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Oceanic pressure measurements, even in very deep water, and atmospheric pressure
or seismic records, from anywhere on Earth, contain noise with dominant periods
between 3 and 10 s, which is believed to be excited by ocean surface gravity waves.
Most of this noise is explained by a nonlinear wave—-wave interaction mechanism,
and takes the form of surface gravity waves, acoustic or seismic waves. Previous
theoretical work on seismic noise focused on surface (Rayleigh) waves, and did not
consider finite-depth effects on the generating wave kinematics. These finite-depth
effects are introduced here, which requires the consideration of the direct wave-
induced pressure at the ocean bottom, a contribution previously overlooked in the
context of seismic noise. That contribution can lead to a considerable reduction of
the seismic noise source, which is particularly relevant for noise periods larger than
10 s. The theory is applied to acoustic waves in the atmosphere, extending previous
theories that were limited to vertical propagation only. Finally, the noise generation
theory is also extended beyond the domain of Rayleigh waves, giving the first
quantitative expression for sources of seismic body waves. In the limit of slow phase
speeds in the ocean wave forcing, the known and well-verified gravity wave result
is obtained, which was previously derived for an incompressible ocean. The noise
source of acoustic, acoustic-gravity and seismic modes are given by a mode-specific
amplification of the same wave-induced pressure field near zero wavenumber.
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1. Introduction

Ocean waves generate noise in a wide range of acoustic frequencies f;. The
upper end of the spectrum, f; > 100 Hz, is dominated by wave breaking and
associated bubbles (Knudsen, Alford & Emling 1948), whereas the lower-frequency
part, nominally f; < 2 Hz, is mostly expected to be caused by the nonlinearity of the
hydrodynamic equations, on which we focus here. The general sound generation by
fluid flows was described theoretically by Lighthill (1952). Longuet-Higgins (1950)
showed how seismic waves can be generated by the same process, with noise radiating

T Email address for correspondence: ardhuin @ifremer.fr


mailto:ardhuin@ifremer.fr

Double-frequency noise generation from surface gravity waves 317

along the Earth’s crust in the form of Rayleigh waves. That theory was extended to
random waves by Hasselmann (1963), and later cast in the more general framework
of wave—wave interactions (Hasselmann 1966). Work on compressible flows has also
been extended to the study of tsunamis. In that context, Okal (1988) discussed the
compressibility effect on gravity modes, which we will call here ‘acoustic-gravity
modes’, and the gravity effect in seismic ‘pseudo-Rayleigh’ waves, which we will
refer to as ‘Rayleigh’ modes. Interest in seismic noise has risen sharply over the last
few years with the enforcement of the Comprehensive Nuclear Test Ban Treaty, and
motivated by the work of Shapiro et al. (2005) who demonstrated that seismic noise
correlation could provide a unique monitoring method for the properties of the solid
Earth.

Recent numerical models based on the Longuet-Higgins—Hasselmann (LHH) theory
for Rayleigh wave generation have shown good agreement of modelled seismic
noise spectra with observations (Kedar et al. 2008; Ardhuin et al. 2011). It is
still unclear whether most of the uncertainties on the modelled noise level can
be attributed to errors in the seismic sources, associated with a poorly constrained
directional distribution of the ocean surface wave spectrum, or to errors in the seismic
propagation. Seismic observations have also revealed body waves (e.g. Koper, Seats
& Benz 2010; Landes et al. 2010; Hillers et al. 2012), for which no complete theory
has been proposed to date. Vinnik (1973) did propose a theory for compressional (P)
waves, but he did not consider the important effect of the water layer.

Further, the generation of Love waves, which are surface shear waves polarized in
the horizontal direction, is not well understood. These Love waves are particularly
important for frequencies below 0.02 Hz or above 1 Hz (e.g. Bonnefoy-Claudet,
Cotton & Bard 2006; Kurrle & Widmer-Schnidrig 2008; Nishida et al. 2008). The
low-frequency Love waves may be excited by the direct action of long surface
gravity waves (known as infragravity waves), on a sloping bottom (Fukao, Nishida
& Kobayashi 2010), in a way similar to the generation of primary microseisms
described by Hasselmann (1963). Here we narrow the scope of our investigation and
only consider nonlinear wave—wave interactions, which leads to noise with frequencies
double that of the surface gravity waves.

Finally, the level of acoustic noise has also been explored as a potential source of
information on the poorly known directional spectrum of short gravity waves (Tyler
et al. 1974). Farrell & Munk (2008, 2010) and Duennebier er al. (2012) showed a
large variability of the spectral level in the frequency range 0.1-50 Hz that is clearly
related to the sea state. Their interpretation of the data, following previous studies
of underwater noise (e.g. Hughes 1976; Lloyd 1981; Kibblewhite & Ewans 1985), is
based on sound generated by waves in an unbounded ocean. Although this simplified
approach is reasonable for high-frequency noise, the neglected reflection from the
seafloor and subsequent reverberations in the bounded ocean may strongly amplify the
lower-frequency resonant modes.

Given the renewal of interest in seismic and acoustic noise, we found it appropriate
to revisit Hasselmann’s theory. We thus illustrate, correct and add a few missing
aspects. These corrections include important terms for intermediate and shallow water
that have not been considered before for the compressible conditions, although they
were verified in the incompressible limit (Herbers & Guza 1994). The compressible
equations of motion are used to derive a consistent solution in terms of gravity,
acoustic and seismic modes, including both surface Rayleigh waves and compressional
(P) or shear (S) body waves. This solution for body waves has not been given before.
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FIGURE 1. (Colour online) (@) The vertical evanescent or propagating nature of the noise
field in the solid and liquid layers is defined by the horizontal phase speeds relative to the
distinct values of the sound speed in the ocean (w,), and the shear (8) and compression
(ce.) speeds in the crust. From slow to fast, there are the acoustic-gravity (AG) domain, the
Rayleigh (R) wave domain, and two body-wave domains (S only, and P and S together).
(b) For any fixed frequency, the four domains correspond to four concentric regions in
the wavenumber plane. For three selected noise frequencies generated by OSGW in the
infragravity, dominant and high-frequency ranges of the forcing wave field, the limiting
wavelengths between the four domains are indicated, using «,, = 1.5 km s7, B=32kms!,
a. = 5.54 km s~!. One example of interaction (black vectors) is shown with two gravity wave
modes that interact to generate a Rayleigh wave.

Building on the seismo-acoustic paradigm proposed by Arrowsmith et al. (2010),
the basic idea of the present paper is that all modes of motion can be excited by
ocean surface gravity waves (OSGW) of any frequency. For a given pair of interacting
frequencies f and f’, the frequency of the generated noise is f + f’, and the different
types of waves are only distinguished by their phase velocity, or equivalently by their
horizontal wavenumber K, which is the norm of the vector sum of the wavenumbers,
K =k + k', of the interacting OSGW, as shown in figure 1. This type of wave-wave
interaction is one of the lowest-order interactions (Hasselmann 1966).

In physical space, one such interaction excites waves with horizontal wavelength
L, =2xn/K, and different vertical patterns in the atmosphere, ocean and crust, owing
to the very different speeds for compression waves in these three media. Figure 2
shows how the same forcing can give almost vertically propagating waves in the
atmosphere, waves that propagate almost horizontally in the ocean, and evanescent
waves in the crust. The analysis of a pair of interacting wave-trains is key to our
interpretation of the different noise modes. The broad-band wave spectrum of ocean
waves results in the superposition of all possible pairs of OSGW wave-trains, and thus
all possible noise waves, propagating or evanescent, that radiate in all directions. This
broad spectrum allowed (Longuet-Higgins 1950) to consider all interactions at once,
replacing the wave-induced forcing by an equivalent point source exerted on the sea
surface. However, that latter approach is only valid for noise wavelengths much larger
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FIGURE 2. (Colour online) (a) Schematic of second-order pressure field, in
greyscales/colours, associated with double-frequency noise, forced by the interaction of a
single pair of directionally opposing monochromatic wave-trains on the sea surface that form
periodic groups. The individual waves in the group advance very slowly, at the OSGW
phase speed. However, in this particular case, the group as a whole travels slightly faster
than the sound speed in water, and slower than the crust shear and compression velocity.
As a result, the crust elastic waves are evanescent, while ocean and atmospheric waves
propagate also in the vertical. In the ocean, the superposition of upward and downward
waves (dashed lines) gives the vertical mode structure. The number of waves in the group
was reduced for visibility, and for the same reason the amplitudes of the sea surface and
bottom elevations have been exaggerated as well as the pressure fluctuation in the atmosphere
relative to those in the ocean. (b) Schematic of ocean waves with a relatively broad spectrum,
giving rise to the interaction of all possible pairs of wave-trains and noise radiation in all
directions.

Infinite water depth Finite water depth,
h

Surface forcing field (2.29) (2.28)
Bottom forcing field n.a. (2.31)
Gravity-like modes (3.11) not given
Acoustic spectrum (3.10) (4.23)
Microbaroms 3.19) (3.19)
Seismic source (R) n.a. (4.32)
Seismic source (P) n.a. (4.38)
Seismic source (S) n.a. (4.40)
Seismic spectrum (R) n.a. (4.36)
Seismic spectrum (P) n.a. (4.45)

TABLE 1. Summary of theoretical expressions for the gravity, acoustic and seismic noise
fields.

than those of the interacting OSGW. Table 1 points directly to the main theoretical
results of the present paper, and all the symbols and notation are listed in tables 2 and
3 in appendix B.

2. Water wave theory and noise sources

Here we give only a brief derivation of the solution, which is a straightforward
compressible extension to the solution given by Hasselmann (1962). Water column
motions are expanded in powers of the sea surface slope with a linear motion for
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which compressible effects may be neglected (Longuet-Higgins 1950), and a second-
order motion with pressure p, and velocity potential ¢,. It is for this second-order
motion that we are extending previous results. Following again Longuet-Higgins
(1950) we will see that ¢», approximately obeys the same linear acoustic wave equation
as ¢, so that the forcing of the double-frequency noise is only due to boundary
conditions. In contrast to Hasselmann (1963), we consider here the general finite-depth
expression for the surface pressure forcing ps s, and in the boundary condition at
the ocean bottom the additional forcing P, that accounts for the Bernoulli effect
of the near-bed orbital wave motion. The theory presented here extends the second-
order finite-depth theory of Hasselmann (1962) to a compressible ocean and elastic
seafloor.

2.1. Equations of motion

We decompose the water density into a mean value p, and a perturbation p < p,.
Neglecting stratification effects due to temperature and salinity, the fluctuations in
pressure p and water density p are related by an equation of state that involves the
speed of sound in water «,, (Lighthill 1978, equation (32)),

dp ,dp
— =, .
dr Y dr
We assume that the motion is irrotational, so that the velocity field is given
by the gradient of the velocity potential ¢. This assumption, which implies a
frictionless interior ocean, is well supported by the observed weak attenuation of
swells propagating across ocean basins (Ardhuin, Chapron & Collard 2009) and local
comparisons of the observed wave orbital motion with second-order wave theory (e.g.
Herbers, Lowe & Guza 1992). Vorticity effects can be important in the vicinity of the
surface and bottom boundary layers (e.g. Longuet-Higgins 1970), or in the presence
of sheared currents (e.g. Peregrine 1976). The former effect has little influence on
the pressure field, which is our primary interest, and we will not consider here the
effects of currents. Because of the importance of the apparent gravity acceleration g,
which defines the vertical axis, we separate horizontal and vertical components using
vectors and gradient operators in the horizontal plane, e.g. u = V¢ = (d¢/dx, d¢p/9y)
and w = d¢/dz. The conservation of mass of sea water is

(2.1)

dp 0%
— ==,V — pp—r. 22
ar PV —p ¥ (2.2)
Equations (2.2) and (2.1) can be combined to eliminate p,
dp s oo 92
—=—p, Vet —| ¢. 2.3
dt P [ + 972 ¢ 3)

From (2.1), the water density is only a function of the pressure. The two unknowns
p and ¢ are also related by the momentum conservation equation, with can be cast in
the form of Bernoulli’s equation (see e.g. Lamb 1932, § 20),

3 _ _Vloura ()| _p _
= 2{Wq{)l +<32>] y gz+ C(), 2.4)

with C(¢) a time-varying but spatially uniform function.



Double-frequency noise generation from surface gravity waves 321

The boundary conditions at the surface z = ¢ are given by the continuity of pressure
and vertical velocity

P = PDa; 2.5
0% _ 9 =
ETZ_Vd) Ve + 5, =1 (2.6)

with the atmospheric pressure p,. This expression is translated to the mean sea level
z =0 with a Taylor expansion for ¢,

CIGEY: 3¢
— — —>~-V¢.V — atz=0. 2.7
ot oz O-VEH LG, Az 7
Following Longuet-Higgins (1950), we shall now expand the solution in powers of
the surface slope, with the sea surface elevation ¢, associated with linear waves, and a

nonlinear correction ¢, such that |{,| < |¢;]| (see also e.g. Hasselmann 1962),
(=6+8&, ¢=0¢1+ b (2.8a,b)

2.2. Linear solution

We consider the case of a constant depth h. Compressibility effects in the linear
solution are negligible for our purpose (see Longuet-Higgins 1950, equation (123)), so
that we may use

- sgeosh(kz + k) | s
— 75 1(k-x—mt)’ ~ _ Ecosizb 1(k-x—mt)’ 2.9 ,b
‘ kz e ” ; "o cosh(kh) M (290.0)

where k is the norm of the horizontal wavenumber vector k, s is a sign index equal
to —1 or +1, so that s =1 corresponds to waves propagating in the direction of the
vector k, and s = —1 corresponds to the opposite direction. The radian frequency o is
given by the dispersion relation for linear waves (de Laplace 1776),

o = +/gktanh(kh), (2.10)

giving the group speed

C,=— =
£ 9k k

_ do o |1 N kh 2.11)
2 sinh(2kh) | '

2.3. The negligible near-surface forcing
Eliminating p between (2.3) and (2.4), we obtain the acoustic wave equation

g 1 , [0\’
8t+2<w¢|+<&>>}, (2.12)

where the gravity term has been removed by our approximation of a constant mean
density. That term is usually neglected eventually in the solution (Stoneley 1926). The
expression for the C(¢) term in (2.4) is given by equation (28) of Longuet-Higgins
(1950) and it is actually zero provided that there are no standing waves, i.e. we do not
consider the case of wave-trains of exactly equal frequency and opposite direction. For
broad wave spectra we may indeed neglect these contributions since the measure of
such pairs of wave components is zero while the measure of nearly opposite waves is
finite.

fyry ], d
o — | p=—
v 972 dr
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Our equation (2.12) corresponds to equation (130) in Longuet-Higgins (1950), who
showed that the nonlinear terms yield a contribution (his F terms) that is of the order
of g/(2a2k) times the other terms. Even for very long waves with a wavelength of
50 km, this factor is 0.02, so that we shall neglect this source of wave forcing. This
leads to a linear wave equation for the second-order velocity potential,

—22 o’ z—l——z ¢, for —h<z<0 (2.13)
~a- |V or <z<0. .
82t w 8Z2 2

2.4. Surface forcing

Because the compressibility only affects the mass conservation equation, it does
not modify the kinematic and dynamic boundary conditions. These are given by
Hasselmann (1962). The unknown ¢ is eliminated from the linear terms by adding
d(2.4)/0t evaluated with (2.5), and g x (2.7). This combination of kinetic and dynamic
boundary conditions gives an equation for the velocity potential to second order in the
wave slope, valid at z = 0. Keeping the lowest-order nonlinear terms we have

92 3 3%,
ﬁ"‘gafz $r=—g |V -V +{ poR
19 NI 3¢y
~ 2% {|V¢1| +< 8z> + 28 ataz] . (2.14)

We now give the explicit form of the right-hand side using (2.9). As noted by
Hasselmann (1963), we may rewrite (2.14) as

9? 3 1 3P2.qur
— 48— =———" 2.15
(aﬂ +g8z> ¢ ow Ot (2.15)

Namely, our problem is equivalent to the effect of a pressure field p, ,.,r applied at
z=20. Using the linear solution (2.9),

Prsur = pu Y Dok, 5,k $)Z}  Z} @O *H (2.16)
k,s.k s

with the phase function of interacting wave-trains defined by
Ok, k,s,sY=[k+k) -x— (so+5oc')t] 2.17)

and coupling coefficient D, (k, s, k’, s') given by (A 1).

The shape of this pressure pattern is well understood when the full sum in (2.16)
is reduced to only two interacting deep-water wave-trains with amplitudes a and «’
and slightly different frequencies o and o', travelling in opposite directions, as shown
in figure 3. For kh > 1 we may use D.(k,1,—k,1) = —20? and D.(k,1,k, 1) =0.
Defining K = k — k', the equivalent surface pressure is given by the summed interaction

Prsw = —2py0 ad [cos(Kx + 201)]. (2.18)

The corresponding difference interaction yields a short wave, with wavenumber 2k,
that will not be considered here (see e.g. Hasselmann 1963). We note that the
wave forcing P .,s is out of phase with —u?/2, the part of the Bernoulli head
that comes from the horizontal velocities. Indeed, as the wave-trains propagate in
opposite directions, their velocities partially cancel where the surface elevations add
up, thus causing a pattern of higher pressure under the groups of high waves and lower
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FIGURE 3. Generation of supersonic wave groups (in blue) by the superposition of two
opposing deep-water monochromatic wave-trains of nearly equal periods 7 and 7. The
curves show the surface elevation of the individual wave-trains (black and red) or their
combination (blue). The group with length 12 km propagates in the same direction as the
wave-train with the shortest wavelength. If the wave-trains are not exactly directionally
opposing, the group propagates in the direction of the vector K =k + k'. The red and black
dots are attached to the wave crest of each train, and move 100 times slower than the blue

group.

pressure under the lulls, which is opposite to the familiar Bernoulli effect of set-down
under groups of unidirectional waves (Longuet-Higgins & Stewart 1962). As a result
the double-frequency perturbations of —u?/2 have a sign opposite to pa . That effect
will be very important for waves in shallow water. In deep water, the contribution of
—w?/2 must also be considered. Using o >~ o', we have

u=oacostkx —ot) —o'd cos(kx + ot), (2.19)
w=ocasin(kx — ot) — o'a sin(kx + o), (2.20)
—? +w)) /2 =ad o’ cos(Kx + 201) — 62(@* + da) /2. (2.21)

Equation (2.18) generalizes the result given by Longuet-Higgins (1950) for equal
wave periods. The standing wave studied by Longuet-Higgins (1950) is thus obtained,
somewhat paradoxically, as the limit of wave groups that travel at an infinite speed,
but that are infinitely long.

For wave directions nearly opposite, instead of exactly opposite, this first term can
propagate in any horizontal direction, given by the direction of K =k + k'

2.5. Noise spectrum and finite-depth effects

Both Longuet-Higgins (1950) and Hasselmann (1963) wused the deep-water
approximation

/ﬁZ,smf = Pw

96\ 2
Vol|? +(£> ] valid for kh > 1, (2.22)

instead of the more complex but more general form given by (2.16). We will illustrate
the important differences between these two expressions for ki < 1, by considering the
forcing of very long components. Indeed, sound waves in the ocean have velocities
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in excess of 1.4 km s~!. As a result, regardless of the vertical wavenumber [, the

horizontal wavenumber vector is relatively small K = /(w?/a? — ) < w,/a,,. Thus
the acoustically noisy wave interactions verify that K < k, which gives k' >~ —k and
f~f with f; >~ 2f. We may thus focus on the estimation of the spectrum of p, s at
K ~0.

For this purpose we introduce the spectral density of this surface pressure in the
three spectral dimensions (K., K, f;). Using the Fourier amplitude p; ,,r(K, f;) of the
forcing pressure ps s, With wavenumber vector K and frequency f;,

|p\2,surf (K,f;) |2

Foosr(K,f5)=2 lim .
2 K. 1) (K10, 0 dK, dK, df,

(2.23)
The factor 2 in the expression makes this a single-sided spectrum, with non-zero
values only for f; > 0. This spectral density is in three-dimensional spectral space, with
SI units of Pa? m? s; it is denoted F,3p in Ardhuin ef al. (2011).

Using (2.16) the surface pressure spectrum can be expressed in terms of quadratic
products of the (linear) sea surface elevation spectrum,

E(k,, k,) =2 lim 24l (2.24)
Y k|0 dk, dk,
with a coupling coefficient from (A 1) that simplifies for K >~ 0 to
1
D.(k,1,—k, 1) =—-20" |1+ ————|. 2.25
2 ) { 4sinh2(kh)] 223

To transform the spectra to frequency direction space we use the Jacobian
transformation

E(f,0)= ?E(kx, ky). (2.26)

8

We now introduce the directional distribution M such that E(f,0) = E(f)M(f, 9), and
we define the directional integral

I(f) = / " M(f, OM(f, 6 + ) do. (2.27)
0

With all this notation we finally obtain

C? dk, dk,
Fro (K >0, f) > 2D%/E COEF, 0 +m) 45—
2, surf ( f5) P (. OE(S )k24rc2dﬁ

~ 22 12 2 M] [ lr
~ p,& fsE”(H)I(f)tanh” (kh) [1 * Sinh(2kh) T+ 4sinh’(kh) |
(2.28)

In deep water (kh >> 1), the equivalent surface pressure is P g,y =~ pw(uf + w%), and its
spectrum (Hasselmann 1963; Ardhuin et al. 2011) is

Fp2,surf(K = va?) = pigz sz(f)I(f) (229)

As shown in figure 4, this spectral density of surface pressure is, in finite depth, up
to four times smaller than the deep-water approximation obtained from (2.22) and used
by Tanimoto (2007) and Webb (2007). This is because the surface pressure actually
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FIGURE 4. (Colour online) Compared to deep water, the source of seismic noise power in

finite water depth is amplified by a factor tanh?(kh)[1 + 2kh/ sinh(2kh)], when accounting
for both the surface and bottom forcing. This is very different from the approximation that
considers the surface forcing only (leading to (2.28)), even more so when using its deep-water
approximation (2.22), which gives an additional factor of 4 difference for kh < 1.

combines two terms. One is p,, (4} + w?)/2 from the momentum conservation equation
— which here takes the form of the Bernoulli equation (2.4) — and the other, which is
equal in magnitude in deep water, comes from the nonlinearity of the surface boundary
condition (2.7). As kh goes to zero, both the latter term and the vertical velocity
contribution to the Bernoulli pressure are small compared with p,u?/2, thus reducing
the surface pressure forcing by a factor of 4.

This effect is not important for the dominant microseismic peak, generated by waves
of period about 10 s, but it may be important for the much longer waves, known as
hum, driven by long surface gravity waves. However, in that case, one should also
consider the direct action of the wave-induced pressure on the bottom.

2.6. Additional bottom forcing

To evaluate noise in the water column, both the second-order pressure forcing applied
at the surface and bottom have to be taken into account. This includes the well-known
Bernoulli effect of a pressure drop in response to an increase in velocity. At the
bottom, this wave-induced pressure is —p,u3/2, which is exactly out of phase with
D2.sur- In the limit kh — 0, it cancels the source of noise that would have resulted from
the surface forcing alone. In physical terms, for k2 = 0, we have the same momentum
balance at the sea surface and bottom, and thus the same pressure perturbations, which
are zero because the pressure just below the surface has to match the atmospheric
pressure.
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For any value of kh, the coupling coefficient given by (2.25) differs from the full
second-order coefficient for the bottom pressure (e.g. Herbers & Guza 1991, equation
(4)), which also involves the Bernoulli head (the term in square brackets in (2.4)).
However, that extra term is also relevant to the generation of seismic noise due to the
bottom boundary condition, which couples the solid crust to the water column. Indeed,
the second-order pressure perturbation at the bottom can be written as

gy .
P2(=h) = =py== + Prsur (2.30)
where the Bernoulli head contribution to the pressure can be expressed in terms of the

first-order wave amplitudes,

~ / Bye ’ /
Prsr =P Y Dk, s. k.5 z=—h)Z} Z} ,e®*K s, (2.31)
ks ks

with a coupling coefficient D,;, given by (A 2).

We may interpret the bottom pressure (2.30) as the sum of the surface forcing ps s
transmitted to the bottom by ¢,, and a direct effect of the Bernoulli head at the bottom,
which is an additional forcing p, ;, that partly cancels Py g,y

We shall see in the next section that the forcing term for seismic noise is
Pasur + €os(lh)P2 e, With | < K < k the vertical wavenumber in the water. For
shallow-water gravity waves, kh < 1 and thus cos(/h) >~ 1 so that the effective forcing
term becomes s yur + Da.sor» Which equals the bottom pressure in the incompressible
limit. The shallow-water asymptote of the spectrum of this total forcing term is very

different from the surface pressure only. Compared to (2.28), the [1 + 0.25/ sinhz(kh)]2
factor is now replaced by 1. For kh < 1, this is a factor (kh)* /16 smaller, as shown
in figure 4. This asymptote is relevant for the hum, the noise with periods larger
than 30 s, which is believed to be driven by long (infragravity) surface gravity waves
(Webb 2007). The source of this hum is attenuated by several orders of magnitude on
the continental shelves and not amplified according to the deep-water approximation
given by (2.22).

3. From surface pressure spectrum to noise spectra

3.1. Dispersion relation and modes

The problem of noise generation by waves has been reduced to that of noise
generation by an equivalent surface pressure field P ,r(x,y, ), with the possible
addition of a bottom pressure field pj (X, y, t) for finite depths. From a statistical
point of view, this equivalent surface pressure is fully represented by its spectrum,
Fpooup(K, f;), where K =k + k' is the sum of the interacting wavenumbers and
fy=f £ f is the sum or difference of the interacting frequencies. Subjected to this
surface forcing, our linearized wave equation (2.13) will have linear solutions. In
particular, any propagating or evanescent solution will take the form

¢» cexpli(Kx + Kyy + Iz — w,0)], 3.1
which, substituted in the wave equation, gives the dispersion relation

{—w? + a2 [K* + 1} =0, (3.2)
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L=2n/K

FIGURE 5. (Colour online) Schematic of wave groups and forced acoustic and seismic
wave motion. For a given wave group period 7, the horizontal wavelength L = 25/K can
be larger than the acoustic wavelength in the water due to the oblique incidence of the
sound waves. The superposition of two obliquely propagating sound waves (arrows) forms
a mode pattern that propagates horizontally at a supersonic speed. The acoustic wavelength

is L, =2n/k, = 2n/~/K* + > = «,,T. Both vertical and horizontal wavelengths are larger.
For readability, the wave and bottom amplitude are not to scale, and we have reduced the
number of waves in the group from 104 to 10. Other than that, the angles are preserved.
The configuration shown here corresponds to the conditions for maximum amplification of
mode 1 (see below), with a vertical wavelength to water depth ratio of 0.75. For a water depth
h = 4400 m, this corresponds to L = 7.7 km and a seismic frequency f; = 0.29 Hz.

where w, = 2mnf,. Both w; and K = |K| are imposed by the forcing, so that the
magnitude of the complex vertical wavenumber / is given by

w;
=K\ 120z ~ 1 3.3)
which yields
¢r = (C'“ 4 De " M)el® @ = (Kx + Kyy — w,0), (3.4a,b)

where C and D are the bottom amplitudes of the upward- and downward-propagating
waves, determined by the surface and bottom boundary conditions.

There are two classes of solutions. The first is those for which w,/K < «, and
thus [ is imaginary: these are ‘acoustic-gravity’ modes with an amplitude that decays
exponentially from the sea surface. For the shortest components, we have w,/K < «,,
and thus [ = ik, corresponding to the incompressible limit in which only gravity
is important. The other class of solutions, for which w;/K > «, and [ is real, are
the acoustic modes that propagate along both vertical and horizontal dimensions, as
illustrated in figure 5.

The equations of elasticity in the crust yield the same wave equation, one for
compressional and another for shear motions, with «, replaced by the crust’s
compressional wave speed o, and shear wave speed B, respectively (e.g. Aki &
Richards 2002). Since we have «,, < B, < o, we can distinguish four different regimes
depending on the value of the horizontal phase speed w,/K, relative to these three
velocities (figure 1).

In the family of gravity-acoustic modes, there is no resonance in the forcing, namely
there are no free waves with K =k + k' and f; =f + f’, and thus the motion is locked
with the forcing wave groups, as verified by Herbers & Guza (1994). The acoustic
modes propagate obliquely to the vertical away from the surface, and interact with
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the ocean bottom (figure 5). The seismic Rayleigh wave modes propagate horizontally,
combining an acoustic-like motion in the water and evanescent elastic waves in the
crust, illustrated by figure 2. The coupling with the bottom motion selects a few
resonant modes that dominate the solution, with an energy that grows linearly with
the propagation distance (Hasselmann 1963). For wavenumbers that allow a vertical
propagation in the crust, we obtain body waves. These waves can be compression or
shear (P or S) waves, and these two types occur in overlapping ranges of K.

3.2. Acoustic noise in an unbounded ocean

In order to illustrate the different types of solutions, it is interesting to evaluate the
solution for an unbounded ocean, in which sound waves are radiated from the surface
only. The velocity field and associated pressure fluctuations are

b= [P explit—tz 4 @k K 5.5 0K 5, (3.5)
o —w? +igl
pr= / DS otz + O, K. 5. 5)1) dK df. (3.6)
1 —igl/w?

where p, has been obtained using the linearized version of (2.4). The measured
pressure signal is the sum of the linear pressure p;, the second-order wave pressure p,
given by (3.6), and the Bernoulli correction p, 3 given by

Prs@ =pu > Dyl s. k.5, 2)Z}  Z} 0%k, 3.7)
ks, ks

We note that p, ;,, defined in (2.31) is equal to p, p(z = —h).

We shall neglect g|/|/w?, which is bounded by the ratio between the deep-water
gravity and sound speeds, which is less than 0.1 for wave periods less than 180 s. We
express the velocity potential as a sum of propagating (acoustic, / real) and evanescent
(acoustic-gravity, / imaginary) modes,

=02, + Pre. (3.8)

We get the frequency spectrum of the propagating modes by integrating over the
inner regions of the wavenumber space (labelled P + S, S and R in figure 1),

Fp2,p(fs) = / Fp2,sur_’f(KafS) dK. (39)
K<ws/ay

For this range of wavenumbers |k — k| < K < w,/«,,, and using the relations w, >~ 4xf
and (for small |f —f'|) |k—k'| = 2x|f —f'|/C, = 8*f|f —f’|, we obtain an upper bound
for the frequency difference |f — f'| < g/(2nw,,), which is close to 0.001 Hz. Typical
ocean wave spectra have a relative frequency half-width o;/f that is between 0.03 for
swells and 0.07 for wind seas (Hasselmann et al. 1973), so that E(f) >~ E(f’) is a good
approximation for the interactions that drive long-wavelength pressure fluctuations.

The wave spectrum is thus broad enough for us to evaluate F; s at K =0 using
(2.29), and take it out of the integral in (3.9). The acoustic spectrum simplifies to

Fp,(f) = az pwg RE*(OI). (3.10)

This is identical to the expression given by Lloyd (1981).
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FIGURE 6. Example of (@) directional wave spectrum and (b) resulting profiles of the
different contributions to the pressure fluctuations in the ocean, assuming infinite water depth.
The ratio of double frequency to linear wave contributions depends on the amplitude of the
waves and on the directional spectral shape, because all double-frequency contributions are
proportional to E*(f)I(f). This directional spectrum was estimated with a numerical wave
model, and corresponds to the loudest noise event recorded at the ocean bottom seismometer
H20, on 31 May 2002 at 25°N, 136°W. This unusual spectrum has large wave energies in
opposite directions, radiated from a North Pacific storm and Hurricane Alma (this event is
analysed in detail by Obrebski ef al. (2012)).

3.3. Gravity noise in an unbounded ocean

The pressure associated with acoustic-gravity modes is the other part of the integral
in (3.9), for K > w,/®,. The imaginary wavenumber [ gives a vertical attenuation
of the power spectrum by a factor e 2", With that attenuation we may, for large
enough depths, assume that only modes with K < k contribute to the result, so that
we may take F (K, f) = Fpur(K =0,f), and take it out of the integrand. This
approximation is valid only up to a maximum wavenumber K, that is a small
fraction of k, K., = €k. For numerical applications we used € = 0.2.
With this approximation we have

Km,

szae(fh Z) == Fp2,surf(K = O’fY) 2”/ Kez\llz dK

ws/aw

Kmax
=Fp (K =0,f)2n / [Z]e= d|7|

0
= PRI = I, G-AD

A previous investigation by Cox & Jacobs (1989) included an extra factor (1 + zK,.)
in front of the exponential term e?max because they neglected compressibility effects.
That term, however, is negligible in the upper part of the water column, and their
observations collected within 100-290 m of the surface in 4000 m depth are thus not
affected by this small compressibility correction.

As shown in figure 6, the oceanic pressure signals can be dominated by linear
gravity waves down to depths of a few hundred metres. When looking at the
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double-frequency band, linear waves may only dominate in the top 100 m. At these
frequencies, the acoustic-gravity modes have the most important contribution between
~100 and 500 m, provided that E*(f)I(f) is large enough. Propagating modes should
dominate only beyond ~1000 m in the case of an unbounded ocean, or only 300 m
when accounting for the reverberation in a finite-depth ocean, assuming a typical 10-
fold amplification for a sea floor with realistic elastic properties. This amplification
depends not only on the impedance ratio of the water and crust, which defines
the amplification coefficients ¢; derived below, but also on the seismic attenuation
coefficient Q, which is discussed in § 4. Realistic calculations following Ardhuin et al.
(2011) typically give a factor 10-20 amplification of the sound in the water column
due to the bottom elasticity. The depth beyond which propagating modes dominate
will be reduced in the case of surface gravity waves with periods shorter than the 15 s
swells example shown in figure 6.

3.4. Atmospheric noise source: microbaroms

The source of noise in the atmosphere can also be derived with the same formalism,
as an alternative to the Green functions used by Waxler & Gilbert (2006). Indeed,
we may consider the atmospheric motion to be irrotational, so that the equations of
motion are identical in the atmosphere and in an unbounded ocean, with the only
difference being that the atmospheric density is p, and the atmospheric sound speed is
o,. The second-order velocity potential takes the form,

¢2.a x expli(Kux + Kyy + 1,z — w,t)]  for z> 0, (3.12)
with
w2
L=y |2 -k (3.13)
o

Because p,/p, =~ 1000, the air motion has only a small O(p,/p,) local influence
on the water motion, so that the solutions derived earlier for the water motion
remain valid in the presence of air. The air motion, with a velocity potential ¢,
also obeying (2.13), is fully determined from the water motion via the kinematic
boundary conditions on the air and water sides of the interface (2.7),

ap, 0 0% (g —
¢ ——¢:V(¢u—¢)-V§—§M at z=0. (3.14)
0z 0z 0%z
From the first-order potential in the air (e.g. Waxler & Gilbert 2006)
_ . 8 s —kz  i(kx—s0)
= 4 , 3.15
& ; is 7 e e (3.15)

we obtain the second-order potential

a¢2,a 00, ;o s s’ iOUkK s,
9z - TZ +,(Zk;</ D (k,s, k', s, Z)Z1,kzl,k’eO(kYk’ ) (3.16)

and a new coupling coefficient

)
Dk, 5. K., 7) = — 28 (ki +k - k). (3.17)
g
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We note that for kK’ = —k, D,, =0, so that the long-wavelength motion with K < k
simplifies to

8¢2a ~ 8¢2
dz 0z
consistent with the result given by Posmentier (1967) for the interaction of
monochromatic wave-trains, and in disagreement with a factor of 8 correction
proposed by Arendt & Fritts (2000).
This gives a pressure spectrum for the propagating atmospheric waves of

2| W, 5 5.
Fp2,ap(fv) = ,0212 Fp2,xmf(stv) dK = R(Kmax)?pag ) (f)I(f)9 (319)
K<Kmax w

w-a

at z=0, (3.18)

with the non-dimensional factor

Ol2 Kmax | 12|
R(Kpar) =2 / —KdK. (3.20)
w 0 lz

In order to avoid the singularity for [, = 0, and atmospheric ducting effects not
represented here, we take K, = w,;/(2t,), which restricts the acoustic propagation
directions to be within 30° from the vertical. In that case we have R(K,..) =~ 0.54
instead of R(K,..) = 0.25, with the vertical propagation approximation of Waxler &
Gilbert (2006), which replaces the >/ factor in the integral by its value o?/a?
for K = 0. Other than that, our expression is consistent with their low-Mach-number
asymptote, i.e. 0/k < o, (Waxler & Gilbert 2006, equation (61)). The present theory
also allows the estimation of the evanescent wave components given by wavenumbers
K > w;/a,.

s

4. Noise in a finite-depth ocean

For large depths compared to the OSGW wavelength, kh > 1, the finite depth
has little effect on the evanescent modes except for a doubling of the motion
amplitude near the bottom, as the vertical profiles of the form exp(Kz) are replaced
by cosh(Kz + Kh)/ cosh(Kh). This is similar to the finite-depth effect on linear wave
motions. However, the propagating modes radiated by the surface will now undergo
multiple reflections at the bottom and sea surface, as shown in figure 5. The oceanic
acoustic field is tightly coupled to elastic waves in the crust through these reflections.

One of the greatest complications induced by the presence of a bottom is the
heterogeneity of the sediment and rock layers below the water column. The natural
layering of the crust has a strong influence on the sound reflection and the nature of
the seismic modes (e.g. Latham & Sutton 1966; Abramovici 1968). These effects will
not be considered here, and we follow exactly the theoretical setting of Hasselmann
(1963).

4.1. Elastic wave theory

For simplicity, we assume here that the ocean bottom is a uniform and semi-infinite
solid, with constant density p, and compression and shear wave velocities o, and B
given from the Lamé coefficients A and p,

2:A+2u

. o= (4.1a,b)
P P

Assuming that the crust is a Poisson solid, 4 = A and «. = «/5,3.
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The free wave problem in these conditions was solved by Stoneley (1926). Here
we consider the forced problem treated by Hasselmann (1963) with a forcing by a
pressure field p, ., at the sea surface, but now generalized to an additional wave-
induced bottom pressure s p,r.

The equations of motion in the water column are unchanged from the previous
section, but they are now coupled to the elastic motions of the crust. Crustal motions
can be separated into an irrotational part with a velocity potential ¢. and a rotational
part with a stream function i, both solutions to Laplace’s equation. With a wave
source at the surface, a horizontal propagating wave of phase ® = Kx — w,t implies
that ¢ and i are either decaying or propagating downwards. They must therefore take
the following form:

¢, = Ae"EMel® 3 = Be" i@, (4.2a,b)

The two vertical wavenumbers m and n are given by the Fourier transform of (2.13),

2 2
m=,k-2% a=.Kk-% (4.3a,b)
a2 ﬁ2

where the sound speed in water has been replaced by the compression and shear
velocities. For K > w;/f;, m and n are real, and both compression and shear waves
are evanescent. For /o, < K < 5, the compression wave is evanescent but there is a
shear (S) wave that propagates through the crust.

The constants A and B have dimensions of m? s~
boundary conditions at the ocean bottom.

The horizontal and vertical ground displacements are given by the real parts of

' and are determined by the

£, = (KAe"“™M 4 inBe"“)el® /ey, (4.4)
£ = (—imAe™ ™ 4 KBe"“TM)el® /q,. 4.5)
Hooke’s law of elasticity gives
08, 0E, 06, o€, OE,
w=A|l =+ = 2u—=, Ty= = - ). 4.6a,b
& <8x+8z>+'u82 = =M\ T (4.6a.5)
The zero tangential stress on the ocean bottom t,,(z = —h) = 0 yields the following

relationship between A and B, which is typical of Rayleigh waves,
_ 2iKm
T4+ KY
Thus, in addition to the unknown water-side amplitudes C and D of the velocity
potential at the bottom, we have one more unknown, the compression wave amplitude
A on the solid side.

The three equations that relate C, D and A are: the combined kinematic and
dynamic boundary condition (2.15), and the bottom continuity of normal velocity

4.7)

ap, 0p. oY
— T atz=—h 4.8
0z 90z + 0x az 4.8)
and normal stress
0 (=h)
~ T (=h) = p(=h) = py——"r—" + Pr.bor- (4.9)

at



Double-frequency noise generation from surface gravity waves 333

For waves in intermediate or shallow water, i.e. kh < 7, the Bernoulli term p,,, that
was not considered by Hasselmann (1963) should be included. We thus obtain the
linear system of equations

(—2py + giDE"C + (=0 py — giDe "D = “2Ps uy (K, £, (4.10)
gA —ilC +ilD =0, 4.11)
rA — ia)S,OWC - iwswa = _ﬁZ,bot(vas)7 (412)
with
_ e (4.13)
1= o2 —2K2p? ‘
i 4B*K*mn ) -
r:;‘?ps [—603_2[(2'324‘(505 —2K°B7)
i - 5 K?mn
= |—p, A+ dp 4.14
ws[pmac+ +Mn2+K2} (4.14)

Since we are in the range where [ < w,/a, we may again neglect g|/|/w?, which is
less than 0.1 for OSGW periods less than 180 s. We rewrite these equations in matrix
form as

M[A, C, D" =[—DruyE.£), 0, —Drpu(K, 1" (4.15)
with
0 ip,w.e™ ipwwse’ilh
M= |q —il il . (4.16)
ro —1ws Py —1W; Py

The general solution of (4.15) is the sum of one particular forced solution and the
general solution of the homogeneous system, without the right-hand side forcing, i.e.
the free waves. This combination of free and forced waves is fully determined by the
initial conditions.

The forced solution is readily expressed using the determinant of the system,

det(M) = —p,w,(le"r + w;p,e7"q — le™"r — w,p,e™q) “4.17)
2p

- 452 2 Ap2p2y2
= @l = 2Kzﬁz){l,os cos(in)[4B°K°mn — (w; — 2K“B7) ]

— pomsin(lh)w?}, (4.18)
in the form
2 mr'Ka s lh/\ Su K’ s

A= 21pwa)sp2“ + (K, f5) + cos(lh)pa, g ( f)’ (4.190)

det(M)

—i l S w/\ SUr K? K} ik, 0. Ka s

C— 1(lr + qws 0,)P2,5uf (K, f5) + g€ P2 por( f)’ (4.190)

det(M)

s w_l P U] K, s) T il 0 K, s

D = iquwsp, — Ir) (qsp P25 (K, f5) — €7D por( f)‘ 4.19¢)

det(M)
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As detailed below, this determinant vanishes for the pairs (w;, K) that fall on the
dispersion relation of Rayleigh waves. But the solution for random waves can always
be obtained by integrating across this singularity, following Hasselmann (1962).

For kh >> 1 we may neglect p,;,; and

— ﬁZ,surf(K7fs) ir — q,

C , 4.20
puis 2 cos(lh) — 24 sin(lh) (4.20a)
p Surj K’ N ir’ !
p = P2 &1 ik (4.200)
pwws  2r' cos(lh) — 24’ sin(lh)
with
q = pywsq, 1 =ilr. (4.21a,b)

4.2. Acoustic noise in a bounded ocean

Taking typical values of the water and crust density and sound speeds gives r'/q’ > 70
for the free modes that are significantly generated by the waves (i.e. ¢; > 0.1,
as defined below by (4.34)). We can thus consider that ¢'/r « 1, which gives
C =D =D, (K, f5)/[2pwws(cos(lh) + ¢'/r')]. The velocity potential and pressure in
the water are given by

cosliz+h) —q/r'] e

pwws(cos(lh) — q' /1)

cos[l(z+ )] —4q' /¥ oi©
(cos(lh) — q'/7") )

The small but finite factor ¢'/r’ ensures that the solution remains finite as a small
fraction of the acoustic energy is radiated into the crust, otherwise the acoustic energy
would accumulate in the water column. The pressure oscillations are thus maximum
for resonant frequencies such that the ratio of the water depth and vertical wavelength
lh/(2m) is 1/4, 3/4, 5/4, .... We note that the vertical wavelength 2m/l is always
greater than the acoustic wavelength 2m/+/K? 4+ 2 = fia. As a result, the resonant
frequencies are shifted to higher values compared to the vertical resonant condition,
which is given by fiho, =1/4 ....

We may now integrate the pressure spectrum for all acoustic wavenumbers to find,
again, the frequency spectrum:

¢2 = iﬁZ,smf (K’.fx)

, (4.22a)

P2 = 1p2 s (K, f;) (4.22b)

cos(lz + lhy — ¢/ /¥ ]*

cos(lth) — q'/r
We now have a depth dependence of the sound spectrum. At the surface it is equal
to the widely used unbounded ocean value (Lloyd 1981), but in the water column it

can be strongly amplified at depths where cos(lk) approaches 0, which includes the
near-bottom region where all the resonant modes have an antinode.

ws [
Fpu () = 20028 HLEX(OI() / [ KdK. (4.23)
0

4.3. Rayleigh waves

In order to simplify the algebra, we consider in this section waves in deep water and
neglect bottom forcing. As a result, this section introduces no new results compared to
Hasselmann (1963), but the properties are discussed in more detail and more explicit
expressions are presented that will be used later in the derivation of new solutions for
other types of seismic waves.
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FIGURE 7. (Colour online) Wavenumbers of seismic and acoustic modes for a fixed
frequency, which are the solutions of (4.24). The right-hand side of that equation is also
shown. Here we used 4 = 5000 m, a,, = 1500 ms~!, 8 =3200m s~ !, p,, = 1000 kg m~> and
0s = 2500 kg m~3. This graph corresponds to a seismic frequency f, = 0.263 Hz, for which
fsh/a,, = 0.88. Here the determinant has three real roots, one acoustic mode K, for which
[ = 0 (horizontal propagation) and two seismic modes K, and K;. The number of these roots
increases with the frequency. One new solution appears every time 2mtf; becomes larger than
o’ ; defined by (4.29). For reference we also give the wavenumber for which the right-hand
side of (4.24) is zero, which is the Rayleigh wavenumber K} in the absence of the ocean layer
(h=0).

For a fixed frequency w;, there is at least one wavenumber K for which det(M) = 0.
This condition defines the dispersion relation of the Rayleigh modes (Stoneley 1926),

lo, 4B*K*mn — (w? — 2K?B%)’

4
mp,, ]

tan(lh) = . (4.24)

with the fundamental mode corresponding to the largest K value. Figure 7 illustrates
the family of modes for a given frequency.

The phase speeds of the Rayleigh modes vary continuously from the shear wave
velocity B, in the limit n = 0, where the shear waves transition from propagating to
evanescent, to the sound speed in water «,, in the limit / =0, where the acoustic
modes become evanescent in the water (figure 8a). This variation of the phase speed
has an inflexion point close to the phase speed of Rayleigh waves without the water
layer, corresponding to a maximum in group speed (figure 8b).

We may now use (4.9) to obtain the ground displacement amplitude

= 52(_,7) = G(Kxa Kya ws)ﬁlsmf(Kx» Kya a)s) (425)
as a function of the amplitude of the sea surface pressure, with the transfer function
_ 2ipdm(K* — n?)
~(n? + K?) det(M)
An example of this transfer function is shown in figure 9, in which the dispersion
relation of the Rayleigh modes appears as the narrow red bands around the
singularities of G.

To evaluate the complete family of Rayleigh wave solutions with dispersion relations
w,j(K), where j is the mode number, we need to examine the nature of these

(4.26)
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FIGURE 8. (Colour online) (a) Phase and (b) group speeds of Rayleigh waves as a function
of the dimensionless water depth. The calculations used «,, = 1470 ms~', 8 =3000m s~!,
0 = 1000 and p; = 2500 kg m~>. Values without the water layer are also indicated with the
horizontal dark grey/blue line (R). In that case Rayleigh waves are not dispersive.

singularities. We rewrite the determinant of the system as

2ilps p,, cos(lh)

det(M) = (@ — 2K°p7)

{4B*K*) (mn + o} — B*K*) — w}(1 + tan(lh) p,,m/ p,])}.
4.27)

For most frequencies, the singularities are simple, allowing a Taylor expansion of G in
the form

G'(Kj(wy))

G(K, ) ~ L2
Ko = k)

(4.28)
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FIGURE 9. Magnitude of the transfer function G(K, f;) illustrating the singularities along
the dispersion relations of the free Rayleigh modes with wavenumbers K = K, (f;), which
correspond to det(M) = 0. The oblique dashed lines correspond to phase speeds equal to o,
B and «,,, and separate the four domains of body waves (P + §), mixed body and evanescent
waves (), Rayleigh waves (R) and acoustic-gravity modes (A-G).

However, for each mode j, there is a critical frequency

w? = 1 [arctan (—l ,os,ow> + jn] (4.29)

Y h m
for which both tan(ih)p,m/pd =1 and @} — K*g*> = 0. These critical frequencies {;
exist for modes j > 0. These frequencies are those for which new Rayleigh modes
appear, in a way similar to the Love waves discussed by Aki & Richards (2002, figure
7.3). The singularities at (K, w) = (ng/ B, ng) are not simple, and for these we have

G(ws, k) = G (Kj(w,) [/ K> — K} ().
Solutions for the vertical displacement at the top of the crust have a spectral
amplitude that is linearly related to the equivalent surface pressure amplitude,
S(Km Kyy ws) = G(Kx’ Ky: ws)/p\lsurf(Kx, Ky’ a)s)- (430)

For the simple singularities of G, we may write G(K, w,) = G'(K, w,)) /(0] — &} ) +
O(w; — w; ;). Taking initial conditions §(t =0) =0 and 96/9¢ = 0 gives the full solution
(Hasselmann 1962, equation (3.2)) of the jth Rayleigh mode response

) 1 ) 1 eiws,jt eiws’jt
S(ny Ky» ws) = G/(K, a)s,j)ele 272671(»3[ - + )
w w? 2w, \wsj — @  wy; +

s
4.31)
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as a function of K, where w,;(K) is the frequency of the jth Rayleigh mode. For a
forcing that varies slowly on the scale of the seismic period 2m/w;, and provided that
the forcing spectrum is continuous in spectral space, this gives the rate of change of
the ground displacement spectrum given by Hasselmann (1963),

/2
KD ek k) = M ks K 0. (4.32)
ot 2w;;

The other discrete singularities, at (K, w;) = (a) 5 /B, a) ) are associated with
‘conical’ or ‘head’ waves (Aki & Richards 2002), for Wthh the vertical wavenumber
n =0, that propagate along the ocean—crust interface. These horizontally propagating
shear waves are generated with an evanescent compression wave. The singularity is
integrable over the two spectral dimensions w; and K.

Although it looks like only the resonant forcing contributes to the solution, it is in
fact the near-resonant forcing (w; > wy ;) that builds up the seismic noise, because the
exact resonant terms have a zero measure in spectral space. Indeed, a purely resonant
forcing would give an amplitude that increases linearly with time, and an energy that
increases like 2. The linear growth of energy in time can be interpreted as an effect
of the narrowing with time of the frequency bandwidth in which the interaction is
significant. This is a general property of wave—wave interactions (see also Hasselmann
1966).

We express the source of seismic noise by the rate of increase of the variance of §
per unit of propagation distance:

K(©)Spr(K,. K,) _ ATfic]
U? B3>

SDF((US) = sz,sulf(KX7 KV’ a)s)7 (433)

where U is the group speed of the seismic waves, and c¢; is a dimensionless coefficient
that depends on w,h/a,, and the seismic mode index j, shown in figure 10,

, _ B2k wIG
Cc, = .
7 UR2nw, 2w?

(4.34)

We note that a missing 27t in equation (5) of Ardhuin ef al. (2011) has been corrected
here.

A very rough simplification can be obtained by taking U and K independent of j and
h. Then Spr(f;) can be taken as a sum of all Rayleigh modes in the form

4r’f,
Spr(f,) = ﬁffz (Zc > F,(K ~0,1). (4.35)

Values of ¢; are obtained from (4.34), and shown in figure 10.

We may propagate these sources of seismic waves in a vertically symmetric
Earth model, neglecting all three-dimensional propagation effects, and parametrizing
seismic wave scattering and dissipation with a uniform quality factor Q. Under these
assumptions, the spectral density of the vertical ground displacement at z = —h and at
the longitude Ay and latitude ¢, is

/2 /23‘[ SDF(f:Y

,2nfsARE/(UQ)R2 sin &’ dA- d /’ 436
Rgsin A £ Sin g, diy, doy, (4.36)

FS()"()’ ¢O’fs) =/

/2
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FIGURE 10. Dimensionless coefficients ¢; that amplify the wave-induced pressure into
ground displacement. The maxima of ¢; correspond to the quarter-wavelength resonance
typical of organ pipes, except that here the sound waves propagate obliquely in the water
column, which is why the maxima are at values of f;h/«,,, which are not exactly at 1/4, 3/4,

..., but shifted to higher frequencies by a factor ///(K? 4 I?). The amplitudes of the peaks
depend on the impedance ratio of the sea water and crust. Hence the peak amplitude increases
with p,8/(pw,). For example, 8 =2800 ms~' gives a maximum of 0.88 for ¢, instead of
1.03 here with 8 =3000 m s~'.

with Ry the Earth’s radius, and U the seismic group velocity. The term
R%sin ¢, dA,, d¢,, is the Earth’s surface area element. The denominator Rgsin A is
the geometrical spreading factor for wave energy that follows geodesics on the sphere
(e.g. Kanamori & Given 1981), replacing the distance (RgA) used in flat Earth models
(e.g. Hasselmann 1963).

The Rayleigh waves thus generated propagate away like free modes, those that
exist without the local forcing. For these free modes with a monochromatic ground
displacement §(x,y, ), the surface pressure is constant so that C = —D and the
velocity potential and pressure in the water take the form

a)s .
$a(2) = Teos(h) sin(l2)d(x, y, 1), (4.37a)
. w?
p2(2) = 1Pwm sin(lz)8(x, y, 1). (4.37b)

For varying water depths, and on land, one may assume that the seismic energy
is propagated along a ray and apply the refraction coefficient given by Hasselmann
(1963).

4.4. Seismic P and S waves

Unlike the Rayleigh waves, which grow resonantly in time due to the trapping in the
ocean/crust waveguide, the P and S waves, for which the vertical wavenumbers m or
n are complex, radiate into the Earth’s interior, and their energy level is given directly
by its value at the source. In particular, for K < w;/a. we have propagating P waves
with a velocity potential amplitude A given by (4.19). In the particular case K = 0,
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FIGURE 11. (Colour online) Non-dimensionless coefficients cp and cg that amplify the
wave-induced pressure into ground displacement associated with P and S waves.

which corresponds to standing waves, we have only P waves, no S waves nor Rayleigh
waves, and these propagate exactly along the vertical axis. The frequency spectrum
of vertical ground displacements at (z = —h) can be evaluated directly with (4.30)
because G has no singularity in this range of wavenumbers,

Iowg 2

Fs p(f) = FE* (DI~ PTG (4.38)
with a non-dimensional coefficient cp,

ws/ac 4
& =2 / PP gk (4.39)

0 a)zdet (M)

A similar expression can be written for § waves,
2 P8’ A

Fisth) <RI 2 75, (4.40)

and both are illustrated in figure 11.

However, in the range of wavenumbers where S waves exist, k < w,/8, there can
also be evanescent P waves, and the system can approach the singularity for w; = w;;
and k = w,;/B. We numerically evaluated the coefficient

wlB 4PpRR2p2 e
c§=2n/ LBy gk, (4.41)
0 w?(n? + k*)det” (M)

Owing to the typically three times stronger attenuation of S waves compared to P
waves in the Earth’s mantle (e.g. Anderson & Hart 1978; Pasyanos, Walter & Matzel
2009), we will now focus on P waves only, which should dominate in the far field of
the noise source.

For the estimation of the spectrum recorded outside of a source area, it is more
convenient to express the local seismic source as a function of the horizontal
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FIGURE 12. (Colour online) Dimensionless coefficients c¢p, that amplify the wave-induced
pressure into ground displacement. The maximum for a zero take-off angle corresponds to
vertically propagating compression waves, and the compression waves that propagate along
the crust have a vanishing amplitude.

propagation angle 6, and the vertical take-off angle ¢. For P waves, this gives

1
2B

with the non-dimensional coefficient ¢p, defined by

Fs.p(fs, 0, 9) = LEX(DI(F) <25 ¢5., SN @, (4.42)

. APmPp2BY 0K

= ek 0% 443
Py w,a.det’ (M) 3¢ (4.43)

which is the normalized source per unit solid angle £2, so that the average over the
half-space of downward directions 2~ is

2n /2
= / / ., singdpdd = / ., 482, (4.44)
o Jo -

as defined by (4.39).

It is noteworthy that the distribution of the P-wave energy with the take-off angle
is very close to the one given by a small disc pushing at the top of a uniform
half-space, as given by Miller & Pursey (1955) and used by Vinnik (1973), although
it also varies with the non-dimensional water depth fih/c,. The only missing item
in the work by Vinnik (1973) is the very strong amplification of the motion for
resonant frequencies associated with the water layer. Owing to the large impedance
contrast at the water—crust interface, the relative amplification of P waves is one
order of magnitude stronger than for Rayleigh waves. We thus expect a much
tighter correspondence of the strong seismic noise sources with the water depths
that correspond to a maximum amplification.
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4.5. Observable P-wave spectra

We will now finish our analysis of these body waves by estimating the ground motion
due to P and Rayleigh waves as a function of the distance from the source, an
application of practical interest. For a seismic station or hydrophone in the ocean,
the incoming energy at the receiver will be amplified by multiple bottom and surface
reflections in the water column. However, this P-wave signal from remote sources is
likely to be dwarfed by locally generated noise.

For a land-based station, we may assume that P waves arrive directly from the
source area. There are many other seismic wave phases that have undergone multiple
reflections at the surface, called PP, PPP, ..., or at any inner boundary of the Earth,
like PkP phases that have reflected off the mantle—core interface (Aki & Richards
2002). These can be treated exactly like the direct P phase.

On arrival at the receiver, these waves are totally reflected at the Earth’s surface
at z =0, which doubles the ground motion, so that the ground displacement is given
by the integral of four times the incoming spectral densities over the directions 6
and ¢, which can be replaced by an integral over the source positions (Ag, ¢s). The
transformation from the ray parameters (6, ¢) to the geographical coordinate can be
obtained approximately for any type of seismic wave using travel-time tables (e.g.
Snoke 2009), which also provide the travel time 7.

We may now express the ground displacement due to P waves at the observing
station of coordinates (Ao, ¢p), as a function of the same quantity at the location of
sources, as given by (4.42):

Fy.0Chon G0, f}) = /

2

i 4Fsp(h, @, 15, 0, @) exp(=2mf;T (As, §5)/Q) A2, (4.45)

with d§2 an element of solid angle that corresponds to the ensemble of rays arriving
from an Earth’s surface element around the sources located at (Ag, ¢s). This sum may
also be transformed as an integral over the ocean surface by properly mapping 2 to
(As, ¢s). The elementary solid angle d§2 is zero for the so-called shadow zones, the
regions for which there is no P-wave ray that connects to the observing station. For
a single phase of seismic waves, this ensemble of rays has a ‘half-banana’ shape, as
illustrated on figure 13.

From our calculations, we expect that P waves will dominate the signal at large
distances from the source. The exact location where P-wave levels overtake Rayleigh-
wave levels depends on the relative attenuation of the two types of waves. With a
realistic Q = 2000 for the P waves, and Q = 400 for the Rayleigh waves, figure 14
shows that it occurs at an epicentric angle of 40°, which is a distance of 4400 km,
consistent with the observations reported by Vinnik (1973) using Kazakhstan array
data.

5. Conclusions

We have shown how the same physical process, the interaction of ocean surface
gravity wave (OSGW) trains, can produce a wide variety of noise, in the atmosphere,
ocean and Earth’s crust, that can be classified according to their horizontal phase
speed. The slowest noises in the ocean are acoustic-gravity waves that dominate
pressure records at depths less than about one-tenth of the acoustic wavelength. These
acoustic-gravity waves cannot exist in the absence of OSGWs and are thus confined to
the region of active wave forcing. Intermediate phase speeds correspond to Rayleigh
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FIGURE 13. (Colour online) Schematic of rays for seismic P waves radiated from a point
source (dashed (dark grey/red) lines) with a directional distribution cp, (solid (dark grey/red)
line), and ensemble of rays received at a given station from an extended noise source
(grey/yellow ‘half-banana’).
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FIGURE 14. (Colour online) Estimates of the root-mean-square (r.m.s.) vertical ground
displacement (VGD) associated with Rayleigh or P waves, as a function of the epicentric
angle A, for a source of intensity [ Fj (K = 0,f)df =4.2 x 10* hPa’ m? over a 330 km
by 330 km square, assuming an attenuation factor Q = 2000 for the P waves (Pasyanos et al.
2009), with travel times given by the ak135 reference Earth model (Snoke 2009).



344 F. Ardhuin and T. H. C. Herbers

waves that contain most of the energy of the seismic modes for distances less than
about 4000 km from the source.

We corrected previously published asymptotic behaviour for very-long-period noise
(T > 30 s). In particular, we find that the sources of this long-period noise are
attenuated on the continental shelves, consistent with previous studies of forced gravity
wave motion. This finding supports a spatial distribution of these sources outside of
the continental shelves, on the shelf breaks, which is consistent with data from Rhie &
Romanowicz (2006) or in deeper water, as reported by Nishida & Fukao (2006).

The common source of all this noise should allow a verification of the source
magnitude for seismic waves by near-surface measurements of pressure, which is
dominated by acoustic-gravity modes. In particular, the direct modelling of the
acoustic-gravity modes can be compared to pressure measurements in depths less than
a few hundred metres. Unlike the analysis of seismic noise (e.g. Ardhuin et al. 2011),
which suffers from poorly known seismic propagation and attenuation factors, the
acoustic-gravity wave attenuation over the water column can be predicted accurately
(Herbers & Guza 1994), and thus pressure measurements in the upper ocean may
provide a more quantitative verification of numerically modelled directional surface
wave properties. In particular, as proposed by Cooper & Longuet-Higgins (1951),
pressure measurements may provide a precise estimate of coastal reflection or wave
scattering by currents, sea ice or other effects. Noise records from land-based or
seafloor-mounted seismometers are more ambiguous because they integrate sources
over a large area. Also, as discussed by Hasselmann (1963), Latham & Sutton (1966)
and Abramovici (1968), the variations in water depths and horizontal and vertical
variations of properties in the Earth’s crust can significantly modify noise properties in
both the water column and the crust.

Acknowledgements

FA. is funded by ERC grant 240009 ‘IOWAGA’ with additional support
from the US National Ocean Partnership Program, under grant N00014-10-1-0383.
T.H.C.H. is supported by the US Office of Naval Research Littoral Geosciences and
Optics Program and the US National Oceanographic Partnership Program (NOPP).
Discussions with S. Webb and L. Marié on the theoretical aspects are gratefully
acknowledged.

Appendix A. Coupling coefficients

Using the coupling coefficient D given by Hasselmann (1962, equation (4.3)) for the
velocity potentials, our coupling coefficient for the elevation amplitudes is

gDk, s, k', s")

isos'o’(so + s'a’)

2
sos'c’ g2

0.5 sok’? s'o'k?
+ i L@
(so +s'0’) \ cosh”“(k’h)  cosh”(kh)

D.(k,s,k',s)=—
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In the bottom pressure, the additional term arising from the orbital velocity has a
coupling coefficient
Dy (k, s, k', s', 2)
, kk' sinh[k(z + h)] sinh[k'(z + h)] — k - k' cosh[k(z + h)] cosh[K'(z + h)]
2sos'c’ cosh(kh) cosh(k'h) '

(A2)

The relationship with the coupling coefficient C given by Herbers & Guza (1991,
their equation (4)) for the bottom pressure, expressed in metres of water, is given by
solving (2.15) for ¢,, and then rewriting Bernoulli’s equation (2.4) as

pr 04y 1 2 (91’
—=—"——1|V — . A3
o ot 2[I &il"+ 52 (A3)
This gives, for z = —#,
_ D, (so +s'c')? : D,,(z= —h). (Ad)
glgK tanh(Kh) — (so + s'0”’)7] g

Appendix B. Definition of symbols

This appendix contains in tables 2 and 3 all the symbols and notation used in the
text.

Symbol Meaning Where

1 and 2 Indices denoting first- and second-order motions

o, Sound speed in water 2.1)

o, Compression wave speed in crust 4.1)

o, Sound speed in atmosphere (3.13)

B Shear wave speed in crust 4.1)

A Angular distance (4.36)

1) Vertical ground displacement at the top of the crust,
§=&(z=—h)

Is Elevation of the sea surface (2.8a)

A and p Lamé elastic coefficients for the crust 4.1)

Ao and ¢o Longitude and latitude of the observation location (4.36)

As and ¢ Longitude and latitude of a noise source (4.36)

P Perturbation of density 2.1)

Pw Mean water density

o Radian frequency of surface gravity waves, o = 2xf

T Stress tensor

® Phase function of the seismic or acoustic waves 2.17)

b, du, G Velocity potentials in the water, atmosphere, crust (2.2), (3.12), (4.2)
Stream function in the crust

7 Take-off angle for seismic body waves (4.42)

& Displacement of particles

Wy Radian frequency of noise, w; = 2af;

a)gj Critical values of w, for which new modes appear

when w; increases

TABLE 2. Notation: Arabic numbers and Greek symbols.
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Symbol Meaning Where
A,B Amplitudes of ¢., ¥ 4.2)
C,D Amplitudes of up- and downward propagating components of 3.4
¢
C, Group speed of surface gravity waves (2.11)
D, Coupling coefficient for the surface elevations (A1)
a and d Amplitude of surface gravity waves
Cj Non-dimensional amplification factor for Rayleigh mode
number j
cp and cg Non-dimensional amplification factor for P or S waves
f and f Frequency of surface gravity waves
fs Acoustic or seismic frequency
Fo st Spectral density of P s
F; Spectral density of &
G Surface pressure to bottom vertical displacement transfer
function
g Apparent gravity acceleration
h Water depth
1 Directional integral of the wave spectrum 2.27)
Jj Rayleigh wave mode number, counted from 0
k and k' Vector wavenumbers of surface gravity waves
K Horizontal vector wavenumbers of acoustic or seismic waves
L1, mn Vertical wavenumbers for ¢,, ¢,.,, ¢. and
p Pressure
D2.surf Wave-induced forcing at the sea surface (2.16)
Do.B Bernoulli head pressure (3.7)
Da.vor Wave-induced forcing at the bottom, P po, = Pa.s(z = —h) (2.31)
M Matrix of the linear system of equations
(0] Seismic quality factor (i.e. damping coefficient)
g and r Coefficients (4.14)
R(K o) Non-dimensional coefficient in microbarom source (3.20)
Ry Radius of the Earth
Spr Seismic source of Rayleigh waves
s and §' Sign variables equal to —1 or 41
u and w Horizontal and vertical velocity components
Vv Group speed of seismic waves
Zi y Complex amplitude of the linear surface elevation component

(k, s)

TABLE 3. Notation: Roman symbols.
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