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In a recent paper, Kenyon (2004) proposed that the wave-induced energy flux is gen-
erally not conserved, and that shoaling waves cause a mean force and torque on the
bottom. That force was equated to the divergence of the wave momentum flux esti-
mated from the assumption that the wave-induced mass flux is conserved. This as-
sumption and conclusions are contrary to a wide body of observations and theory.
Most importantly, waves propagate in water, so that the momentum balance gener-
ally involves the mean water flow. Although the expression for the non-hydrostatic
bottom force given by Kenyon is not supported by observations, a consistent review
of existing theory shows that a smaller mean wave-induced force must be present in
cases with bottom friction or wave reflection. That force exactly balances the change
in wave momentum flux due to bottom friction and the exchange of wave momentum
between incident and reflected wave components. The remainder of the wave mo-
mentum flux divergence, due to shoaling or wave breaking, is compensated by the
mean flow, with a balance involving hydrostatic pressure forces that arise from a
change in mean surface elevation that is very well verified by observations.

Equations are given in Cartesian coordinates with
Greek indices α  and β referring to horizontal coordinates.
Summation is implicit over repeated indices. For simplic-
ity the water density ρw and gravity acceleration g are
assumed constant. The general action balance equation
for a train of monochromatic surface gravity waves is
given by Willebrand (1975) and Komen et al. (1994), and
in its most general form by Andrews and McIntyre
(1978b). Taking a varying wave amplitude a  and
wavenumber magnitude k, and assuming ε = max{ka} <<
1, the action balance equation for a train of monochro-
matic surface gravity waves may be written as
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where A = E/σ = a2/σ is the wave action, E is the wave-
induced surface elevation variance, ρwgE is the wave en-
ergy per unit horizontal surface, σ2 = gk tanh(kh) is the
linear dispersion relation, UAβ is the β component of the

1.  Wave Action, Momentum and Energy Balances
Kenyon (2004) recently hypothesized that the wave-

induced mass transport should be conserved in shoaling
waves and that the sea level is flat so that the wave mo-
mentum flux divergence should be balanced by a mean
non-hydrostatic force on the bottom. These statements run
counter to observations (e.g. Raubenheimer et al., 2001)
of the balance between sea-level change (set-up) and wave
momentum flux divergence. The fluctuating forces on a
flat bottom are also well known ever since Longuet-
Higgins’s (1950) explanation of microseism generation.
However there has as yet been no complete discussion of
the mean (i.e. phase-averaged) wave momentum balance
in shallow water and recent advances on this topic are a
good occasion for a serious review of the question: is there
a mean force acting on the bottom besides the hydrostatic
pressure?
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wave advection velocity UA due to mean currents, and
ρwgStot is an energy source term made explicit below. If
negative, this source is actually a sink.

Several theories have been developed for UA. For
small wave amplitudes and weak mean current shears, an
explicit expression is given by Kirby and Chen (1989).
Their solution is compatible with the general expression
of wave quantity fluxes given by Andrews and McIntyre
(1978b) who also include the advection of wave action
by the Stokes drift, a term that is formally of higher order
in the wave slope, but often comparable in magnitude to
advection by the mean current (see also Smith, 2006).
Finally,  the small parameter γ represents non-
homogeneities in the wave field, and may be defined
mathematically as
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with Uα the mean current velocity component in direc-
tion α averaged over a wave period, and D the water depth
averaged over a wave period. In other words, in Eq. (1)
all the terms written explicitly are of order γA/σ and the
other terms that will be neglected below are of higher
order in either ε (non-linearity) or γ (non-homogeneity).

When more than one wave component or a full spec-
trum is considered, the conditions on the horizontal gra-
dients of water depths can be relaxed to conditions of
small changes of D on the scale of the wavelength, with a
scattering term Sbscat included in Stot that couples inci-
dent and reflected wave components (Ardhuin and
Herbers, 2002, with an extension given by Ardhuin and
Magne, 2006). Neglecting the higher order terms from
now on, the spectral form of (1) is
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with terms representing respectively the rate of energy
input from the wind to the waves, the dissipation of waves
due to breaking and interaction with ocean turbulence,
non-linear scattering (also referred to as ‘wave-wave in-
teractions’), bottom friction, and bottom scattering (see
Komen et al., 1994; Ardhuin et al., 2003).

Since the wave pseudo-momentum of component k
is Mw(k) = ρwkA(k), with k the wavenumber vector, an

evolution for Mw can be obtained by combining (1) with
the equation for k obtained from the dispersion relation
(e.g. Phillips, 1977). For one wave component, it is
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The combination of (3) and (5), for a single wave com-
ponent k, gives
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A direct, and more general derivation is given by Andrews
and McIntyre (1978b). This wave pseudo-momentum Mw

is often called momentum, and only represents the part
of the momentum that is related to the rapidly oscillating
motions due to the waves. The total wave-induced mo-
mentum also includes the secondary circulation or wave
group response (McIntyre, 1981). However, neglecting
higher order terms, the momentum flux tensor is given
by (UAβ + Cgβ)Mα

w.
As noted by Kenyon (2004), the wave momentum

flux in the case of shoaling waves is generally divergent.
For steady waves propagating at an angle θ relative to
the x axis, and a topography and current field uniform
along the y direction, one has
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In cases where non-linear interactions, scattering and
dissipative processes are negligible Stot = 0. The diver-
gence of the current with a mass transport vector Mm is
thus exactly balanced by the divergence of the Stokes
transport Mw. For waves propagating toward an imper-
meable beach we have Mx

w = –Mx
m, and UAx is of the or-

der of these two terms, typically much smaller than Cg,
so that UAxM

w may be neglected, and one has
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As the waves enter shallower water, i.e. ∂D/∂x < 0, the
wave action flux (UAx + Cgcosθ)A is conserved based on
(1). This result is only true for negligible reflection, oth-
erwise the action flux of the reflected waves must be in-
cluded. Because the wave number k decreases as the
waves shoal, the wave momentum flux, that is equal to
(UAx + Cgcosθ)cosθMw = ρw(UAx + Cgcosθ)cosθkA, in-
creases with a rate of change given by –(∂D/∂x)Sp/D.
Relative variations in the wave energy flux are thus of
the order of UAx/Cg, which corresponds to an exchange
of energy with the current (e.g. Phillips, 1977). Contrary
to statements by Kenyon (2004), this approximate con-
servation of the wave energy flux is very well verified by
Ardhuin et al. (2003) for swells of small amplitudes on
the North Carolina continental shelf (Hs < 1.5 m). As dis-
cussed by these authors, the non-conservation of the en-
ergy flux in larger amplitude swells is likely related to

bottom friction. Many other studies have given similar
results (e.g. Munk and Traylor, 1947; O’Reilly and Guza,
1993).

2.  Mean Flow Momentum Balance
Because waves propagate in a material medium, the

mean flow associated with the wave motion cannot be
ignored, and the divergence in the wave momentum flux
is often associated with an opposite divergence in the
mean flow momentum flux. It is thus impossible to con-
clude that a mean force acts on the bottom before the mean
flow momentum balance is examined. Instead, Kenyon
(2004) plainly discarded any possible exchange of mo-
mentum between the mean flow and the wave field, and,
in particular, insisted that the mean sea level remained
constant, in spite of all scientific observations to the con-
trary (from Saville, 1961 to Raubenheimer et al., 2001).

Phillips (1977, see also Smith, 2006) gives the evo-
lution equation for the total momentum M = Mm + Mw
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with U the current velocity averaged over the wave
phase.* τa and τb are the surface (wind) and bottom
stresses, defined as the total momentum fluxes to the
ocean and to the bottom, counted positive downward. The
symbol �αβi represents the signature of the permutation
(α , β, i), equal to 0 if one index is repeated, 1 if (α , β, i)
can be obtained by shifting (1, 2, 3), and –1 otherwise.
This notation allows us to write the components of the
vector product of the Coriolis parameter vector (f1, f2, f3)
and the mass flux (M1, M2). In general, and hereafter, only
the vertical component of the Earth rotation is retained,
and the corresponding parameter f3 is usually known as
the Coriolis parameter (see e.g. Hasselmann, 1970 for a

discussion of the other components). Sαβ
rad  is the usual

radiation stress tensor (noted Srad by Phillips), in the ab-

sence of mean currents, which involves the wave-induced
pressure and the wave momentum flux

S S C Mp
g

w
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with δ = 1 if α  = β and δ = 0 otherwise. Finally, to order
ε2, the Eulerian mean wave-induced pressure is minus the
variance of the vertical velocity. Near the surface this is

p E dw
0

2 12= − ( ) ( )∫ σ k k
k

.

Note that a surface mean velocity Uα (z = ζ ) ap-
pears in the equation established by Smith (2006), instead
of UAα here in (10). The difference between Uα (z = ζ )
and UAα arises from vertical shears in the mean current,
which are assumed small here, and thus for our purpose
the two equations are equivalent. We have used UAα in
(10) for consistency with (6), but also because (10) closely
resembles the vertical integration of generalized
Lagrangian mean flow equations, which allow a proper
representation of the effect of the vertical current shear
(Andrews and McIntyre, 1978a). This matter is further

*The use of Eulerian averages by Smith (2006) can only
be justified below the wave troughs (i.e. for z < min{ζ(t)}) and
requires an extension of the velocity field above the surface in
order to have a well defined integral up to ζ . Such a problem
can be avoided by using the Generalized Lagrangian Mean of
Andrews and McIntyre (1978), as discussed by Ardhuin (2005),
with an equivalent result to that order of approximation.
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discussed by Ardhuin (2005) and Ardhuin and Rascle
(manuscript in preparation).

Following Smith (2006), the subtraction of (6) from
(10) gives

  

∂
∂

+ ∂
∂







+ ( )
∂ ( )

∂
+ + −[ ] ∂

∂

= − + ( )[ ] ( ) − ∂
∂

+ ∂
∂

+

−∫

∫

∫

M

t x
U U z

U
M

x
f M gD p

x

f M
S

x

S

D

D

x

m

w h

A

w
m

w
w

w
p p

α

β
β α

ζ

α
β

β
α β β

α

α β β
α α

ρ

ρ ζ

τ

d

d

d

k
k

k

k k k

�

�

3 3 0

3 3 3Ω

αα α α α α ατ τ τ τ τa b−( ) − − −( ) − ( )in bfric bscat ds , 13

where Ω3(k) is the curl of UA(k), Sp comes from the dif-
ference between the radiation stresses and the wave
pseudo-momentum flux, and the fluxes corresponding to
the source terms are
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The non-linear scattering due to by 4-wave interactions
(Hasselmann, 1962) conserve wave energy, action, and
momentum within the wave field, and thus disappears
from the balance equation when these wave properties
are integrated over the spectrum. τ in equals the sum of
surface pressure—slope correlations and correlations of
shear stress fluctuations with the along-surface velocity
(Longuet-Higgins, 1969). Thus (τa – τ in) is the direct tur-
bulent flux of momentum from the atmosphere to the mean
flow, equal to the mean shear stress at the surface.

We may now investigate the mean stresses acting on
the bottom and draw a conclusion on the existence of a
mean force acting on the bottom. Longuet-Higgins (2005,
his equation (3.7)) recently showed for laminar flow that
τbfric is equal to a mean additional bottom stress when
waves dissipate due to bottom friction with a constant
eddy viscosity in the wave bottom boundary layer. In a

sense, the wave momentum lost due to bottom friction
accelerates the wave bottom boundary layer, with a mean
motion known as streaming. This momentum added to
the bottom boundary layer entirely leaks to the bottom
via the mean bottom shear acting on this streaming flow.
None of that wave momentum leaks to the upper water
column due to the difference in shears between the top
and the bottom of the wave boundary layer.

Older results by the same author (Longuet-Higgins,
1967) and Mei (1973) can be used to reveal the nature of
the bottom scattering stress τbscat. Under the single as-
sumption of irrotational flow, and approximating the
wave-induced mean pressure to second order in the wave
slope, Longuet-Higgins (1967) found that Bernoulli’s
theorem gave the difference in sea level between the two
sides of a submerged breakwater or any bottom topogra-
phy (e.g. Fig. 1). His result can be re-written as
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where S1
p, Sr1

p and S2
p are the Sp terms for the incident,

reflected, and transmitted waves, respectively. Thus, as
given by (13), the combination of the two terms with Sp

is D∇∇∇∇∇ (Sp/D) and this balances the hydrostatic pressure
gradient, ρwgD∇∇∇∇∇ , ζ . Therefore, the reflection stress τbscat

does not enter the mean flow momentum balance, and
must act as a mean stress on the bottom. Although it has
not been explicitly determined as such, this stress is the
likely result of a correlation of a mean pressure with the
bottom slope, giving a horizontal recoil force on the bot-
tom. This is analogous to the recoil of a partially reflect-
ing ‘solar sail’ hit by a beam of light, a method that may
be used for the propulsion of light objects in space. We
thus conclude that (τb – τbfric – τbscat) is the direct flux of
momentum from the mean flow to the bottom, in the form
of a mean shear. Therefore the net water to bottom mo-
mentum flux τb requires momentum flux from the wave
field to the bottom given by τbfric + τbscat.

We may finish with the Sp terms in (13). The first
term with Sp, ∇∇∇∇∇ Sp in vector form, is the gradient in wave-
induced mean pressure. The second term with Sp is ex-
actly opposite to the wave momentum flux divergence
term Sp∇∇∇∇∇ D/D in (8), showing that this latter term repre-
sents an exchange of momentum between the waves and
the mean flow. We now consider waves shoaling toward
a straight coast defined by x = 0. For depth- and
alongshore-uniform mean currents U(x), we have
UA(k) = U. Using the fact that the total mass flux Mx is
zero due to the impermeable shoreline, the first advection
term may be expressed in terms of wave momentum
advection. We thus have, for the x momentum balance,
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with Mw = ∫Mw(k)dk. Using the wave momentum bal-
ance (6), this is simply the balance given by Phillips
(1977)
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This balance is very well supported by the measure-
ments of Saville (1961), Bowen et al. (1968), and
Raubenheimer et al. (2001). Without dissipation (but with
the possibility of reflection), the balance of forces is the
one given by Longuet-Higgins (1967) and shown on Fig.
1,
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In general, care should be taken to ascertain that τa

and τb are the total momentum fluxes through the air-sea
interface and the bottom, including the divergences in
wave momentum flux due to wind-wave generation, wave
reflection and bottom friction. These last two divergences
are compensated by a mean momentum flux through the
bottom, which is a mean force caused by the wave field
on the bottom, in addition to the usual hydrostatic pres-
sure.

In cases with either bottom friction or reflection, al-
though the divergence of the wave momentum flux goes
into the bottom and not in the mean flow, there is still a
mean flow response, such as a wave set up, due to the
wave-induced mean pressure (Longuet-Higgins, 2005).
This effect suggests that the usual combination of both
pressure and momentum flux terms in the radiation
stresses (11) is physically misleading, and that it would
be better to keep these two terms separated. Because bot-
tom friction requires parameterization of the turbulent
boundary layer over variable sediments, only empirical
expressions for this flux can be given (e.g. Ardhuin et
al., 2003; Feddersen et al., 2003). However, the flux in-
duced by wave reflection can be accurately estimated from
theory, at least for small bottom amplitudes (Magne et
al., 2005; Ardhuin and Magne, 2006).

3.  Conclusions
Using a consistent momentum balance for the waves

and the mean flow it was found that the wave action flux
is generally conserved, leading to an approximate con-
servation of wave energy flux in the case of waves
shoaling when approaching a beach. This conservation is
well verified for small amplitude waves, when the rela-
tive wave dissipation is predicted to be weak. The ob-
served strong convergence in wave energy fluxes for large
amplitude waves is well predicted to be related to strong
dissipation due to bottom friction (Ardhuin et al., 2003).
As a consequence, the wave-induced mass flux (also
called ‘Stokes transport’), as well as the related momen-
tum flux, are generally divergent. In the absence of dissi-
pation and reflection a mean force must explain the ac-
celeration of the momentum flux toward the beach. It is
found that this force is generally exerted by the mean flow

Fig. 1.  Balance of forces for waves over a smooth step, in the case without dissipation or wave reflection. Fluxes of momentum
across two vertical sections (dashed lines) are indicated by arrows. The force that corresponds the divergence of the wave
pseudo-momentum flux CgE/C combines with the gradient of the wave-induced pressure Sp. This combination is generally
balanced by the hydrostatic pressure gradient related to the mean sea level gradient. The acceleration of the mean flow (small
dashed arrow), due to a divergence in the Stokes transport, is generally much weaker.

Wave momentum flux 
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and not the bottom. Mean forces exerted on the bottom
only amount to the hydrostatic pressure and the fluxes of
wave momentum related to bottom friction and wave re-
flection off bottom slopes. These results were established
to the first order of approximation in wave steepness and
bottom slope, and thus conflict with the results reported
by Kenyon (2004), who found different forces, although
of the same order in wave and bottom slopes. The present
results are firmly established for depth-uniform currents
(Phillips, 1977). Further extensions to arbitrary current
profiles is being investigated using the Generalized
Lagrangian Mean equations of Andrews and McIntyre
(1978b).
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