (at X3: 0.03 < ψ/ψc < 6.5).
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krr. Madsen et al. (1990) proposed

ψrr = A3ψc, (V.4)

with A3 = 1.2 determined empirically, and ψc the critical Shields number for the initia-

tion of sediment motion on a flat bed and under sinusoidal waves. ψc should be a known

property of the sediment. In the absence of any data, the relic ripple roughness krr was

first proposed to be equal to the grain size diameter by Graber & Madsen (1988), which

is appropriate for a flat bed, but Tolman (1994) suggested a larger value to account for

relic bedforms and bioturbation, and proposed a constant value krr = 0.01 m. Our ear-

lier hindcast study showed that this constant value yields good wave height predictions for

very small waves (§ II.D.1), but the dissipation is so weak that different roughness values

could yield similar wave heights. For larger forcing conditions (but still in the relic ripple

regime), recent experiments suggest that krr actually decreases with ψ on a smooth cohesive

bed (Alex Babanin, University of South Australia, analysis of Lake George experimental

data, personal communication, 2001). However hindcasts of waves on the North Carolina

shelf (dominated by non-cohesive sand) presented in this chapter, suggest that the rough-

ness may increase with the forcing, possibly due to the presence of relic bedforms that are

more likely to be intercepted by larger orbital diameters. We therefore propose to use

krr = max{0.01m,A4ab} for ψ < ψrr. (V.5)

A1, A2, A3 and A4 define the response of the bed roughness to the wave forcing and the

resulting wave energy dissipation, A1 = 1.5, A2 = −2.5, A3 = 1.2 and A4 = 0 corresponds

to the original Tolman (1994) parameterization.

In this parameterization, the critical value ψc must be known beforehand. It is

usually determined experimentally as a function of the sediment physical properties. Al-

though recent experimental results for mixed sands suggest values of ψc larger by about

30% (Wallbridge et al., 1999), we use an analytical fit to Shields’ (1936) laboratory data:

ψc =
0.3

1+1.2D∗
+0.055 [1− exp(−0.02D∗)] , (V.6)

D∗ = D50

[
g(s−1)

ν2

]1/3

, (V.7)
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where ν is the kinematic viscosity of water. This expression was proposed by Soulsby

(1997), and includes the correction for very fine grain sizes by Soulsby and Whitehouse

(1997) intended to limit ψc to values less than 0.3. It is consistent with the laboratory data

reviewed by Madsen & Grant (1976), and the ripple roughness parameterization of Madsen

et al. (1990).

The critical Shields number ψc actually depends on the flow conditions and bed

geometry. Knowledge of the exact threshold under irregular waves is not critical for the

present work, and ψc is better interpreted as a well-defined sediment property defined for a

flat bed and given flow conditions (e.g. steady flow). In contrast, the parameterization of the

equivalent ripple roughness kr, that also depends on the flow conditions and bed geometry,

should be valid in field conditions. The laboratory experiments of Madsen et al. (1990) do

not include all the properties of natural boundary layers, thereby giving a parameterization

that may not be general enough. In particular it has been observed that ripples in the field

are usually less sharp than ripples in the laboratory, perhaps as a result of the directional

spreading of waves. This effect can be expected to reduce kr and may be parameterized by

decreasing A1 or increasing A2. The results of other local effects are not so clear, such as the

impact of biological benthic activity (Fries et al., 1999). The detailed composition of mixed

sands may also have some effect on the empirical parameters A1,A2 and A3, and using the

median grain diameter D50 in (V.6) may not give the best value ψc. kN for ψ ' ψrr should

also be a function of the time varying properties of turbulence in the bottom boundary layer,

as only the largest waves in a wave group may be able to generate vortices (responsible for

the form drag and the very development of ripples, see Ayrton, 1910), but it should also

depend on the past history of the bed morphology as relic ripples may determine if the

vortices can be generated.

In addition to these complications, due to the local properties of natural environ-

ments, the practical use of bedform roughness parameterizations is hindered by spatial

variations of the water depth and sediment grain size (see for example Green, 1986; fig-

ure 35a), on scales not resolved by operational wave prediction models. The adaptation

of the local parameterization to a larger scale (of the order of 0.1 to several kilometers),
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was envisaged by Tolman (1995), and performed in chapter II using the known statistics

of depth variations, and ignoring the variations of D50, because of insufficient data. This

representation of subgrid variations in the properties of the bottom boundary layer is used

here. Additional representation of subgrid variations of median grain sizes, assuming a

Gaussian distribution, did not give significantly different results.

A widely used alternative to this physics-based bottom friction source term assumes

Sfric to be a linear function of the bottom velocity spectrum, with a proportionality coeffi-

cient Γ/g2. Γ is an empirical constant with dimensions of m2s−3. This formulation emerged

after the wave data analysis in the JOint North Sea WAve Project (JONSWAP), as varia-

tions in the cross-shore energy flux were examined in terms of Γ, an attenuation coefficient.

This linear dissipation can only be justified by assuming that the wave orbital velocities are

weak compared to the mean (tidal) currents, but this should cause a modulation of Γ by

the current that was not observed. However observations showed large variations of Γ

(from 0.0019 to 0.160 m2s−3). Nevertheless this parameterization, with the averaged value

Γ = 0.038 m2s−3 observed during JONSWAP, has encountered some success (Bouws and

Komen, 1983), and replaced quadratic drag formulations proposed previously (Hasselmann

and Collins, 1968). This ‘JONSWAP’ bottom friction source term, Sfric,J, may yield good

results over sand because the corresponding dissipation factors fe decreases as a function

of the Shields number, following the movable-bed model for relic roughness and sheet

flow conditions (figure 49). However values of fe in the active ripple regime (ψ > ψrr) are

significantly smaller than those observed over ripples, and Sfric,J fails to reproduce the ob-

served strong attenuation of waves when active ripples are present (§ II.D.1). Fortunately

for operational wave models, these active ripple conditions occur only in a small range of

wave conditions, although these may be dominant in some regions.

It must be emphasized that no parameterization has been tested for very large

Shields numbers ψ/ψc > 5, for which very little laboratory or field data is available, but

these conditions occur in large storms that are most important for navigation safety or

coastal engineering. It is expected that a physics-based parameterization performs better

than the JONSWAP empirical formulation calibrated in very different conditions.
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Sfric parameterizations used in the present chapter include Sfric,T, given by Tolman

(1994) (i.e. A1 = 1.5, A2 = −2.5, A3 = 1.2 and A4 = 0), and an improved movable bed

parameterization Sfric,I for which the values of the empirical parameters have been adjusted

to increase the overall hindcast skills: A1 = 0.4 and A2 = −2.5, A3 = 1.2, and A4 = 0.05.

Although no physical interpretation can be given for the JONSWAP source term Sfric,J, it is

used here for reference.

D. MODEL-DATA COMPARISONS

To objectively assess the accuracy with which the energy balance equation (V.1)

describes the evolution of swell across the North Carolina continental shelf, a statistical

analysis of hindcast results for the entire data set is presented here, based on 528 1-hour

swell-dominated records (22 days) of SHOWEX observations and 121 three-hour swell-

dominated records (15 days) of DUCK94 observations, out of the 2100 SHOWEX ob-

servation records (87 days), and 725 DUCK94 records (91 days). Fewer records were

available for some instruments, in particular A, B and WR(FRF) which failed during the

1994 Hurricane Gordon, and X6 which malfunctioned at the peak of the 1999 Hurricane

Floyd. The period in September and October 1999 when X6 was not deployed was entirely

excluded.

The directional properties of the waves, influenced primarily by refraction and

Bragg scattering (chapter III), are discussed first using only SHOWEX data. This is fol-

lowed by an analysis of the wave heights, predominantly influenced by refraction and bot-

tom friction using both DUCK94 and SHOWEX hindcasts. For all parameters the model

errors generally grow across the shelf towards the shore. The ‘initial’ model errors, at the

instruments located close to the offshore boundary, are discussed separately in § V.D.4.

1. Mean direction

A mean direction θp at the peak frequency fp was computed for each instrument,

using an energy-weighted average over a finite bandwidth of 0.15 f p centered at fp. Fol-

lowing standard conventions (e.g. Kuik et al., 1988), θp is defined as the direction of the
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moment vector(a1,b1), with

(a1,p,b1,p) =
∫ 1.075 fp

0.925 fp

∫ 2π

0
(cosθ,sinθ)E ( f ,θ)dθd f (V.8)

fp was determined from the measured frequency spectra at X1, so that the modeled and

observed directions correspond to the exact same frequency band. θp is well predicted

by the model with no source terms or bottom friction only, with a maximum root mean

square (r.m.s.) error of 8–10 degrees on the inner shelf, that decreases onshore as refrac-

tion narrows the incoming spectra toward 70◦, the beach-normal direction (figure 50). The

conditions summarized here contain many events with large oblique angles that are well

reproduced by the model, such as swell from Hurricane Floyd with offshore directions of

160◦ refracted to 90◦ at 8M. The relatively large bias at 8M is not observed in similar hind-

casts of DUCK94 swells (-1.6◦ bias, and r.m.s. error 6.9◦) and may be related to a change

in bottom topography not represented in the bathymetry grid used for ray computations.

Errors at X5 are anomalously larger. In particular θp at X5 was observed to oscillate be-

tween 90 and 140◦, whenever the offshore direction at X6 was slowly varying between 110

and 130◦, for all frequencies between 0.05 and 0.14 Hz. This suggests that the wave rays

are bent by refraction, over bottom features not resolved in the sparse bathymetric surveys

conducted on the outer shelf (Herbers et al., 2000). However, the errors are generally small

compared to the changes in θp across the shelf (up to 70◦ for the southerly swell from

Hurricane Floyd), and are of the order of the model directional resolution (5◦).

The addition of Bragg scattering in the model biases the mean direction further to

the north. This additional bias is due to the anisotropy of the bottom elevation spectrum

used in the hindcasts, at wavelengths (2π/l) less than 500 m, in combination with refraction

by the large scale topography. These scattering bottom undulations have crests preferen-

tially aligned with a south-west to north-east direction and have a strongest effect on waves

propagating along that direction. The model bias and r.m.s. error added by Bragg scatter-

ing is partially cancelled by bottom friction (compare runs 3 and 4 in figure 50). Indeed

the scattered waves propagating at larger angles relative to the depth contours propagate on

the shelf for a longer time, over which the cumulated effect of bottom friction is larger. A
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Figure 50. Model errors on the mean direction θp at the peak frequency
(a) Model bias and (b) r.m.s. error for swell-dominated periods observed during SHOWEX.
Runs 1–4 use different sets of source terms in (V.1). Source terms in runs 5 and 6 are
identical to those in run 4, but run 5 uses a different bottom elevation spectrum that has
a lower variance at small scales (F2

B, figure 26b). Run 6 is forced with X6 data at the
offshore boundary instead of the interpolation of X6 and 44014 data used in all other runs.
Positive values in (a) correspond to a clockwise bias.
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weaker variance in the bottom elevation spectrum for 2π/l < 500 m clearly reduces this

effect (run 5 in figure 50).

2. Directional spread

The directional spread at the peak frequency σθ,p was computed for each instru-

ment, as was the mean direction θp, for a finite frequency band around the peak of the

measured frequency spectrum at X1. σθ,p, defined in radians, as

σθ,p = [2(1−a1,p cosθp −b1,p sinθp)]
1/2 /

∫ 1.075 fp

0.925 fp

∫ 2π

0
E ( f ,θ)dθd f , (V.9)

is an estimate of the standard deviation of the directional distribution of wave energy,

and thus can be loosely interpreted as the half-width of the directional spectrum. For an

isotropic spectrum σθ,p is 21/2 radians, that is 81◦.

Observed directional spreads are, in general, relatively uniform across the shelf, de-

creasing slightly towards the coast. Observations at X6 range from 10 to 55◦ with typical

values between 30 and 40◦, whereas observations at 8M vary between 12 and 27◦ with typ-

ical values of 15–25◦ (figure 51). However, when the offshore directional spectrum is very

narrow (σθ,p (X6) < 20◦), σθ,p increases towards the shore. This observation is contrary

to the general belief that waves become one-directional in shallow water, as expected from

depth-refraction. Indeed model calculations that incorporate refraction, as well as bottom

friction (in order to provide reasonable wave heights) give directional spreads much nar-

rower than the observations (figure 51). This bias, largest at 8M and on the inner shelf, can

be observed throughout the shelf.

Statistics from model runs with different source terms (figure 52) demonstrate how

bottom friction and wave-bottom Bragg scattering contribute to σθ,p. Run 1, without source

terms, clearly underestimates σθ,p and only contains the narrowing effect of refraction

as waves approach the shore. Run 2 includes bottom friction that narrows the spectrum

further: waves propagating at larger angles relative to the depth contours are more exposed

to dissipation, because of their longer propagation time across the shelf. Wave-bottom

Bragg scattering opposes these two narrowing effects by diffusing the energy around the

mean direction (see § III.C). While Bragg scattering alone tends to give spectra that are too
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Figure 51. Nearshore versus offshore directional spread
Directional spread at the peak frequency σθ,p at 8M, as a function of the offshore directional
spread measured at X6. The solid line separates spectra that are broader in the nearshore
and spectra that are broader offshore.
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Figure 52. Model errors on the directional spread σθ,p at the peak frequency
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broad in the middle of the shelf (figure 52, run 3), the addition of Bragg scattering to bottom

friction generally yields good agreement across the shelf (figure 52, run 4), reducing the a

scatter index from 0.51 (run 2) to 0.25 (run 4) at 8M, with comparable improvement on the

inner shelf (figure 52).

However, results are sensitive to the choice of the bottom elevation spectrum. Run

5 using a different spectrum with the small-scale variance taken from F2
B (figure 26b,

representative of smoother regions of the shelf) only partially accounts for the observed

increase of σθ,p (figure 52, run 5). Bragg scattering most strongly affects narrow spectra,

and reproduces well the observed broadening of very narrow offshore spectra (figure 51).

For broad offshore spectra (20 < σθ,p (X6) < 40) the observed spectra at 8M are still 5–

10◦ broader than the predicted spectra. The predicted scattering effect is also strongest for

waves with low peak frequencies (figure 53), but the narrowest offshore spectra tend to

coincide with the ones with the lowest peak frequency, so that the influence of the spectral

width and peak frequency cannot be clearly separated.

As the effect of Bragg scattering increases with the bottom elevation variance, it is

likely that the bottom spectrum used in run 4, with relatively large small-scale variance,

represents an upper bound on the true effect of wave-bottom Bragg scattering across this

continental shelf. The remaining negative bias of σθ,p predictions in run 4 suggests that

other processes are important. Higher order Bragg scattering, among others, may be the

cause of further directional spreading.

The bottom friction source term was somewhat arbitrarily assumed to be isotropic.

A quadratic drag law gives a difference between the major and minor principal axes of

the directional dissipation source term that is up to a factor 2 for unidirectional waves

(Hasselmann & Collins, 1968). This type of anisotropy would cause more dissipation for

waves with directions along the mean direction, and less dissipation in the perpendicular

directions, therefore increasing the directional spread. The absence of wave reflection from

the beach in the model is another likely cause for the negative bias. Even though the

offshore traveling waves are removed in the directional spectrum estimates and σθ,p at 8M,

they contribute to the σθ,p estimates at other sensors.
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Figure 53. Relative error on the directional spread σθ,p as a function of the peak frequency
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respectively.
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3. Wave heights

For the analysis of wave height predictions the SHOWEX data set is augmented

with the DUCK94 data. Statistics given below combine results at SHOWEX and DUCK94

instruments located nearby or in similar water depths. Changes in the peak frequency

across the shelf are negligible, but the significant wave height Hs generally decreases from

offshore to the nearshore with observed Hs at 8M about half of the observed values at

X6 for moderate-energetic swell, and a generally smaller reduction (≈ 25%) in benign

conditions (Hs (X6) < 1.5m). This effect is explained only in part by refraction that reduces

the wave heights of waves that propagate onshore at large oblique angles relative to the

depth contours. Indeed the model without source terms (figure 54, run 1), that accounts

only for the effects of refraction and shoaling, overpredicts wave heights with a typical bias

of 0.2 m on the inner shelf, and gives an overall (for all sensors) scatter index of 0.26 for Hs.

Adding Bragg scattering slightly increases model errors: the increased directional spread

translates into a larger cross-shelf propagation time (on average), which, in the absence of

dissipation, increases the wave height, giving an overall scatter index of 0.29 (figure 54,

run 3).

Including bottom friction dramatically reduces the model errors. Run 4b, using the

Tolman movable-bed source term, based on laboratory data without any empirical tuning

to field conditions, reduces the overall scatter index of Hs predictions from 0.29 to only

0.15 (figure 54). This result supports the hypothesis that the formation of vortex ripples

(observed in chapter IV) and their feedback on the waves through enhanced bottom rough-

ness, are the primary mechanisms for for wave attenuation across a sandy continental shelf.

However, a negative bias of -9 cm at 8M indicates a model tendency to overestimate dissi-

pation, already noted in chapter II.

On average the empirical JONSWAP bottom friction source term performs about

equally well (figure 54, run 4a), giving an overall scatter index of 0.16. However, this

source term gives poor results at CHLV2, a site located down wave of shallow shoals (but

not shallow enough for depth-induced breaking), with a scatter index of 0.53 and a positive

bias of 20 cm. This bias is the result of large model-data discrepancies during the arrival
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Figure 54. Model errors in predictions of the significant wave heights Hs.
(a) Model bias and (b) scatter index (ratio of r.m.s. error and r.m.s. value) for Hs, in
swell-dominated periods observed during SHOWEX and DUCK94. Run 1 includes no
source terms (refraction and shoaling only), run 3 includes wave-bottom Bragg scattering,
and different friction source terms are added in runs 4a (JONSWAP) 4b (Tolman) and 4c
(improved Tolman). Source terms in run 6 are identical to those in run 4c, but only X6
data is used for the offshore boundary condition in SHOWEX cases instead of a linear
interpolation of X6 and 44014 data. For DUCK94 cases the offshore boundary condition
is obtained from 44014.
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of swell from Hurricane Gert (17–21 September 1999). Observed wave heights at CHLV2

during this event are 70% smaller than predicted by refraction and shoaling, which corre-

sponds to a dissipation of 84% of the incident wave energy flux. This strong dissipation

is probably the result of active ripple generation on the shoals offshore of CHLV2 (figure

42), and the JONSWAP source term grossly underpredicts bottom friction in active ripple

conditions (figure 49). The improved Tolman source term Sfric,I (using a modification of

Madsen et al.’s (1990) empirical parameters, designed to reduce the model errors) gives an

overall scatter index of 0.13, with a maximum of 0.20 at X2 (run 4c in figure 54).

The distribution of model errors as a function of the Shields number, estimated

from waves measured at representative inner shelf sites X3 (SHOWEX) and C (DUCK94),

is shown in figure 55. The largest errors of a non-dissipative model (run 1) clearly occur

for large values of the Shields number when the presence of active ripples is expected. A

model using the JONSWAP friction source term also gives the largest errors in this regime.

It should be noted that the two largest Shields numbers correspond to DUCK94 3-hour

records in the afternoon of 18 November 1994, after the peak of Hurricane Gordon (see

figure 16), as the eye hurricane was moving back to the south (figure 43). This is the only

data available for large hurricane-swell forcing conditions, with near-sheet flow conditions

(the sheet flow conditions indicated in figure 18 correspond to the peak of the storm a few

hours earlier, on the morning of 18 November). In the strongest forcing conditions the

JONSWAP source term largely overestimates the wave height. As the dissipation factor

is expected to increase with the onset of sheet flow, the JONSWAP source term, with a

decreasing dissipation factor, may systematically overpredict wave heights in sheet flow

conditions.

In contrast the standard Tolman source term Sfric,T significantly underestimates

wave height in active ripple conditions (figure 55g–i). If the ripples (observed on most

of the shelf, chapter IV) had been as rough than those in Madsen’s (1990) laboratory ex-

periments, Sfric,T should give reasonable wave heights. The observed discrepancies suggest

that ripples in the field are significantly smoother than in the laboratory. This may be due

to the directional spreading of natural waves, as well as the initial bed configuration. Both
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Figure 55. Relative error of Hs predictions as a function of the Shields number.
Errors are computed at different sensors indicated at the top of each column, for different
source terms, (a–c) S = 0, (d–f) S = Sfric,J + SBragg, (g–i) S = Sfric,T + SBragg, (j–l) S =
Sfric,I + SBragg. Larger red dots correspond to 3-hour DUCK94 records and smaller black
dots correspond to 1-hour SHOWEX records.
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may increase the shape of the ripple crests and the number of defects in the ripple pattern,

and modify the equilibrium bed configuration. A reduction of the maximum ripple rough-

ness by a factor 4 gives better agreement with the DUCK94 and SHOWEX data (run 4c,

using Sfric,I, figure 55j–l).

The present dataset is too limited to address effects of past history of the bedforms,

and there is no clear indication that the ripple roughness should be different between wave

events with increasing, stable, or decreasing forcing conditions. The behavior of Sfric,T and

Sfric,I seems acceptable in the strong forcing conditions prevailing during the Hurricane

Gordon event, although more data would be needed for a more quantitative assessment.

4. Model errors and offshore boundary

Errors are not zero at the buoy (X6 and/or 44014) used to provide the offshore

boundary condition, as only incoming waves are used for the forcing whereas the outgoing

waves are radiated by the model. Errors are also introduced by the numerical propagation

and interpolation between the buoy and the grid boundary.

Errors at X6, when the boundary condition is determined from X6 data only (run

6), are entirely the result of the difference between outgoing waves predicted by the model

and caused by refraction and back-scattering, and those estimated from the buoy data us-

ing the Maximum Entropy Method. Since this method is only constrained to fit the first

four Fourier components of the directional spectra, it may give significant errors for these

outgoing waves that usually carry very little energy, compared to the incoming waves. The

corresponding r.m.s. error on the mean direction is 5◦, and the scatter indices for σθ,p and

Hs are 0.18 and 0.06, respectively.

For this same run 6, errors at 44014 are enhanced (11◦ r.m.s. for θp, and scatter

indices for σθ,p and Hs of 0.33 and 0.17, respectively) possibly due to propagation errors

across the shelf break, but also likely caused by spatial variations in the offshore wave field,

over the 60 km separating X6 and 44014. These offshore variations may be caused in part

by wave-current refraction in the Gulf Stream and its eddies (Holthuijsen & Tolman, 1991),

often seen along the shelf break in sea surface temperature satellite images. This effect
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should be strongest at high frequencies and could explain the fact that the energy difference

between X6 and 44014 for remotely generated swells is either constant or increases with

increasing frequency. The errors on the directional spread σθ,p may also be influenced by

differences in the response between a Waverider buoy (X6) and a 3-m discus pitch and roll

buoy (44014), the latter giving generally larger directional spreads (O’Reilly et al., 1996).

These errors in run 6 give an order of magnitude for the model errors due to the

treatment of the boundary condition in all other runs. The imperfect knowledge of the

variations in the wave field along the shelf break is probably a major source of errors in

runs 4a–c. Based on errors at 44014 and X6, contribution to the scatter indices resulting

from boundary condition errors is estimated to about 0.1 for Hs and 0.15 for σθ,p. In view

of this high background error in the treatment of boundary conditions, the energy balance

(V.1) gives a good description of swell evolution.

E. SUMMARY AND PRACTICAL IMPLICATIONS

The numerical model CREST was implemented on a large portion of the North

Carolina–Virginia continental shelf for a comprehensive hindcast of all swell-dominated

conditions observed during the experiments DUCK94 and SHOWEX. The model inte-

grates the energy balance (V.1) from deep water (1500 m depth) to the inner shelf (8 m

depth), with little numerical diffusion, allowing detailed comparison of measured wave

parameters with results obtained using various sets of source terms. The effect of the

small-scale (comparable to the surface wavelength) shelf topography, was represented by

a wave-bottom Bragg scattering source term, assuming uniform statistics determined from

high-resolution bathymetric surveys, explains most of the observed broadening of the wave

spectrum towards the shore, that occasionally balances the narrowing caused by refraction

over the quasi-plane large-scale bathymetry. Predicted directional spectra are nevertheless

still too narrow on the inner shelf (by about 20% compared to 50% for hindcasts without

Bragg scattering), maybe as a result of wave reflection from the beach, anisotropy in the

bottom friction source term, and/or higher order wave-bottom Bragg scattering, that are not

represented in the present model. The strong attenuation of large swells (inferred dissipa-
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tion up to 84% of the incident wave energy flux) is well reproduced by Tolman’s (1994)

bottom friction source term, that accounts for the generation of sand ripples by waves and

their feedback on the waves. Including this source term into the spectral refraction model

reduces the scatter index for the significant wave heights Hs from 0.27 to 0.15. A large

fraction of the remaining error may be due to the imperfect knowledge of the offshore

boundary condition which may cause a scatter of 0.1 on the outer shelf, in predictions of

Hs by a perfect model.

The widely used JONSWAP source term gives slightly larger errors on average

(overall scatter index equal to 0.16), but occasionally causes much larger errors than the

Tolman source term, because it does not account for large increases in bottom roughness

under active ripple conditions. Tolman’s (1994) movable bed model tends to overestimate

dissipation in strong forcing conditions, suggesting that ripples in the field are significantly

smoother than in Madsen et al.’s (1990) laboratory experiments, that were used to calibrate

the empirical ripple roughness. The reason for this difference between laboratory and field

conditions is not clear but may be caused by the universal presence of relic bedforms in

the field, and the directional spreading of natural waves. An ad hoc reduction of the ripple

roughness by a factor 4 improves the hindcast results and reduces the overall scatter index

for the wave heights from 0.15, for Tolman’s (1994) source term, to 0.13.

Overall the energy balance (V.1) with a bottom friction source term, dissipating

swell energy, and a wave-bottom Bragg scattering source term (chapter III), broadening

the directional spectrum in the cases presented here, provides a good description of swell

evolution across the North Carolina continental shelf. In addition to the direct local effects

of each source term, the numerical integrations of (V.1) reveal indirect effects coupling

the source terms as waves propagate over a finite distance. Bottom friction reduces the

directional spread since obliquely traveling waves are more exposed to dissipation as they

propagate for a longer distance (and time) across the shelf, while Bragg scattering lengthens

the average propagation distance. In the absence of dissipation this longer propagation may

yield larger wave heights, in a way similar to shoaling waves propagating straight towards

the shore: the onshore energy flux is conserved, but the average onshore group speed is
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reduced by scattering into obliquely traveling components, so that the wave height must

increase. However, in the presence of dissipation the opposite happens: the wave height is

reduced because these obliquely propagating waves have more time to be dissipated.
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VI. CONCLUSIONS AND PERSPECTIVES

The work presented in the previous chapters focused on the physical processes and

numerical prediction of the evolution of swell in shallow water, using new high-quality

field data from the North Carolina continental shelf.

A new numerical wave model named CREST (Coupled Rays with Eulerian Source

Terms) was presented in chapter II, that integrates in time an energy balance equation for

the evolution of the wave frequency-directional spectrum. The novelty of this model resides

in its hybrid numerical scheme. It couples inverse ray trajectories adopted from Lagrangian

models, tracing back the paths followed by wave groups, and a modification of the wave

energy along these paths using a spectral source term. The source term, evaluated on the

Eulerian grid from which the rays are traced, and interpolated onto these rays, prescribes

how the energy of each component changes in time based on the entire wave spectrum

and environmental factors such as the bottom sediment nature and the wind speed. This

hybrid method essentially eliminates the numerical diffusion of finite difference schemes,

allowing accurate and high-resolution predictions of the wave spectrum. We demonstrated

that this numerical method can be applied to a large area (100 km×400 km for the North

Carolina-Virginia continental shelf) and implemented it on a modern workstation, because

the grid, on which source terms are evaluated, can be much coarser than the bathymetry

grid used for the ray computations. Although detailed comparisons have still to be made,

it can be expected that the computational cost of the Lagrangian advection scheme in its

present form is comparable to or larger than the cost of a finite-difference scheme, which

uses higher resolution grids to resolve scales responsible for depth refraction. However

the new model is expected to be more efficient for the prediction of the generation and

non-linear evolution of wind sea spectra, because the costly source term computation in

finite difference models is performed on the same high-resolution grid as the advection,

while it is done on a coarse source term grid in the present model. CREST may therefore

be used as a research community tool for hindcasting wind seas with exact calculations of

the quartet wave-wave interaction source term. The computational cost of CREST may be
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reduced by adopting so-called ‘piecewise ray’ methods that use rays ray segments over sin-

gle time steps (e.g. the TOMAWAC model, Benoit et al., 1996). Practical trade-off criteria

should be determined for choosing intermediate schemes with ray advection over several

time steps, reducing the numerical cost at the expense of numerical diffusion. These cost-

saving measures may promote an operational or engineering use of the code as computers

keep getting faster. However, the hybrid Eulerian-Lagragian scheme, in its present form,

cannot handle time-varying depth and strong variable currents that are important for wave

evolution in macrotidal coastal regions (e.g. the North Sea, the English Channel, or the

French Atlantic continental shelf), where ray trajectories vary in time.

Complementing earlier wave observations made on the North Carolina continental

shelf during the DUCK94 experiment, a new experiment, SHOWEX, provided high-quality

directional wave measurements across the same region, over a three-month period with a

wide range of wave conditions. CREST was implemented on the North Carolina conti-

nental shelf and produced hindcasts of swell observed during both experiments, used to

quantitatively evaluate wave-bottom interactions in the absence of currents. The evolution

of swell in moderately shallow water is essentially influenced by the bottom topography at

all scales. The field data and model results confirmed that large features with horizontal

dimensions much larger than the wavelength cause well-known refraction and shoaling ef-

fects, such as increased wave heights around headlands, and provided new insights into the

effects of smaller scale bottom topography and roughness.

Bottom undulations with horizontal scales comparable to the surface wavelenghts

cause directional scattering of waves through a Bragg resonance. In a spectral description

this wave-bottom interaction can be represented, at the lowest order in the bottom and sur-

face slopes, as interactions among triads of two wave components with the same frequency,

exchanging energy, and a bed undulation with the difference vector wavenumber that makes

this exchange possible. The evolution of the wave spectrum caused by this triad interac-

tion was derived in the form of a spectral source term SBragg by Hasselmann (1966), using

a Hamiltonian formalism, and Long (1973) showed that it could cause significant back-

scattering (i.e. reflection) of swell towards deeper waters for a realistic bottom elevation
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spectrum. Here the theory was extended to slowly varying random waves and bottom ele-

vations on a sloping shelf, and a correction of the coupling coefficient was given. Hindcasts

of swell transformation across the North Carolina shelf, marked by gentle sand ridges with

spacings of 1 km or more, showed that back-scattering is insignificant, but ‘forward scatter-

ing’ (the interacting waves have almost the same direction) increases the directional spread

of the wave spectrum. This unexpected effect, not considered in previous studies, op-

poses directional narrowing resulting from depth refraction. The combination of these two

processes in CREST, a numerical model with little numerical diffusion, yields directional

spread hindcasts that agree well with directional wave measurements from SHOWEX. In

8–15 m depth the use of the Bragg scattering source term increases the predicted spread by

a factor 2–3, in particular for low frequency swell. Applications to other regions where de-

tailed bathymetric information and directional wave data is available should provide further

verification of the wave-bottom Bragg scattering theory for random waves and topography.

Such studies should encourage new work on the practical implications of higher order the-

ories and effects of currents on the wave-bottom interactions. Wave-bottom Bragg scatter-

ing is the simplest resonant interaction involving surface gravity waves, but it shares some

properties of the non-linear wave-wave interactions. Thus the ideas developed in chapter

III on the detuning effects of the bottom slope on the resonant interactions may be applied

to wave-wave interactions, providing practical guidelines for the use of resonant interaction

theory in varying depth.

At scales smaller than the wave orbital motion, sand ripples and biogenic mounds

on the seabed contribute to the bed roughness experienced by the waves. It is well-known

that non-cohesive sediments are mobilized by sufficiently energetic wave conditions form-

ing ‘vortex ripples’ that dramatically enhance dissipation of the wave energy. Widespread

ripple marks were observed across the North Carolina using sidescan sonar (chapter IV).

The combination of sonar surveys and time-series of wave observations established their

‘vortex ripple’ nature, consistent recent observations in shallower water. A parameteri-

zation for the dissipation source term Sfric of wave energy by bottom friction over these

bedforms was proposed by Madsen et al.(1990), based on careful laboratory experiments.
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It was tested for the first time against field data from the DUCK94 experiment (chapter II).

The model hindcasts reproduces well the observed swell attenuation across the shelf, but

Madsen et al.’s (1990) parameterization tends to overestimate dissipation in ripple-forming

conditions.

A comprehensive analysis of all swell-dominated conditions observed during

DUCK94 and SHOWEX was conducted to objectively examine the performance of bot-

tom friction parameterizations, and propose empirical adjustments (chapter V). The effect

of Bragg scattering was included in the source term together with various bottom friction

parameterizations. The widely used empirical ‘JONSWAP’ parameterization of the bot-

tom friction gives average errors similar to Tolman’s (1994) source term that uses Madsen

et al.’s (1990) ripple roughness. However the JONSWAP source term grossly underesti-

mates the swell decay in active ripple conditions.

A modification of Tolman’s bottom friction source term, increasing the roughness

of relic bedforms as a function of the wave forcing, and reducing the roughness of actively

generated vortex ripples by a factor 4, improves the hindcast accuracy. These results sug-

gest that natural ripples formed by a directionally spread wave field are less rough than

those generated by uni-directional waves in wave flumes. Both Madsen et al.’s (1990)

parameterization and the one presented here are based on dissipation rates inferred from

observed wave attenuation. A true verification of the parameterization requires detailed

measurements of the properties of the bottom boundary layer under waves in realistic con-

ditions. Reynolds stress profiles measured by T. Stanton & E. Thornton during SHOWEX,

should help constrain parameterizations of the ripple roughness and the directional proper-

ties of the bottom friction source term.

In addition to the direct local effects of bottom friction (dissipating swell energy)

and Bragg scattering (broadening the directional spectrum), indirect effects couple these

source terms as waves propagate over a finite distance. Bottom friction reduces the di-

rectional spread since obliquely travelling waves are more exposed to dissipation as they

propagate for a longer distance (and time) across the shelf, while Bragg scattering lengthens

the average propagation distance. In the absence of dissipation this longer propagation may
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yield larger wave heights. However, in the presence of dissipation the opposite happens:

the wave height is reduced because these obliquely propagating waves have more time to

be dissipated. This interaction of the source terms in the energy balance equation shows

that one source term cannot be considered in isolation, unless all others are negligible. It

also emphasizes the importance of the directional distribution of wave energy for nearshore

wave height predictions.

Theories and parameterizations for wave-bottom interactions were examined here

only for waves in the swell frequency band at a single site. The same interactions however

also affect waves in the infragravity band (0.01–0.05 Hz) and the wind sea band (0.1–

1 Hz). Extension and verification of the present work into these other frequency domains

and other shallow water regions is needed for a comprehensive validation of Sfric and SBragg

formulations. Incorporating these validated source terms in the wind sea energy balance

may help improve parameterizations of other source terms: wind input, and dissipation due

to deep-water wave breaking. In the absence of wind forcing, the present work establishes

that the transformation of swell across a sandy continental shelf is well described by the

energy balance equation
dE (k)

dt
= Sfric (k)+SBragg (k) , (VI.1)

where the bottom friction source term parameterizes movable bed processes: relic rough-

ness, vortex ripple formation, and sheet flow. On the wide and shallow shelf of North Car-

olina, these effects are locally weak: energy dissipation is of the order of 0.1–10 W m−2

compared to a typical energy flux of 10–100 kW m−1, but they add up to a strong attenu-

ation as waves propagate across the shelf, occasionally reducing the wave heights of large

swells by more than 50 % . The formation of vortex ripples is therefore among the most

important processes for the nearshore wave climate.
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Figure 56. Singing sands, lake Huron, 28 April 2001
Sand ripples, waves, and capillary ‘Wilton ripples’. From auto-organization to resonant
wave-wave interactions. Photo by Fanny Girard-Ardhuin.
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APPENDIX A. DERIVATION OF THE ENERGY
BALANCE (III.47)

1. DERIVATION OF E2,2 (K)

The governing equation (III.34) for Φs
2,k (t) is an undamped forced harmonic os-

cillator with a resonant frequency ω given by the dispersion relation (III.28). Applying

a Fourier decomposition to the right hand side forcing terms, (III.34) can be written as a

linear superposition of equations of the type

d2 f1

dt2 +ω2 f1 = eiω′t. (A.1)

In order to specify a unique solution to (A.1), initial conditions must be prescribed. In the

limit of large propagation distances the initial conditions contribute a negligible bounded

term to the solution. Following Hasselmann (1962), we chose f1 (0) = 0 and d f1/dt (0) =

0, giving the solution

f1
(
ω,ω′; t

)
=

eiω′t − eiωt + i(ω−ω′)sin(ωt)/ω
ω2 −ω′2 for ω′2 6= ω2, (A.2)

f1
(
ω,ω′; t

)
=

teiω′t

2iω′
−

sin(ωt)
2iω′ω

for ω′ = ±ω. (A.3)

Φs
2,k (t) is given by

Φs
2,k (t) = ∑

k′

A
(
k,k′

)
Bk−k′Φ̂s

1,k′ f1
(
ω,−sω′; t

)
, (A.4)

where

A
(
k,k′

)
=

[
k−ω′2 tanh(kH)

] k ·k′

k
. (A.5)

The third-order energies E1,2 and E2,1 that result from the correlations between

Φs
1,sk and Φ−s

2,−sk (A.4) are found to be bounded but the fourth order energy E2,2 grows with

time. Substituting (A.4) in (III.16) and taking the limit (III.17) to a continuous spectrum

yields the solution for E2,2 (t,k) as defined by (III.25):

E2,2 (t,k) =
∫ ∞

0

∫ 2π

0
A

(
k,k′

)
FB (

k−k′
)

E2
(
t̃,k′

)∣∣ f1
(
ω,−ω′; t

)∣∣2
dk′dθ′ + . . . , (A.6)
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where k′ = k′ (cosθ′,sinθ′), and the omitted terms (. . .) include bounded terms forced by

surface non-linearity. Assuming that the frequency spectrum is continuous, the contribution

of exact resonant interactions (k′ = k) to (A.6) is negligible compared to contributions of

near-resonant interactions (k′ ≈ k) that span a finite range of wavenumbers, and thus (A.2)

can be substituted in (A.6). We now change the integration variable k′ to ω′, given by the

dispersion relation (III.28), and replace | f1|
2 by the expansion in powers of (ω−ω′),

∣∣ f1
(
ω,−ω′

)∣∣2
=

2−2cos [(ω−ω′) t]+O(ω−ω′)

4ω2 (ω−ω′)2 (A.7)

The leading term in this expansion is the real part of a function of the complex variable

z = (ω−ω′),
(
1− eizt

)
/
(
2ω2z2

)
, which is differetiable with respect to z on the entire

Argan-Cauchy plane, except at z = 0. The integral
∫ ∞

0 | f1|
2 dω′ cuts through that singularity

and its value πt/
(
2ω2

)
can be obtained by contour integration on the complex plane. Other

terms in (A.6) are continuous so that they can be considered constant in a small region

around the singularity and we obtain

E2,2 (t,k) = t
∫ 2π

0

4πωk4 cos2 (θ−θ′)
sinh(2kH) [2kH + sinh(2kH)]

FB (
k−k′

)
E2

(
t̃,k′

)
dθ′

+bounded terms , (A.8)

For large t the derivative of E2,2 (t,k) with respect to t yields equation (III.35).

2. DERIVATION OF ESC
3,1 (K)+ESC

1,3 (K)

The particular solution φsc
3 to (III.37)–(III.39) in the vicinity of x = 0 can be written

as

φsc
3 (x,z, t) = ∑

k,s

[
Φs

3,k (t)
cosh(kz+ kH)

cosh(kH)
+Φsi,s

3,k (t)
sinh(kz+ kH)

cosh(kH)

]
eik·x. (A.9)

The solution for the bound component Φsi,s
3,k follows from substituting the second-order

velocity potential (III.32) in the bottom boundary condition (III.38 with term V set to zero)

Φsi,s
3,k (t) = −∑

k′

k ·k′

k
Bk−k′Φs

2,k (t) . (A.10)
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Substitution of (A.10) in the surface boundary condition (III.39 with the right-hand side set

to zero) yields the forced harmonic oscillator equation
(

d2

dt2
+ω2

)
Φs

3,k = −∑
k′

k ·k′

k
Bk−k′

[(
k + tanh(kH)

d2

dt2

)
Φs

2,k′ (t)

]
. (A.11)

Using (III.34) and (A.4) we have
(

d2

dt2 +ω2
)

Φs
3,k = −∑

k′

A
(
k,k′

)
Bk−k′ ∑

k′′

A
(
k′,k′′

)
Bk′−k′′Φ̂s

1,k′′ f1
(
ω′,−sω′′; t

)

−∑
k′

k ·k′

k
tanh(kH)Bk−k′ ∑

k′′

A
(
k′,k′′

)
Bk′−k′′Φs

1,k′′ (t) ,

(A.12)

where A is defined by (A.5). The only terms of (A.12) that force growing correlations with

φ1 are those that have a product of two factors A and equal wavenumbers k′′ = k. Other

terms force bounded correlations and can be neglected. Therefore (A.12) can be regarded

as a linear combination of forced oscillator equations of the form

d2 f2

dt2
+ω2 f2 = f1

(
ω′,−sω, t

)
. (A.13)

The solution of (A.13) for ω′2 6= ω2 and initial conditions f2 (0) = d f2/dt (0) = 0 is

f2
(
ω,ω′,s; t

)
= −

teisωt − sin(ωt)/ω
2isω(ω′2 −ω2)

−
(ω′ +ω)eiω′t +(ω′−ω)e−iω′t −2ω′eiωt

2ω′ (ω′2 −ω2)
2 . (A.14)

Following the steps of § A.1, we obtain

Esc
3,1 (t,k)+Esc

1,3 (t,k) = −t
∫ 2π

0

4πωk4 cos2 (θ−θ′)FB (k−k′)

sinh(2kH) [2kH + sinh(2kH)]
E2

(
t̃,k

)
dθ′

+ bounded terms. (A.15)

Taking the derivative of (A.15) with respect to t yields equation (III.41).

3. DERIVATION OF ENS
3,1 (K)+ENS

1,3 (K)

In the vicinity of x = 0, φns
3 can be written in the form

φns
3 = ∑

k,s

cosh(kz+ kH)

cosh(kH)
Φs

3,k (t)eik·x,
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where Φs
3,k satisfies

(
d2

dt2
+ω2

)
Φs

3,k = 2isω
∂Φ̂s

1,k

∂t
e−isωt, (A.16)

With the solution given by eq. (A.3):

Φs
3,k (t) = −t

∂Φ̂s
1,k

∂t
e−isωt. (A.17)

This solution is correlated with the first order velocity potential, giving the energy contri-

bution at x̃ = 0

Ens
3,1 (t,k)+Ens

1,3 (t,k) = −t
∂E2

(
t̃,k

)

∂t
+ bounded term. (A.18)

Taking the derivative of (A.18) with respect to t yields (III.42).

4. DERIVATION OF EHE
3,1 (K)+EHE

1,3 (K)

Terms I and II in (III.37) can be written as

I+ II = ∑
k,s

eik·x

cosh(kH)
{cosh(kz+ kH)(∇ ·kr +2k ·∇)

+2 [(z+H)sinh(kz+ kH)−H tanh(kH)cosh(kz+ kH)]k ·∇kr

+2 [k sinh(kz+ kH)− k tanh(kH)cosh(kz+ kH)]k ·∇H}Φs
1,k (t) .

(A.19)

In the vicinity of x = 0 we can write the solution to (III.37) as

φhe
3 = ∑

k,s

cosh(kz+ kH)

cosh(kH)

[
(z+H)2 Φcoz2,s

3,k (t)+(z+H)Φcoz,s
3,k (t)+Φs

3,k (t)
]

eik·x

+
sinh(kz+ kH)

cosh(kH)

[
(z+H)Φsiz,s

3,k (t)+Φsi,s
3,k (t)

]
eik·x, (A.20)

where

Φsiz,s
3,k (t) =

−i
2k

(
Φs

1,k (t)∇ ·kr +2k ·∇Φs
1,k (t)

)

+i
Φs

1,k (t)

k
k ·

{[
Htanh(krH)+

1
2k

]
∇kr +ktanh(kH)∇H

}

(A.21)

Φcoz2,s
3,k (t) = −iΦs

1,k (t)
k ·∇kr

2k
, (A.22)

Φcoz,s
3,k (t) = −iΦs

1,k (t)k ·∇H, (A.23)
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and the remaining two terms follow from the bottom and surface boundary conditions.

Substituting (A.20)–(A.23) in the bottom boundary condition (III.38, with III and IV set to

zero) gives

Φsi,s
3,k (t) = 0. (A.24)

Substituting (A.20)–(A.24) in the surface boundary condition (III.39 with VI set to zero)

yields a forced harmonic oscillator equation for Φs
3,k (t):

(
d2

dt2
+ω2

)
Φs

3,k (t) = isge−isωt

{[
tanh(kH)+kH

[
1− tanh2 (kH)

]

k

]

×

[
∇ ·kr +kr ·∇+2k ·

[(
H tanh(kH)+

1
2k

)
∇kr + k tanh(kH)∇H

]]

+
H
k

k ·∇kr +k ·∇H

}
Φ̂s

1,k. (A.25)

(A.25) is of the same form as (A.1) with only resonant forcing terms (ω′ = ±ω) and a

solution given by (A.3). The covariance of Φ±
3,±k and the first order potential, defined by

(III.16), is given by

FΦ,he
3,1,k = −t

Cg

2k
∇ ·

(
krF

Φ
1,1,k

)

+t
Cg

k
k ·

[(
H tanh(kH)+

1
2k

)
∇kr + k tanh(kH)∇H

]
FΦ

1,1,k

−
tω

k2 tanh(kH)
k · (H∇kr + k∇H)FΦ

1,1,k + bounded term, (A.26)

where Cg is the group speed

Cg =
ω
kr

[
1
2

+
krH

sinh(2krH)

]
, (A.27)

and the bounded term is given by the initial conditions (the second right hand side term in

A.3). From the dispersion relation (III.28) we find

∇H = −
2kH + sinh(2kH)

2k2 ∇kr, (A.28)

and

∇ [Cg tanh(krH)]

k tanh(kH)
= −

ω
2k3

{
3+

2kH
sinh(2kH)

−2kH tanh(kH)

}
∇kr. (A.29)
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Using (A.28),(A.29), and the definition of the Lagrangian energy spectrum E2 (kr) (III.45),

(A.26) reduces to

[
Ehe

3,1 (k)+Ehe
1,3 (k)

]
∆kr,x∆kr,y = −t∇ · (CgE2 (kr)∆kr,x∆kr,y)+ bounded terms (A.30)

Writing Cg as (Cg cosθ,Cg sinθ), where θ is the local ray direction, the divergence term in

(A.30) can be expressed in terms of intrinsic coordinates:

∇ · [CgE2 (kr)∆kr,x∆kr,y] =
∂ [CgE2 (kr)∆kr,x∆kr,y]

∂r
+CgE2 (kr)∆kr,x∆kr,y

∂θ
∂n

(A.31)

where r and n are the local along-ray and ray-normal coordinates. Longuet-Higgins (1957,

equations 6, 10 and 21) showed that (A.31) can be simplified using ray theory. Defining

the small separation p of two rays that are parallel in the vicinity of x̃ = 0, we have

∂θ
∂n

=
1
p

∂p
∂r

(A.32)

and
∂(pCg∆kr,x∆kr,y)

∂r
= 0 (A.33)

Substituting (A.32) and (A.33) in (A.31), and taking the limit | kr| → 0, we have

Ehe
3,1 (k)+Ehe

1,3 (k) = −tCg
∂E2 (kr)

∂r
+ bounded term . (A.34)

Finally the derivative of (A.34) with respect to t yields (III.43).
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