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 ABSTRACT  
 
A quantitave review of processes contributing to the evolution of swell 
is proposed, combining direct interactions of swell with the wind and 
upper ocean turbulence, and interaction with shorter wind waves. The 
interaction with short waves is based on the extension of Hasselmann’s 
(1971) theory for short wave modulation by long wave to the presence 
of variable wind stresses. Quantitative estimations of the various effects 
are performed based on the wave modulation model of Hara et al. 
(2003) and the wind-over-wave coupling model of Kudryavtsev and 
Makin (2004). It is found that the observations of swell decay in the 
Pacific (Snodgrass et al., 1963) are quantitatively consistent with the 
effects of wind stress modulation and direct wind to wave momentum 
transfer.  
 
KEY WORDS: Waves, turbulence, wind, swell, modulation.  
 
INTRODUCTION 
 
The problem of swell forecasting on the coast of Morocco (Gelci, 
1949) led Gelci et al (1957) to develop the first numerical spectral 
wave models. Half a century later, the forecasting of wind seas has 
made enormous progress but swells are still the least well predicted part 
of the wave spectrum (Rogers, 2002). Although these long period 
waves may be well generated in numerical wave models, what happens 
next is still much of a mystery. At the same time it is now well 
recognized that swells play an important role in air-sea interactions 
(e.g. Drennan et al., 1999; Grachev et al. 2003) and should impact the 
remote sensing of ocean properties. These new applications, along with 
the traditional problem of wave and surf forecasting, warrant a closer 
inspection of the theory and practical aspects of swell evolution. 
 
It was recognized very early that viscosity had a negligible effect on 
waves of periods of about 10 s and longer (Lamb, 1932), so that, once 
generated, swells were supposed to dissipate slowly due to the action of 
the wind, as represented by Jeffrey’s (1925) sheltering theory 
(Sverdrup and Munk, 1947). These ideas have been gradually 

abandoned and traded for eddy viscosity analogies (Bowden, 1950; 
Groen and Dorrestein, 1950) that are used today in some operational 
wave forecasting models (e.g. Tolman and Chalikov, 1996). The 
magnitude and  the frequency dependence of the associated wave 
damping are calibrated using buoy and altimeter data, and no theory is 
available to predict these parameters. Other wave models wishfully 
assume that swell dissipates in the same way as the wind sea (WAMDI, 
1988; Komen et al., 1994). 
 
The validation studies on the spectral shape and magnitude of the 
dissipation are very few. Snodgrass et al. (1966) have demonstrated 
that swells of periods larger than 16 s are hardly attenuated when 
crossing the Pacific from south to north, although attenuation of shorter 
period waves was observed. There is also qualitative evidence of waves 
blown flat by strong opposing winds, without any  satisfactory theory or 
good observations (Jenkins 2002). We therefore take advantage of 
recent developments in wave-turbulence interaction theory (Teixeira 
and Belcher, 2002; Ardhuin and Jenkins, manuscript submitted to J. 
Phys. Ocenogr.) and observation of short wave modulations by long 
waves (Hara et al., 2003) to review and combine the existing theories,  
including the much ignored 30-year old theory on swell-short wave 
modulations by Hasselmann (1971), and evaluate their relevance for 
swell forecasting. 
 
The paper unfolds as follows. First the theory recent result for wave-
turbulence interaction is recalled, followed by an extension of 
Hasselmann’s (1971) theory for short wave modulation, including now 
the modulation of the wind forcing. Next, a semi-empirical 
parameterization is proposed for the short wave modulation, and the 
different effects are evaluated numerically for typical wind conditions. 
Perspectives for validation are discussed with our conclusions. 
 
WAVE-TURBULENCE INTERACTION 
 
Using rapid distortion theory, Teixeira and Belcher (2002) found that 
waves propagating in a turbulent field produced turbulent kinetic 
energy locally at the rate of  
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where the Cartesian components of the fluctuating turbulent velocity 
are uα' (α=1,2) and w' in the water, and the (horizontal) components of 
the Stokes drift are Usα. This expression may be considered obvious 
when compared to the usual production of TKE due to the mean current 
shear. However, (1) must be evaluated taking into account the moving 
surface. As a result the energy of the wave component with 

wavenumber k  changes at the rate given by the non-dimensional 
growth/decay parameter β, so that the energy rate of change is of the 
form  
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in this case turbββ = , with  
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where ρa and ρw are the air and water densities, respectively, g is the 
acceleration due to gravity, u* is the friction velocity of the air flow, H 

is the water depth, and θ
~

 is the direction of the waves relative to the 
wind stress direction. Equation (3) takes the following limit for deep 
water,  
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where C is the phase speed of the wave component of wavenumber k. 
The same expression was found by Ardhuin and Jenkins (op. cit.) using 
a Generalized Lagrangian Mean (Andrews and McItyre 1978) of the 
turbulent kinetic energy equation and assuming that the downward flux 

of horizontal momentum 2
*u  is not correlated with the wave phase. 

This assumption is, in a sense, very similar to the assumption made by 
Teixeira and Belcher (2002) that the turbulence is rapidly distorted by 
the wave motion. 
 
SHORT WAVE – LONG WAVE INTERACTION THEORY 
 
Although a three-dimensional (3D) set of equations is now available 
(e.g. Andrews and McItyre 1978), we shall use the simpler depth-
integrated equations of Hasselmann (1971), also given in a slightly 
different form by Garrett (1976). These depth integrated equations can 
be obtained from Andrews and McIntyre’s 3D equations for the 
Generalized Lagrangian Mean (GLM) momentum, or by vertical 
integration of the alternative GLM equations (Andrews and McItyre 
1978), which gives  Mellor’s (2003) equations to second order in the 
wave slope (Ardhuin and Jenkins, manuscript submitted to J. Fluid 
Mech.), after subtracting a 3D wave momentum equation. 
 
Hasselmann’s (1971) result 
 
Neglecting the modulation of the wind stress on the scale of the long 

waves, Hasselmann (1971, eq. 25) found that the rate of change of the 
long-wave energy is given by the work of the radiation stresses on the 
orbital velocity. Namely, the wave energy evolves with a modulation 
source term 
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where αu~  is the orbital velocity of the long waves in the (horizontal) 

direction α, and rad
αβτ  is the short wave radiation stresses, that can be 

expressed as βααβ δρτ ,w   -0.5 egrad = , with e the short wave 

surface elevation variance. Assuming that the short wave energy is 
weakly modulated by the long waves around its mean value e0, and that 
the modulation is proportional to the long wave slope, we use the 
complex modulation transfer function (MTF) Mswlw to relate 
modulations with the long wave complex amplitudes Zk and phases ϕk 
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where k’ and '
~
θ  are the wavenumber and direction (relative to the 

wind stress direction) of the modulated short waves. Writing the source 
term in the form of equation (2), one obtains the long wave evolution 
parameter, 
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Therefore the long waves dissipate (β<0) if the short waves are larger 
on the forward face of the long waves (this will be defined as a positive 
phase of the MTF).  
 
Wind stress modulation 
 
Because Hasselmann (1971) wanted to show how the maser mechanism 
(Phillips, 1963; Longuet-Higgins, 1969) was can celed by the variation 
of the short wave potential energy, he neglected the modulation of the 
wind stress much weaker than the modulation of the short wave 
breaking. However, since we are now looking at the net higher order 
effect, such as given by eq. (7), the wind stress modulation may be 
relevant. This was already recognized by Garrett and Smith (1976).  
One may thus follow Hasselmann’s (1971) derivation and realize that 
this wind stress modulation analysis, the following term, representing 
the work of the wind stress modulations on the wave orbital velocity, 
should be added to the long wave energy rate of change,  
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In order to be consistent with the previous term, we wish to express the 
stress modulation with a modulation transfer function applied to the 
swell spectrum. A proper description requires a theory for the 
atmospheric boundary layer above waves, as given by Kudryavtsev and 
Makin (2004). However, in order to understand this process a first 
estimation can be made by assuming that the wave-induced wind stress 
is proportional to the short wave energy e as well as the square of the 
relative wind speed (U10-c)2 where c is the short wave phase speed, 
including the apparent current for the short waves, which here is the 



swell orbital velocity. For a single swell component we have,  
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Therefore eq. (8) can be re-written as,  
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where gS’ in / C’ is the momentum source for the modulated short waves 

of wavenumber k’ and direction '
~
θ . If Mswlw  is constant , and this is a 

rather strong assumption, then (11) simplifies as,  
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with τw/τ the order one fraction of the wave-induced stress to the total 
wind stress, and 
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where C is the long wave phase speed and c  is a short wave mean 
phase speed. Strictly speaking that term should be expressed with an 

integral over k’ and '
~
θ . It is clear that the first term Sinm 1 is very 

similar to Sturb and opposes the effect of wave-turbulence interactions, 
generating swells that follow the wind and dissipating swells that 
oppose the wind. 
 

 
Figure 1: Basic principles of the wind stress modulation due to 
roughness modulation and long waves orbital velocity. Velocities are 
shown in a fixed frame of reference. 
 
The second term in Sinm represents the modification of the wind stress 

due to the jump in wave orbital velocity near the surface (Figure 1). 
This term tends to dissipate the long waves as it increases the apparent 
wind felt by the short waves, for swell against the wind, and decreases 
the apparent wind for swell following the wind. 
 
Although the simple form of (10) is interesting for understanding the 
basic sources of the wind stress modulation, it is based on assumption 
that are certainly too simple. The same phenomenon that gives rise to 
Sinm2 was modeled by Kudryavtsev and Makin (2004), using a k-l 
turbulent clodure in a model of the air flow above the waves. In 
particular they find a larger values for Sinm2  due to their expression of 
the near-surface stress as an eddy viscosity times a shear. The 
modulation of the eddy viscosity brings an increase of that term by a 

factor [ ]θ
~

cos1 2+  (see their equation A25) and the relative velocity 

U10- c  in (9) is replaced by lu , the wind speed at the height of the 
inner layer which is now well defined for any wave component Their 
estimation of the wind stress modulation also yields another smaller 

term that is proportional to [ ])/ln(/)ln(1
~

cos 0zlkl−θ , where l 
is the inner layer thickness, due to the profile of the wave-induced 
velocity in the air. That extra term is typically 5 times smaller for 
periods larger than 10 s and a wind speed of 10 m/s. The result of 
Kudryavtsev and Makin (2004) reads,  
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Direct work of wind on the swell 
 
Finally, Kudryavtsev and Makin (2004) also estimated the direct effect 
of winds on swell through the pressure-slope correlations, and found a 
wind input source term of the form (their equation A29),  
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where U is the wind speed in the frame of reference moving with the 
wave crest, u  is the wind speed in a fixed frame of reference, and Φ  is 
a correction function that allows a matching of the wave-induced 
vertical velocity to known asymptotes. For our applications to long 
period swells Φ  is close to 1.  
 
ESTIMATION OF THE SHORT WAVE AMPLITUDE 
MODULATION 
 
As we have seen, the amplitude modulation function Mswlw plays a 
central role in the growth or decay of long wave energy. A quantitative 
model is required for the swell- induced modulations of both the short 
waves, that carry most of the energy  at the peak of the wind sea, in 
order to evaluate Sswls, and the modulation of the shorter wind waves,  
that carry most of the wave-induced stress. Unfortunately there is no 
available measurement of such modulations.  
 
The nearest data available are observations of the modulation of 3.5 
and 5 Hz waves by Hara et al. (2003) do show some variation of the 
modulation phase from about -10 to about 30 degrees that may be 
related to the different wind-wave angle conditions in which their 
observations were performed. However, the MTF amplitude is 



relatively stable, around 2 to 4. One should however take these 
measurements with caution since they are based on time series and the 
intrinsic frequency of the short waves is determined from the measured 
frequency assuming that all waves propagate in the same direction. In 
this processing the modulation of the short wave frequency was not 
taken into account, which may be a reasonable approximation when the 
long waves have small amplitudes. However, that approximation 
should break down for moderate to large waves as were observed for 
the case of wind against the long waves (their data on day 131). In that 
case, assuming a (conservative above 50 rad/m) f -4 spectral tail, a 
(conservative) 10% Doppler modulation in the short wave frequency 
would result in a real MTF of 2.3 if a MTF of 1 is observed. Indeed, 
waves that have the same frequency of long waves crests and troughs 
can have intrinsic frequencies different enough to yield a significant 
high (respectively low) bias to the MTF for long waves propagating 
toward (respectively away from) the measurement platform. Other 
estimations of this MTF using radar measurements have produced 
values up to 10 (Kudryavtsev et al., 2003) but it is difficult to separate 
the radar cross section enhancement due to wave breaking and steeper 
slopes from the actual modulation of the wave amplitude. Such a 
problem also occurs with Hasselmann’s (1971) original estimation of 
the swell dissipation based on upwind/downind radar cross section 
ratios. It is thus unfortunate that no better estimation of the MTF has 
been published.  
 
The most solid result in Hara et al. (2003) is probably their qualitative 
validation of a theoretical expression for the MTF, based on the 
conservation of action for the short waves. Based on a short wave 
spectral shape of the form, valid for the scales of the modulated waves, 
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It gives,  
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where Mu is the modulation function for u∗, which, if constant over the 
wavenumber of the modulated waves would be,  
 

( )212
*

2

2 inminm
a

w
u u

C
M ββ

ρ
ρ

+=                                             (18), 

 
and βr is a non-dimensional relaxation parameter for the short wave 
energy, that Hara et al. (2003) assumed equal to the short wind-wave 
growth parameter,  
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For the present problem, where only an order of magnitude is sought 
for the different terms, we may chose a spectral shape defined by 
equation (14) with n1=3 and n2=2, and n2=1. These values should be 

applicable to our two domains of interest: the wind sea peak and the 
inertial range. One obvious difficulty is that Mswlw  is a function of Mu 
and that Mu is a function of Mswlw, due to the feedback mechanism that 
is thought to account for most of the short wave modulation 
(Kudryavtsev et al. 1997). For the sake of simplicity we shall assume 
that Mu is equal to 5 (Hara et al. 2003), and therefore only use (17) to 
estimate the imaginary part of Mswlw that gets into (7). In that case the 
relevant short waves are around the peak of the wind sea so that βr << 1 
and the term in brackets in the numerator of (17) is dominated by Mu . 
Using E(f)=1.4×10-2U10(2π)-3g f -4, one gets,  
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where fhf is the lower integration limit for frequency of the modulated 
waves, that we shall take as the maximum of the wind sea peak 
frequency and 4 times the modulating frequency, fhf = Max{fp,4 
(gk )1/2 }. 
 
SWELL EVOLUTION 
 
Summarizing the previous findings, we have seen that the evolution of 
swell in the presence of shorter waves can be described with the 
equations of Hasselmann (1971), that allow a consistent description of 
the exchange of momentum and energy between short and long waves. 
An extra sink of energy, due to interactions with turbulenced is added 
in that system of wave interactions. The long waves have a total growth 
rate that is the sum of the growth rates given by each of these 
processes,  
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The first term βswlw correspond to the effect described by Hasselman 
(1971), the following two, βinm1 and βinm2, represent the effects of 
roughness and orbital velocity modulations in the wind input, βin is the 
direct momentum input to the waves (due to non-separating sheltering 
and described Kudryavtsev and Makin (2004), and finally, βturb is the 
work ot the Stokes shear against the turbulent flux (Ardhuin and 
Jenkins, op. cit.).  
 
We now only consider βturb given by (3), βinm2+βin given by (14) and 
(15), and βswlw  given by (20). We do not consider here βinm1, not 
because it is negligible, but because it is very similar to βturb (between -
βturb and -2βturb if one applies directly the values of Mswlw measured by 
Hara et al., 2003).  
 
As shown by Kudryavtsev and Makin (2004) the effects of the the wind 
stress modulation and direct wind input for the swell are highly 
dependent on the relative directions of swell and wind, with laigher 
attenuations for opposing winds compared to following winds, in 
particular for the wind input term (figure 2). The other processes 
considered here are generally weaker. In particular the wave 
modulation mechanism of Hasselmann (1971) is generally negligible 
since at high frequencies (young waves) it will be generally dwarfed by 
wave breaking (there is no swell at the frequencies where it dominates). 
The effect of wave turbulence appears to dominate the dissipation of 
waves with frequencies just above the wind sea peak (propagating in 
the wind direction). It will thus be quite important to evaluate the wind 
stress modulation term due to the short wave modulation to see which 

of 1inmβ  or turbβ  dominates a the wind sea peak. However, for the 

lower frequency swells the present theory makes -βturb one order of 



magnitude smaller than the βinm2+βin.  
 
Looking at the problem of swell propagation it appears that the 
combination of these two effects has the right magnitude to explain the 
wave attenuation observed by Snodgrass et al. (1966). Comparison with 
existing parameterizations in wave models suggests that WAM -Cycle 4 
probably overestimates swell dissipation, because the wind speed at the 
time of the measurements by Snodgrass et al. (1966) was typically less 
than 10 m/s.  
 

 
Figure 2: Values of the growth/decay parameters for swells in the 
presence of opposing and following winds of 10 m/s. 
 
The same reasoning would suggest that Wavewatch III (Tolman and 
Chalikov, 1996) probably underestimates swell dissipation. The large 
difference in long wave dissipation between parameterization in WAM-
Cycle 4 and Wavewatch III probably covers the range of possible 
situations. 
 
CONCLUSIONS 
 
A coherent description was given of swell attenuation and growth due 
to the effects of the wind, short wave modulations and turbulence. The 
present analysis of wind stress modulation is preliminary so that 
conclusions about waves at and just above the wind sea peak cannot be 
made without further work. For the case of lower frequency swells in 
the presence of winds, our analysis suggests that the wind speed and the 
wind direction relative to the swell propagation direction are the two 
most important parameters that control swell dissipation. Further, the 
theory of Kudryavtsev and Makin (2004) for the wind stress 
modulation and wind input give reasonable orders of magnitudes for 
the decay of swell energy, at least for the case of swells following the 
wind. This theory relies on the estimation of the inner layer depth based 
on the arguments of Belcher and Hunt (2003), which may overestimate 
this depth (see the review by Janssen 2004). The implications of that 

controversy in the present framework clearly requires further attention. 
More analysis of wave attenuation with known wind fields will be 
necessary to further verify the present parameterizations.  
 
Future work should also address the compatibility of the present theory 
with laboratory measurements. Kudryavtsev and Makin (2004) had to 
multiply their wave decay/growth parameter by a factor 5 to obtain 
good agreement with the data reported by Donelan (1999). It is not 
clear at this stage if this multiplication by 5 is due to the fact that 
Kudryavtsev and Makin (2004) neglected effects that are important for 
laboratory conditions (e.g. Chen and Belcher, 2000). Our analysis does 
not support such a correction for field conditions.  
 

 
Figure 3: Decay scales for the wave energy for different processes  for 
(a) swell following the wind and (b) swell against the wind. 
Observations of Snodgrass et al. (1966) as well as Lamb’s (1932) 
theory for viscous decay are indicated for comparison. 
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