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ABSTRACT

A new semi-Lagrangian advection scheme called multistep ray advection is proposed for solving the
spectral energy balance equation of ocean surface gravity waves. Existing so-called piecewise ray methods
advect wave energy over a single time step using “pieces” of ray trajectories, after which the spectrum is
updated with source terms representing various physical processes. The generalized scheme presented here
allows for an arbitrary number N of advection time steps along the same rays, thus reducing numerical
diffusion, and still including source-term variations every time step. Tests are performed for alongshore
uniform bottom topography, and the effects of two types of discretizations of the wave spectrum are
investigated, a finite-bandwidth representation and a single frequency and direction per spectral band. In
the limit of large N, both the accuracy and computation cost of the method increase, approaching a
nondiffusive fully Lagrangian scheme. Even for N � 1 the semi-Lagrangian scheme test results show less
numerical diffusion than predictions of the commonly used first-order upwind finite-difference scheme.
Application to the refraction and shoaling of narrow swell spectra across a continental shelf illustrates the
importance of controlling numerical diffusion. Numerical errors in a single-step (�t � 600 s) scheme
implemented on the North Carolina continental shelf (typical swell propagation time across the shelf is
about 3 h) are shown to be comparable to the angular diffusion predicted by the wave–bottom Bragg
scattering theory, in particular for narrow directional spectra, suggesting that the true directional spread of
swell may not always be resolved in existing wave prediction models, because of excessive numerical
diffusion. This diffusion is effectively suppressed in cases presented here with a four-step semi-Lagrangian
scheme, using the same value of �t.

1. Introduction

Phase-averaged models that aim to predict the evo-
lution of surface gravity waves over distances much
larger than the wavelength are usually based on a spec-
tral energy balance (Gelci et al. 1957). The wave field
can be represented by the spectral energy density F (x,
k, t), in wavenumber vector space (k), as a function of
geographical space (x) and time (t). Neglecting cur-
rents, the energy balance equation is given by (e.g.,
Whitham 1974; Willebrand 1975)

�F

�t
� �x · �cgF� � �k · �ckF� � S, �1�

where �x and �k are divergence operators in geographi-
cal and wavenumber space, respectively, and cg (the
group speed) and ck are the corresponding energy
transport velocities. The source term S (k, x, t) is the net
rate of energy transfer to component k resulting from
interactions with the bottom and the atmosphere, and
nonlinear interactions with other components of the
spectrum. This transport equation, similar to Boltz-
mann’s equation for gas kinetics, is written in terms of
local values of the wave energy, as could be measured
by a fixed instrument. For each spectral component (1)
can be discretized at fixed locations in physical and
wavenumber vector space and integrated in time on an
Eulerian grid. This type of numerical model is widely
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used in deep water applications where large spatial and
temporal scales of wave evolution allow for relatively
coarse grids (e.g., WAMDI Group 1988). Finite-
difference approximations of the gradients in (1) intro-
duce numerical diffusion in time, and in both physical
and wavenumber spaces. These effects can be mitigated
by using higher-order finite-difference schemes, but
this enhances the “garden sprinkler effect”; that is, en-
ergy tends to flow with discrete group speeds along the
discretized propagation directions, causing over large
distances an artificial accumulation of energy at dis-
crete locations rather than the smooth dispersion of a
continuous spectrum. This garden sprinkler effect is
usually reduced by introducing additional numerical
diffusion, thereby losing part of the accuracy of the
higher-order advection scheme. Tolman (2002) gave a
review of this approach with new improvements.

Although source terms play a dominant role in the
generation process, the local changes in wave proper-
ties are often dominated by propagation effects that are
well described by linear wave theory (see, e.g., Brether-
ton and Garrett 1969; Mei 1989), in particular for swell-
dominated sea states and in shelf regions with complex
and shallow bottom topography (Lavrenov 2003). Ray
theory for waves propagating through a slowly varying
medium can be used to simplify (1) by writing the en-
ergy balance following a wave packet along its ray tra-
jectory:

dF

dt
� S. �2�

The conservative form of (2), that is, with S � 0, states
that the energy density in wavenumber vector space
does not change along a ray (although the wavenumber
vector itself does change) and was established by
Longuet-Higgins (1957). It can also be derived from
more fundamental conservation laws (Lavrenov 2003,
and references therein).

Numerical evaluation of (2) only describes the
changes in the energy of the moving wave trains; it thus
also requires the computation of all ray trajectories fol-
lowed by the spectral components, keeping track of
changes in wavenumber vectors along the rays. All this
is obtained from linear refraction theory using well-
known ray-tracing algorithms (see Ardhuin et al. 2001).
For spectral applications it was clearly demonstrated
that backward ray tracing, from a given arrival point, is
preferable to forward ray tracing, from parallel direc-
tions in deep water toward the area of interest (see, e.g.,
O’Reilly and Guza 1993; Bouws and Battjes 1982).

Such a “Lagrangian” method (in the sense that we
follow wave groups but not water particles) is economi-

cal when rays are fixed in time, that is, in the absence of
significant variable currents or temporal changes in sea
levels, because rays can be precomputed once and for
all. Furthermore, ray computations can be performed
on a bathymetry grid different from the wave model
grid, taking advantage of the full resolution of the
bathymetric data available. The Lagrangian approach
was initially used with S � 0 (e.g., Dobson 1967), pro-
viding an accurate method for the transformation of
swell over complex bathymetry (e.g., O’Reilly and
Guza 1991). Cavaleri and Malanotte-Rizzoli (1981) in-
troduced a nonzero source term S, assuming that for a
given wave component k, S (k) is only a function of the
energy of that component, which is appropriate for
commonly used parameterizations of some physical
processes, such as wave generation by the wind [see
also the review by Lavrenov (2003)]. Recently Ardhuin
et al. (2001) presented a generalized model [Coupled
Rays with Eulerian Source Terms (CREST)] that can
handle arbitrary source terms, including scattering pro-
cesses that couple different spectral components, such
as wave scattering by the bottom topography (Ardhuin
and Herbers 2002) or “quadruplet” wave–wave inter-
actions (Ardhuin et al. 2004). The extension to arbi-
trary source terms is achieved by the interpolation of
source terms from a fixed Eulerian grid onto the rays.
The model essentially combines the well-established
physical description of wave spectra evolution in the
form of source terms with the accurate nondiffusive
advection of finite spectral bands along rays. It also
allows a stable integration of (2) with arbitrary time
steps. Furthermore, the advection computations can be
carried out over finite bandwidths using precomputed
rays, thus eliminating the garden sprinkler effect of fi-
nite-difference schemes that use discrete spectral com-
ponents (e.g., Tolman 2002).

The high computational cost of the full-Lagrangian
advection scheme in CREST, associated with the vari-
ability of ray trajectories over large distances, is still
prohibitive for large regional (e.g., 500 km of coastline)
or global implementations on a workstation. Some al-
ternative schemes, such as the “piecewise ray method”
(Sobey 1986; Young 1988; Benoit et al. 1996) achieve
numerical efficiency by propagating wave energy over
only one time step along the ray trajectories, from lo-
cations (“roots”) determined by the ray calculations to
the grid points (the “plant”). However, the interpola-
tion necessary at these roots to determine the local en-
ergy from the neighboring grid points introduces nu-
merical diffusion at each time step, similar to low-order
finite-difference schemes.

Although it is well recognized that some numerical
schemes commonly used in spectral wave prediction
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models are too diffusive to accurately propagate a lo-
calized disturbance over large distances (e.g., WAMDI
Group 1988; Booij et al. 1999), the errors introduced by
numerical diffusion in naturally broad wind-generated
wave fields are not well known. In deep water, fre-
quency and directional dispersion of swell causes a
natural diffusion of energy in physical (x) space but also
narrows the wave field in wavenumber (k) space. In
shallow water, refraction can cause large spatial gradi-
ents in wave energy that enhance numerical diffusion.
Wave–wave and wave–bottom scattering processes, on
the other hand, provide natural diffusion mechanisms
that tend to broaden the wave spectrum (Hasselmann
1966). Hindcasts of swell transformation across a wide,
irregular shelf, using the wave model CREST, showed
that diffusion by wave–bottom interactions (class I
Bragg scattering) approximately doubled the direc-
tional spread near the shore of the North Carolina
Outer Banks (Ardhuin and Herbers 2002).

The goal of the present paper is therefore to evaluate
whether this type of scattering process can be resolved
by numerical models that, for this purpose, may be lim-
ited by numerical diffusion. To investigate this question
we propose a generalization of the Lagrangian CREST
scheme, a multistep ray method, with an arbitrary num-
ber of time steps over which the wave energy is ad-
vected along the same ray, offering a clear and flexible
trade-off between computational cost and numerical
diffusion (section 2). The technique has similarities
with INTERPOL, the semi-Lagrangian scheme de-
scribed by Lavrenov and Onvlee (1995) and Lavrenov
(2003, chapter 3). The present approach is illustrated in
section 3 with predictions of the evolution of the direc-
tional spread of swell across the broad and shallow
North Carolina–Virginia continental shelf during the
Shoaling Waves Experiment (SHOWEX), comparing
the effects of numerical and physical (Bragg scattering)
diffusion in model results. Conclusions and perspec-
tives for this generalized multistep propagation scheme
are given in section 4.

2. Generalization of the CREST numerical scheme

CREST is a phase-averaged spectral wave prediction
model based on Eq. (2) described in detail by Ardhuin
et al. (2001). First, in the precomputation phase, ray
trajectories for the waves are traced backward from
fixed Eulerian grid points with positions xi to the model
boundary. Source terms are evaluated at the grid points
and interpolated onto the rays. The spectrum F is dis-
cretized in fixed frequency–direction bins, taking ad-
vantage of the conservation of wave frequencies along
the rays. However, the spectral density F is still ex-

pressed as density in wavenumber vector space because
only this density is conserved along the rays in the ab-
sence of source terms. Source terms are interpolated
linearly in space and direction to match the local ray
position and direction.

Along each ray, arriving at xi we define a Lagrangian
energy density FL(t, �) as the energy density “up-
stream” of xi at time t, where � is the energy advection
time from the local ray position to the grid point xi. At
xi, the Lagrangian densities FL(t, 0) are averaged over
all the rays that arrive at xi within a frequency–direction
bandwidth �f��, yielding the band-averaged discrete
Eulerian spectrum FE( fj, �l, t) at xi. Here �� is taken to
be fixed, while �f generally increases with frequency.
At each grid point a source term S( fj, �l, t) is deter-
mined from the full Eulerian spectrum FE and other
local parameters such as wind stress and bottom rough-
ness. Then S is interpolated at the local ray positions to
yield the source term S̃(t, �) along the rays, which in
turn modifies FL(t, �) (see Ardhuin et al. 2001, their
Fig. 1).

Although the propagation over short distances for a
finite bandwidth may be well represented by the posi-
tion and direction along a single ray, the rays are scat-
tered by complex topography. Thus several rays are
needed to account for the variety of trajectories that
reach a grid point with frequencies and directions in the
same discrete band. As a result of this “scintillation” of
rays, the cost of the CREST scheme increases rapidly
with increasing model domain size. That is, the further
the rays are integrated, not only must more rays be
computed to describe widely scattered ray bundles, but
these ray bundles also cover a larger region, thus in-
creasing the effort to interpolate the source terms. The
computational effort can be reduced by dividing the
entire model domain into subdomains, at the bound-
aries of which the rays are terminated and the energy is
interpolated from the neighboring boundary points
(Ardhuin et al. 2001).

A more general and flexible approach is used here.
Rays are terminated after a given number of time steps
N. At the termination point, the wave energy density
FL is interpolated from three neighboring grid points.
This interpolation is similar to the interpolation of the
source term, with the difference that for a given ray it is
performed at a fixed location and time N�t, whereas
the interpolated source term S̃ is distributed in space
and time over a ray segment that corresponds to the
finite advection time step �t (Fig. 1). If no source terms
are used, increasing N is equivalent to increasing �t as
the energy is simply advected over larger distances
along the rays. When source terms are included, the
duration of the effective propagation time step N�t is
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essentially decoupled from the source-term integration
time step �t, and N may be varied across the model
domain and spectrum, for example, to better describe
the propagation of swell in regions with complex
bathymetry. If a ray crosses a boundary within a propa-
gation time less than N�t, the energy is interpolated
from the two adjacent boundary grid points (Ardhuin
et al. 2001). Although limiting the number of advection
steps N is somewhat equivalent to dividing the model
domain into subdomains of sizes close to Ncg/�t, where
cg is the group speed, the presented scheme is more
flexible and does not introduce a bias in the propaga-
tion time due to the round-off to a lower integer num-
ber of time steps.

For small values of N (say, 1 or 2) the rays vary only
slightly over a spectral band if the bathymetry and cur-
rents vary slowly over the distance Ncg/�t. Thus for low
N only one or a few rays are needed to represent ac-
curately a finite spectral band (e.g., Benoit et al. 1996).
In these numerically efficient low-N schemes, rays may
be recomputed at regular time intervals to account for
variable currents and water levels that modify the ray
trajectories.

The accuracy of this semi-Lagrangian advection
scheme for a small number of time steps N, and using
many or only one ray per frequency–direction band, is
investigated below through comparisons with predic-
tions of the full-Lagrangian scheme (N � 	). In that
scheme, many rays are used for each spectral compo-
nent, and we adjust their number so that two rays with
neighboring arrival directions have close directions and

positions at their upwave ends. An upper bound on this
number was set to 900 rays per finite frequency–
direction band, which is rarely reached, and a minimum
of 30 rays. Calculations described here use in general
about 50 rays per component [see Ardhuin et al. (2001)
for details on the procedure for adjusting the number of
rays], unless the use of a single ray is specified.

3. Numerical diffusion in the directional spectrum

a. Schematic shelf

A simplified transect version of CREST for an along-
shore uniform shelf was created. The interpolation grid
from which rays are computed is reduced to a line of
points along a cross-shelf transect. A linear cross-shore
interpolation of energy spectra and source terms is per-
formed based on the two neighboring grid points, in-
stead of the three points of the local triangle in the full
model. The time-integration scheme is described by
Ardhuin et al. 2001.

The first test, presented in Fig. 2, uses a simple bot-
tom profile consisting of a plane, gently sloping shelf
(1:3000) with a relatively steep inner shelf and shelf
break (Fig. 3a) that represents the general geometry of
the approximately 100-km-wide U.S. east coast conti-
nental shelf off North Carolina.

Along the cross-shelf transect, grid points were regu-
larly spaced at intervals �x, from 8 to 200 m water
depth. The incident wave energy was taken to be con-
stant in time and distributed uniformly in a single fre-
quency band (0.07–0.074 Hz), with a directional distri-
bution proportional to cosp (� 
 �0), including only
onshore propagating components. The exponent p � 12
was chosen to obtain a narrow offshore directional
spread �� of 15°, close to the observed values in the
period 15–21 September 1999 during SHOWEX (dis-
cussed below). Here �� is based on the first-order mo-
ments and equals the standard deviation of the direc-
tional distribution in the limit of a narrow spectrum
(Kuik et al. 1988). The mean incidence wave direction
was set to 60° (Fig. 2b). The directional distribution was
discretized with a 5° resolution in the model. The model
was integrated in time, starting from energy densities
set to zero across the transect and along the rays until a
steady state was reached.

Model results for different advection schemes are
compared to exact analytical solutions based on the
invariance of the wavenumber vector spectral densities
along ray trajectories given by Snel’s law (Longuet-
Higgins 1957), keeping track of wavenumber vector
changes. These analytical solutions were computed
with 1° resolution for a stepwise constant offshore spec-
trum (with a step width of 5°) that is exactly identical to

FIG. 1. Schematic of the multistep ray advection scheme pro-
posed here. Each ray, back-refracted from a grid point, is termi-
nated after N time steps (here N � 2). At this termination point
the energy density F is interpolated in space and direction, from
three neighboring grid points (thick dashed arrows). The source
term is interpolated in a similar fashion along the rays (solid ar-
rows).
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the one used in the numerical model integrations. Dif-
ferences between model results and Snel’s law are thus
entirely the result of numerical errors in the energy and
direction of waves introduced by the interpolation at
the end of the rays. This error generally has a small
effect on the mean wave direction (less than 0.1° and
not shown) because the interpolation yields both posi-
tive and negative direction errors that tend to cancel.
However, the interpolation tends to diffuse energy to
neighboring rays, thus artificially broadening the wave
spectra.

In the multistep ray advection scheme presented here
this diffusion can be reduced by increasing the number
N of back-refraction steps. The time step �t was kept
constant at 600 s, a typical value used in realistic appli-
cations with time-varying source terms and boundary
conditions. Changing the value of N is equivalent here
to changing the value of �t, keeping the product N�t
constant. Model runs with N � 20 and a finite-
bandwidth representation of each spectral element (us-

ing many rays for each frequency–direction band) cor-
respond approximately to the original CREST scheme,
since the back-refracted rays generally reach the off-
shore boundary in less than 20 steps (with the exception
of very large oblique angles). Good agreement with the
analytical Snel’s law result (�� errors less than 0.4°)
confirms that the full-Lagrangian CREST scheme ef-
fectively eliminates numerical diffusion (Fig. 2b). As N
is reduced, repeated interpolations in direction and
space enhance numerical diffusion. On the inner shelf
the relative increase of �� due to numerical diffusion is
approximately 60% for N � 1, 30% for N � 2, and 15%
for N � 4. To examine how much of this diffusion is due
to spatial interpolations, results for �x � 2 km and 0.5
km are compared in Fig. 2b (squares and triangles). The
nearly identical results indicate that the spatial varia-
tions of the energy densities are well resolved by the
linear interpolation from the grid points to the end of
the rays, even for a relatively coarse 2-km grid, and the
numerical diffusion in this test case is essentially caused
by the directional interpolation. For small values of N,
using a finite-bandwidth representation for the direc-

FIG. 2. (a) Cross-shore depth profile of an alongshore uniform
plane continental shelf, and (b) comparisons of directional
spreads predicted by CREST without source terms (S � 0) using
different multistep ray advection schemes (1, 2, 4, and 20 steps)
with the exact Snel’s law solution for 12-s waves with a mean
incidence angle of 60°. Also included are predictions of a first-
order upwind finite-difference scheme.

FIG. 3. Same format as Fig. 2, for an alongshore uniform
continental shelf with realistic cross-shore topography.
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tion bands yields about twice as much numerical diffu-
sion compared with results for a single ray per band
(shown in Fig. 2b for N � 1). Indeed, the interpolated
energy at the end of a ray is an average of wave ener-
gies, previously advected by rays spanning a �� inter-
val, and thus this average is clearly a source of numeri-
cal diffusion. However, if a single ray is used for each
band, this interpolation at the end of the ray resolves
linear variations in energy between adjacent bands and
is therefore less diffusive.

The test results for full- and semi-Lagrangian
schemes are compared in Fig. 2b with predictions of an
explicit first-order upwind scheme that uses finite dif-
ferences to represent the gradients in the Eulerian spec-
tral energy balance [Eq. (1)]. The finite-difference
scheme was implemented on a frequency ( f )–direction
(�) grid, taking advantage of the fact that f is conserved.
On an alongshore uniform shelf, Eq. (1) reduces to an
advection equation in three dimensions: x, �, and t. To
keep the Courant numbers, in both x and � space, be-
low 0.6, �x and �t were reduced to 0.25 km and 15 s,
respectively. Results indicate that the semi-Lagrangian
schemes, even the most diffusive N � 1 scheme, give
less numerical diffusion than the first-order finite-
difference scheme. In contrast to the semi-Lagrangian
schemes, the finite-difference scheme does not account
for wave refraction on subgrid scales (in space and di-
rections) and thus introduces numerical errors in re-
gions with significant depth changes over a grid cell.
The associated strong diffusion is evident in the steeper
shelfbreak and inner-shelf regions in Fig. 2b. The nu-
merical results of the finite-difference scheme converge
to the analytical result only if both �x and �� are re-
duced, and the required resolution, of the order of 100
m and 0.1°, makes applications to realistic two-
dimensional cases prohibitively expensive. The direc-
tional resolution �� � 5° used here is already 3 times
smaller than what is generally used in operational mod-
els, while a spatial resolution �x of the order of 1 km is
a typical value for shallow-water applications.

The same test case was repeated using a more real-
istic cross-shelf bottom profile, taken from surveys of
the actual North Carolina shelf, just south of the en-
trance to the Chesapeake Bay (Fig. 3a). This more ir-
regular topography causes stronger refraction that fur-
ther enhances the artificial directional smoothing of the
numerical schemes. The upwind finite-difference
scheme yields the largest errors, overpredicting �� by a
factor of 2–3 across most of the shelf (Fig. 3b). The N �
1 semi-Lagrangian schemes typically overpredict �� by
40%–60%, and these errors are reduced to less than
20% for the multistep N � 4 scheme.

b. Physical and numerical diffusion in a SHOWEX
hindcast

Model tests for an alongshore uniform shelf show
that numerical diffusion caused by the directional dis-
cretization of the wave spectrum can broaden artifi-
cially the directional spectra predicted by wave models.
For realistic bidimensional bathymetry, physical pro-
cesses, in particular refraction and scattering of waves
by the bottom topography, may also broaden direc-
tional wave spectra across the shelf. The importance of
controlling numerical diffusion in a realistic setting with
natural physical diffusion is investigated here by com-
paring different numerical schemes in hindcasts of ob-
served swell evolution across the North Carolina con-
tinental shelf. During SHOWEX, a cross-shelf transect
of six surface-following Datawell Directional Wave-
rider buoys was deployed from September to Decem-
ber 1999. Data from three buoys, X1, X4, and X6, in
20-, 33-, and 193-m depth, respectively, are used here
(Fig. 4). A description of the experiment, data process-
ing, and hindcast procedure is given by Ardhuin (2001)
and Ardhuin et al. (2003b). Wave measurements were
also available from permanent instruments, including
pitch-and-roll buoy 44014, maintained by the National
Data Buoy Center (NDBC) in 49-m depth, and an array
of pressure gauges in 8-m depth (8M in Fig. 4) at the
U.S. Army Corps of Engineers Field Research Facility
(FRF) in Duck, North Carolina.

The model CREST was implemented covering the
entire shelf with 570 grid points extending from
34°30�N, south of Cape Hatteras, to 38°N, at the Vir-
ginia–Maryland border on Assateague Island. The
model uses 29 frequency bands from 0.05 to 0.15 Hz,
and 72 direction bands regularly spaced at 5° intervals.
For each of these finite bands, bundles of rays were
traced from all grid points. The grid was subdivided
into nine subdomains (numbered 1–9 in Fig. 4) coupled
at their mutual boundaries, where the ray computations
were stopped. The incident wave conditions along the
offshore model boundary are based on linear interpo-
lation of spectral data from buoys X6 and 44014. The
energy balance [Eq. (2)] was integrated with a 10-min
time step, using source terms that represent wave–
bottom Bragg scattering (Ardhuin and Herbers 2002)
and bottom friction over a movable bed. The bottom
friction source term is a slightly modified version of the
formulation proposed by Tolman (1994) that was tuned
to improve the hindcast skill of swell wave heights ob-
served during SHOWEX and the earlier DUCK94 ex-
periment (Ardhuin et al. 2003a). Predictions both with
and without Bragg scattering were made to quantify the
contribution of this process to directional diffusion. Al-
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though the model is fully spectral, comparisons pre-
sented here are restricted to the mean direction �p and
directional spread ��,p at the peak frequency. Analysis
of spectra suggests that bottom friction does not have a
strong effect on the spectral distribution of wave energy
(Ardhuin et al. 2003b), while wave–bottom scattering is
a linear process that does not transfer energy between
wave components that have different frequencies.

The mean direction and directional spread in the pre-
vious academic examples correspond to values at the

peak frequency observed on 15 September at the off-
shore buoy X6 when narrowband swell arrived from
Hurricane Floyd at large oblique angles (150  �p 
160°, where �p is direction from, in nautical convention,
and ��,p � 15°; see Fig. 5a). Swell from Hurricane Gert
on 17–21 September was similar, except for the mean
wave direction (�p � 120°) that was closer to normal
incidence to the coastline.

Differences between observations at buoys X6 and
44014 (both located on the outer edge of the shelf) on
15 September suggest that errors may result from varia-
tions of the deep water wave field that are poorly rep-
resented in the model incident wave conditions, inter-
polated from the measured spectra at X6 and 44014,
spectra from the latter being first “back refracted” to
deep water. Additional uncertainty in the model pre-
dictions results from applying a uniform bottom-
elevation spectrum in the Bragg scattering source term,

FIG. 5. Observations of directional spread at the peak frequency
��,p (lines) are compared with model predictions of wave refrac-
tion and damping using various semi-Lagrangian advection
schemes (symbols). Also shown are predictions of the full-
Lagrangian scheme, including the physical diffusion effect of
wave–bottom scattering (triangles). (a) Buoys X6 and 44014 (ob-
servations only), (b) buoy X4, and (c) buoy X1 (locations indi-
cated in Fig. 4). Field data and model results are shown for swell-
dominated periods only (see Ardhuin et al. 2003b for details).

FIG. 4. CREST model grid. The nodes of the triangular mesh
are grid points from which rays are back-refracted and where
source terms are evaluated. The entire model domain is divided
into subdomains, numbered 1–9, separated by thicker lines. Lo-
cations of a few of the instruments deployed during SHOWEX
are indicated. The coastal area around 8M and X1 is blown up on
the left.
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based on limited high-resolution bathymetry data. De-
spite these uncertainties the predictions of ��,p obtained
with the full-Lagrangian scheme including Bragg scat-
tering agree well with the observations, indicating that
the dominant physical processes are well represented in
the model. A more detailed analysis of over 50 days of
swell-dominated conditions is given by Ardhuin (2001)
and Ardhuin et al. (2003a, b). A systematic underpre-
diction of directional spread at nearshore sites is the
likely result of other scattering processes not included
in the present model, such as nonlinear wave–wave in-
teractions (see Herterich and Hasselmann 1980; Her-
bers and Burton 1997; Zaslavskii and Polnikov 1998).

Integrating the model with only the bottom friction
for source term and the full ray advection scheme, the
directional spread decreases dramatically across the
shelf (Figs. 5b,c, diamonds), in particular for the large
oblique incidence angles on 15 September. This direc-
tional narrowing is, however, weaker than on the along-
shore uniform topography since refraction on the two-
dimensional shoals tends to increase directional spread.
Using the multistep ray advection scheme with N � 1
introduces numerical diffusion that occasionally
doubles ��,p at X1 (cf. squares and diamonds in Fig. 5).
At X4 (Figs. 5b,c) the numerical diffusion is less severe
due to the shorter propagation distance. For the most
oblique incident waves (15 September) the broadening
of directional spectra due to numerical diffusion for N
� 1 is larger than that predicted by wave–bottom Bragg
scattering (triangles in Fig. 5). It suggests that this
source term should be used with caution when com-
bined with numerically diffusive advection schemes,
such as piecewise ray methods (N � 1), or first-order
finite-difference schemes. However, earlier on Septem-
ber 14, as well as during the period 17–21 September,
the physical Bragg scattering diffusion appears to be
stronger than numerical diffusion, even for N � 1, sug-
gesting that diffusive low-order numerical schemes may
yield reasonable predictions for these more commonly
observed broader wave spectra.

4. Summary and conclusions

A multistep ray advection scheme is proposed here
for phase-averaged wave models. It is based on the
Lagrangian energy balance [Eq. (2)] and generalizes
the fully Lagrangian advection scheme of the CREST
wave model (Ardhuin et al. 2001) by reducing the time
interval over which energy is advected along a given ray
trajectory. This time interval, a multiple N of the pre-
defined time step �t used for the source-term integra-
tion, can be adjusted between the original fully
Lagrangian scheme (N � 	, in practice limited by the

model domain size) and the efficient but diffusive
piecewise ray methods (N � 1; Sobey 1986). This
scheme belongs to the class of semi-Lagrangian
schemes with the earlier INTERPOL scheme of
Lavrenov and Onvlee (1995), and it is unconditionally
stable, can be implemented on an arbitrary irregular
spatial grid, and effectively eliminates the garden sprin-
kler effects of finite-difference schemes by using finite
bandwidths.

The finite-bandwidth representation used in CREST,
computing as many rays as necessary to resolve their
variability, is probably more accurate (and slower) than
the angular smoothing technique used in INTERPOL
for the shallow-water cases described here with strong
refraction effects. However, in deeper water the latter
technique is probably more efficient. For large values
of N, a large number of rays is needed to describe a
finite bandwidth, resulting in an expensive precompu-
tation effort. The effort of both computing rays and
integrating the energy balance equation is reduced
drastically in a low-N scheme requiring only a single or
a few rays to describe a band. This efficiency makes
possible a frequent update of the rays to represent the
variable refraction due to unsteady currents and water
levels, already performed in the TELEMAC-based Op-
erational Model Addressing Wave Action Computation
(TOMAWAC) piecewise ray model (M. Benoit 2001,
personal communication). In the academic test, pre-
sented in Fig. 2, the N � 1 single-ray advection scheme
was 5 and 2.5 times faster than N � 20 and 4 multistep
schemes with finite-bandwidth representations, yield-
ing a maximum error of �� of 35%, compared with 4%
and 15% for N � 20 and 4, respectively (Fig. 6).

The N � 1 finite-bandwidth scheme is both less ac-
curate (55% error) and slower (by a factor of 1.5) than
the N � 1 single-ray scheme but has the benefit of
eliminating the garden sprinkler effect that may appear
in large domains with regular spatial grids. On the real
shelf bathymetry the N � 1 finite-bandwidth ray advec-
tion scheme was already quite efficient, making the en-
tire computation (including source-term computation
and interpolation) 4 times faster than the original
CREST scheme.

The effectiveness of the present semi-Lagrangian
scheme in reducing numerical diffusion was demon-
strated with academic tests and observations of the evo-
lution of the directional spread �� of swell across the
shelf during the Shoaling Waves Experiment in 1999.
Although this parameter is rarely given much attention,
it has important implications for nearshore morphody-
namics (Reniers et al. 2004) and forces on structures. A
single-step ray advection scheme may artificially
broaden the directional spectrum, sometimes more so
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than the predicted natural diffusion resulting from
wave scattering by the bottom topography. These er-
rors are effectively suppressed by increasing N (e.g., a
four-step scheme with a 600-s time step was sufficient
for the North Carolina shelf). These results demon-
strate the usefulness of semi-Lagrangian schemes for
studying natural scattering processes that may be bur-
ied in the numerical noise when other schemes are
used.

Further work is needed, including model intercom-
parisons for realistic wind–sea cases and verification of
predicted full spectra and other wave parameters (e.g.,
Lavrenov and Onvlee 1995), to evaluate the potential
benefits of the scheme presented here, in terms of both
accuracy and cost, for routine wave forecasting or hind-
casting.
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