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Abstract Primary microseisms are background seismic oscillations recorded everywhere on Earth with

typical frequencies 0.05 < f < 0.1 Hz. They appear to be generated by ocean waves of the same frequency

f , propagating over shallow bottom topography. Previous quantitative models for the generation of primary

microseisms considered wave propagation over topographic features with either large scales, equivalent to

a vertical point force, or small scales matching ocean wave wavelengths, equivalent to a horizontal force.

While the first requires unrealistic bottom slopes to explain measured Rayleigh wave amplitudes, the second

produced Love waves and not enough Rayleigh waves. Here we show how the small scales actually produce

comparable horizontal and vertical forces. For example, a realistic rough bottom over an area of 100 km2

with depths around 15 m is enough to explain the vertical ground motion observed at a seismic station

located 150 km away. Ocean waves propagating over small-scale topography is thus a plausible explanation

for the observed microseisms at frequencies around 0.07 Hz.

Plain Language Summary Microseisms are background oscillations of the solid Earth. Most of

these oscillations are caused by ocean waves and can thus be used to study their source, the ocean waves,

or the medium in which they propagate, the solid Earth. Several theories have been proposed for how ocean

waves going over shallow ocean topography make microseisms in the band of periods 10 to 20 s, but they

are not satisfactory because they either require unrealistic large slopes of the ocean floor or they produce

a ratio of different types of seismic waves, Love and Rayleigh waves, that is too large. We thus revise these

theories to show that a plausible seismic source is the propagation ocean of waves over a wavy bottom,

when the bottom has wavelengths that match those of ocean wave. We particularly verify that the predicted

Rayleigh wave amplitude is of the order of what is measured at a particular seismometer located in Ireland.

Because the necessary details in bottom topography vary a lot between different ocean regions, the new

theory suggests that the spatial distribution of seismic sources is more heterogeneous than previously

thought.

1. Introduction

A better quantitative understanding of seismic wave generation is important for solid Earth analyses, for

example, using tomography (Retailleau et al., 2017; Shapiro et al., 2005), or for estimating ocean wave prop-

erties (e.g., Ardhuin et al., 2012). The mutual interaction of random ocean surface gravity waves or their

interaction with random bottom topography can be treated by the general wave scattering theory of Hassel-

mann (1966, Figure 7). This theory predicts that the seismic energy at wavenumber vector K and frequency f

grows linearly with propagation distance, if the resonance conditions K = k1+k2 and fs = f1+ f2 are satisfied,

where (k1, f1) and (k2, f2) are the wavenumber vectors and frequency of the interacting randomwave fields.

This general theory includes the double-frequency mechanism by which pairs of wave trains with the same

frequency f = f1 = f2 but opposing directions (k1 ≃ −k2) excite seismic waves at a frequency fs = 2f

(Longuet-Higgins, 1950). The theory also includes a same-frequencymechanism, by which ocean waves with

frequency f = f1 propagating over a sloping seafloor, which is not moving and thus has a frequency f2 = 0,

generate seismic waves at the frequency fs = f . This seismic generation is possible when an ocean wave

wavenumber k nearly opposes a bottom wavenumber kb, so that the pattern of wave-induced pressure on

the seafloor contains very largewavelengthswithK = k+kb, including seismicwavelengths for the frequency
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Figure 1. (a) Definition sketch of water depth and bottom elevation amplitude d. (b) Pressure at the seafloor in red. This

pressure field contains long wavelength components (violet) that oscillate in time as given by equation (13) below, and

in this example propagate from right to left at a speed of 3.7 km/s. This pattern is computed with D0 = 100m and

k0D0 = 2.9, which gives � < 0. For animations see http://tinyurl.com/mswanim.

fs. Before that generalization, Hasselmann (1963) considered a constantly sloping seafloor and computed the

seismic response for frequencies 0.05 to 0.1 Hz, which is known as the primarymicroseism band. The seafloor

pressure pattern is characterized by a power spectrum that is broad in the wavenumber domain and thus

equivalent to a vertical point force from which the seismic response can be estimated (e.g., Gualtieri et al.,

2013; Hasselmann, 1963).

That theory was applied successfully to slowly varying bottom slopes at seismic hum frequencies, lower than

0.03 Hz (Ardhuin et al., 2015). For primarymicroseisms with 0.05 < f < 0.1Hz, Hasselmann (1963) used a bot-

tom slope of 3%. More recently, Ardhuin et al. (2015) showed that the primary microseismic signal measured

at the French seismic station Saint Sauveur en Rue (Geoscope network) requires an average ocean bottom

slope of 6% inwater depths around 20m,whereas average slopes on the French continental shelves are of the

order of 0.1% or less. It is difficult to explain such a large difference with effects not included in these models

such as three-dimensional seismic propagation or amplification by sediments.

Another reason why the constant or slowly varying bottom slope is not a satisfactory model for the primary

microseisms is that the horizontal component of the equivalent point force, equal to the vertical force times

thebottomslope, is tooweak to explain theobserved Love-wave kinetic energy (Friedrich et al., 1998; Juretzek

& Hadziioannou, 2016; Nishida et al., 2008). The same constraint applies to the lower-frequency hum band.

This is why Fukao et al. (2010) considered the effect of small-scale bottom topography in the form of isolated

seamounts. These produce an equivalent shear force of reasonable order of magnitude for microseisms in

the hum band at frequency under 0.03 Hz. That work was generalized by Saito (2010) who considered the

horizontal force caused by surface waves over any topography described by a bottom elevation spectrum.

However, Fukao et al. (2010) and Juretzek and Hadziioannou (2017) found that a combination of horizontal

and vertical forces is required to arrive at the observed ratios of Love and Rayleigh waves.

Here we show that ocean waves propagating over small-scale bottom topography, as considered by Saito

(2010), are equivalent to a combination of vertical and horizontal forces. We particularly focus on the previ-

ously overlooked vertical component. We also generalize the result of Saito (2010) to random ocean waves.

The details of the bottom pressure and issues specific to the vertical force are described in section 2, first

considering sinusoidal waves over a sinusoidal bottom, before generalizing to random waves over random

bottom topography. Section 3 gives one example using a real ocean bottom topography, and conclusions

follow in section 4.

2. Large-Scale Pressure Arising From Depth Modulations

We consider surface gravity waves propagating in the x direction. As illustrated in Figure 1, the bottom pres-

sure at a wavy bottom with wavenumber kb under ocean waves of wavenumber k and frequency f contains

long components with wavenumber K = k − kb, oscillating in time at frequency f . As k approaches kb, the

horizontal propagation speed of these components can reach speeds of several kilometers per second and

excite seismic waves (Hasselmann, 1963). This is most easily understood for a sinusoidal ocean wave train
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over a sinusoidal bottom topography. Themain difference between our treatment and the one by Fukao et al.

(2010) and Saito (2010) is that we will consider themodulation of the ocean wave amplitude and wavelength

at the scale of the bottom topography. We shall see that this modulation is irrelevant for the lowest-order

horizontal force, but it dominates the vertical force. Indeed, the magnitude of the two forces is controlled by

two different small parameters that are the bottom slope for the horizontal force and a modulation index for

the vertical force. Their ratio is a parameter � that is only a function of the product of the mean ocean wave

wavenumber k0 with the mean water depth D0.

2.1. Sinusoidal Bottom

We consider a varying water depth D(x)with a mean depth D0 and amplitude d0, given by

D(x) = D0 − d(x) = D0 − d0 cos(kbx). (1)

Amonochromatic wave train of radian frequency � = 2�f and amplitude a propagating in the x direction has

a surface elevation

� (x, t) = va(x) cos [S(x) − �t] (2)

with the phase

S(x) = ∫
x

0

k(x′)dx′. (3)

The local wavenumber k(x) oscillates around k0, adjusting to the depth D(x) via the dispersion relation (e.g.,

Mei, 1989),

�2 = gk(x) tanh [k(x)D(x))] . (4)

Following Hasselmann (1963), the local amplitude a(x) oscillates around a0 to keep a constant energy flux

while the depth D(x) and group speed Cg(x) vary aroundD0 and Cg0. From linear wave theory the energy flux

is proportional to

Cg(x)a
2(x) = Cg0a

2
0
, (5)

with

Cg = �∕k[0.5 + kD∕ sinh(2kD)]. (6)

This conservation of the energy flux is not exact and is perturbed by bottom friction and wave scattering,

causing changes in wave height up to 50% over a distance of 40 km (Ardhuin et al., 2003; Roland & Ardhuin,

2014;WISE Group, 2007), while the transfer of oceanwave energy to seismic energy is negligible, typically less

than 0.1% over 1000 km. Processes that cause small changes in wave height over one seismic wavelength do

notmodify the generation of seismicwaves (supporting information Figure S1). Only depth-inducedbreaking

can produce a strong local variation of the wave heights that strongly modify the spectrum of the bottom

pressure and the seismic response (Ardhuin et al., 2015; Hasselmann, 1963).

We thus transform a(x) given by energy conservation into bottom pressure using linear theory (e.g., Mei,

1989), with �w the density of seawater that is assumed constant,

p(z = −D) =
�wg

cosh(k(x)D(x))
a(x) cos [S(x) − �t] . (7)

Neglecting bottom friction, which is discussed in section 4, the horizontal force per unit area on the bottom

is the bottom pressure times the bottom slope d′(x),

�(z = −D) = −
�wg

cosh(k(x)D(x))
a(x)d0kb sin(kbx) cos [S(x) − �t] . (8)

Here we focus on the components of p(z = −D) and �(z = −D) at wavelengths much longer than 2�∕k0.

In the case of the horizontal force, the product of slope and pressure partially aliases the wave pattern into

shorter k + kb and longer k − kb components.
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Figure 2. (a) Modulation factor � for the large-scale bottom pressure amplitude, as a function of the nondimensional

mean water depth k0D0, as given by equation (12). (b) Phases of �ls and pls for � = 1 at x = 0, giving forces (black

arrows) with a positive work in the case of retrograde motion with k0 − kb > 0 (gray arrow), corresponding to Rayleigh

waves propagating to the right.

Here it is useful to introduce the nondimensional modulation index

� = −
d0

kb

�k0

�D0

. (9)

In the supporting information (see also Ardhuin & Herbers, 2002; Cuyt et al., 2008), we demonstrate that

the modulated cosine gives a Fourier decomposition cos[S(x) − �t] ≃ cos(k0x − �t) + O(�). We can thus

approximate

− sin(kbx) cos [S(x) − �t] = − sin(kbx) cos(k0x − �t) + O(�)

≃
1

2

{
sin[(k0 − kb)x − �t] − sin[(k0 + kb)x − �t]

}
. (10)

The first term has a wavenumber K = k0 − kb which is very small for kb ≃ k. In other words, the horizontal

force contains very large wavelengths when the bottom topography and surface waves have nearly equal

wavelengths. This large-scale (ls) component of the horizontal force is proportional to the amplitude d0 of the

bottom oscillations,

�ls ≃
�wgk0

cosh(k0D0)

a0d0

2
sin

[
(k0 − kb)x − �t

]
. (11)

This expression is valid to order �0. Modulation effects only come in at order �, with a small correction to the

horizontal force.

The large-scale vertical force is more complex. In their analysis, Fukao et al. (2010) neglected the variations

in the wave amplitude and phase function. Using k(x) = k0, a(x) = a0, and S(x) = k0x, they concluded that

the topographic couplingmechanism generates only horizontal force but not vertical force. In other words, they

assumed sinusoidal ocean waves propagating over a flat bottom, which only produces a local bottom defor-

mation known as compliance, which is not a seismic wave (Crawford et al., 1991). In reality, the waves are

modified by twomodulation effects. First, the phase function S(x) is not exactly periodic and contains amod-

ulated wave number k(x). Second, the bottom pressure amplitude combines the effect of a varying transfer

function Gp(x) = 1∕cosh(kD(x)) that transforms surface elevation into bottom pressure and a modulation of

wave amplitude a(x) associatedwith the conservation of energy flux. Hence, the horizontal and vertical forces

are caused by two completely different effects. For the horizontal force, the bottom slope directly introduces a

modulation of the surface waves by the scales of the bottom topography. In the case of the vertical force, the

modulation comes from a modification, at the scale of the bottom topography, of the amplitude and wave-

length of the wave-induced bottom pressure amplitude. The supporting information provides a derivation of

the ratio � of the large-scale vertical force, which excites Rayleigh waves, and the large-scale horizontal force

that excites both Rayleigh and Love waves. It is only a function of y = k0D0, plotted in Figure 2a,

�(y) =
y − cosh(y) sinh3(y)
[
y + sinh(y) cosh(y)

]2 . (12)

In the limit of small bottom amplitudes, that is, � ≪ 1, the large-scale pressure is
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pls = −�
�wgk0

cosh(k0D0)

a0d0

2
cos

[
(k0 − kb)x − �t

]
. (13)

In the numerator of equation (12) the wavenumber modulation gives y + sinh(y) cosh(y)which dominates in

shallow water, and the pressure amplitude modulation gives −[sinh(y) cosh(y) + cosh(y) sinh3(y)] that dom-

inates in deeper water. The two exactly cancel for y = k0D0 ≃ 0.76, which was determined numerically by

Ardhuin et al. (2015). For example, at the frequency f = 0.064 Hz, the depth where the change in wavelength

compensates the change in pressure amplitude is D0 = 30m. For kD> 0.23, |�| < 1 and the horizontal force

is larger than the vertical force. This can explain the higher amplitudes of Love waves compared to Rayleigh

waves that are often observed for primary microseisms (Juretzek and Hadziioannou, 2016, 2017).

We also note that k0D0 < 0.76 corresponds to � > 0, in which case the pressure maximum has an opposite

phase compared to the case k0D0 > 0.76of Figure 1. Forwaves propagating toward the shore and k0D0 < 0.76,

the maximum pressure leads the maximum shoreward force by one quarter period (Figure 2b). This rotation

of the large-scale forcematches the phase of ground velocities in shoreward propagating Rayleighwaves and

is opposite to the phase of seaward propagating Rayleigh waves. As a result, the work of the force transfers

more energy to shoreward-propagating Rayleigh waves.

2.2. RandomWaves and Random Bottom

Following Hasselmann (1963), the solution is expressed as Fourier-Stieltjes integrals with modal surface ele-

vations amplitudes dZs(k) corresponding to the waves of wavenumber vector k, with a norm k = |k|,
propagating in the direction of the vector sk where s = 1 or s = −1 is a sign index. We now generalize the

surface elevation to a superposition of linear waves,

� =
∑

s
∫ ∫ dZs(k)e

i(k⋅x−s�t), (14)

where x = (x, y) is the horizontal position vector, and k and � are related by equation (4). Without loss of

generality, the bottom elevation is z = −D + d(x)with modal amplitudes dG(kb),

d = ∫ ∫ dG(kb)e
ikb⋅x. (15)

Only interactions with K = k + kb such that |K| ≪ |k| can produce seismic waves (Hasselmann, 1963). As a

result, the relevant waves and bottom topography are nearly aligned and refraction can be neglected. This

reduces the problem to the previous case of sinusoidal ocean waves over sinusoidal bottoms.

Defining �b as the direction of the vector kb, the force in the x direction is

�ls,x =
∑

s
∫ ∫ ∫ ∫

−�wgikb cos �b

cosh(k0D)
dZs(k)dG(kb)e

i[(k−kb)⋅x−s�t], (16)

corresponding to equation (8) in Saito (2010).

The power spectral densities of the two components of the horizontal force thus, when defined from positive

frequencies only,

(FT ,x , FT ,y)(K = 0, f ) = ∫ ∫ ∫ ∫
[

�wgk

cosh(kD)

]2
(cos2 �b, sin

2 �b)

E(k)FB(kb)�(f − f (k))�(k + kb − K)dkdkb

(17)

with f = �∕(2�) related to k = |k| by equation (4). Changing variables in spectral space, E(k)dk = E(f , �)dfd�

where � is the direction and wave propagation. This allows to remove the delta functions and collapse the

four-dimensional integral to one dimension only, in which kb = k and the magnitude of k is selected by the

seismic frequency f ,

(FT ,x , FT ,y)(K = 0, f ) = ∫
2�

0

[
�wgk

cosh(kD)

]2
(cos2 �, sin2 �)E(f , �)FB(k)d�, (18)

where FB(k) is the double-sided bottom elevation spectrum already used in (equation (2.15) and (2.16);

Ardhuin & Magne, 2007).

ARDHUIN ET AL. 5



Geophysical Research Letters 10.1029/2018GL078855

Figure 3. Example of (a) a sandwave field in the southern North Sea and (b) the associated spectrum of the bottom

elevation. The circles correspond to the wavenumbers of surface gravity waves with periods 10, 14, and 20 s in

D0 = 29-m depth. (c, d) Same format for a rocky platform off the west coast of Ireland between counties Clare and Kerry,

with circles corresponding to D0 = 15m.

For the bottom pressure we define the spectral density Fp1. Here the subscript 1 clarifies that this pressure

field is different from Fp2 given by the secondary microseismmechanism due to waves in opposite directions

(Ardhuin & Herbers, 2013). The full pressure spectrum is the sum Fp1 + Fp2, where we have neglected addi-

tional terms from higher-order interactions such as the interactions of two surface waves and one bottom

component giving K = k + k′ + kb. That type of interaction is beyond the scope of the present paper.

With the samemethod that gave the horizontal force (18), we nowobtain the pressure power spectral density

Fp1(K = 0, f ) = ∫
2�

0

[
�wgk�

cosh(kD)

]2
E(f , �)FB(k)d�. (19)

For most purposes, these distributed forces over an area dA and in the frequency band df can be replaced

by an equivalent oscillating point force (e.g., Gualtieri et al., 2013, equation (2) with an r.m.s. amplitude given

here for the vertical force

Ff ,dA,df ,z(K = 0, f ) = 2�
√

Fp1(K = 0, f )dAdf . (20)

2.3. Magnitude of the Vertical Force Compared to That Over a Slope

To obtain an order of magnitude of this interaction, we use the bottom spectrum of North Sea sandwaves

shown in Ardhuin and Magne(2007, Figure 7) and reproduced here in Figures 3a and 3b. This bottom has a

maximum power spectral density FB,max ≃ 2, 400m4 for kb = 0.02 rad/m. Such sandwaves are generated by

tidal currents (Besio et al., 2006; Hino, 1968). More typical values of FB,max are 2 orders of magnitude lower for

ARDHUIN ET AL. 6



Geophysical Research Letters 10.1029/2018GL078855

sand or silt regions where sandwaves are absent, but they can also be large over rocky seafloors, as shown in

Figures 3c and 3d.

We consider a 100-km2 rocky platform with water depths around D0 = 15 m and ocean waves with 14 s

period, with a surface elevation variance of 1 m2 in deep water, corresponding to a significant wave height of

4m. Neglecting dissipative processes, wave shoaling from depthDA (in deep water) toD0 will cause a change

of wavenumber from kA to k0, group speed from CgA to Cg0. The surface elevation variance is amplified by

a factor k0CgA∕kACg0 ≃ 2 (e.g.,O’Reilly & Guza, 1993). We take a bottom elevation spectral density FB(kb) =

150 m4, consistent with Figures 3c and 3d. Using equation (20), this rocky seafloor gives a force amplitude

N1 = 2.1 × 109 N.

Wenowestimate the force amplitudeover a bottomwith a constant slope � consideredbyHasselmann (1963)

and Ardhuin et al. (2015) that is uniform over Ly = 100 km in the alongshore direction. The bottom pressure

spectral density is

Fp1,slope(K = 0, f ) = �
�2
w
g4

[
EA(f , �n) + EA(f , �n + �)

]

kA(2�f )
432Lx

(21)

where EA(f , �n) is the spectral density frequency-direction spectrum of wave energy at the reference depth

DA and in the shore-normal direction �n and Lx is the cross-shore distance over which the source is dis-

tributed. We consider the same wave spectrum with a narrow Gaussian directional distribution of half-width

�� = 10∘,aaround the shore-normal direction, and a narrow frequency spectrum around 0.07 Hz. This gives

a maximum spectral density EA(f , �) = EA(f )∕(��

√
2�) ≃ 2.3EA(f ). The area of sources is dA = LxLy , giving a

r.m.s. vertical force amplitude N1,slope = 1.8 × 108 N that is 10 times smaller than N1. Besides, N1,slope goes to

zero for other wave directions whereas N1 is independent of the surface wave direction.

We thus conclude that a realistic wavy bottom can be a more powerful source of primary microseisms than

a bottom with a constant slope. The relative importance of the two types of topographies is probably spe-

cific to the location considered, with possible hot spots of microseism generation where the bottom is rough.

Rough here means that topography with wavelengths mathching those of surface waves has a large ampli-

tude. A practical evaluation of this effect for a period of 14 s requires maps of water depths at resolutions of

50mor better. Unfortunately, such data are not yet available everywhere. For example, the coarser 220-m res-

olution data provided by the EMODnet project (http://portal.emodnet-bathymetry.eu/) suggest that rough

rocky topographies can be found in regions off the outer Hebrides, and at many places along the Norwegian

coast, while sandwaves are a prevalent feature of the southern North Sea.

3. Application With a Real Bottom Topography

The bottom pressure spectrum can be transformed into seismic wave amplitudes using Green’s function for

the equivalent point force (e.g., Gualtieri et al., 2013) or a radiative balance on the seismic energy following

Hasselmann (1963). Hereweuse the latter approach and consider only the response to the vertical force, using

the most simple seismic propagation model of a water layer over a half space. This crude model misses the

possible effects of sediment layers that can damp or amplify the seismic sources (Gualtieri et al., 2014; Ying

et al., 2010). The spectral density of the vertical ground displacement F�(f ) at a seismic station is the sum of

seismic sources along great circles around the Earth.

Combining equations (S1) and (S2) of Ardhuin et al. (2015) gives

F�(f ) = 4�2f
c2

�5
s
�2
s
∫ Fp1(K = 0, f )P

exp(−2�fΔRE∕UQ)

RE sinΔ
dA, (22)

where dA is an elementary area of the ocean, U is the seismic group velocity, RE is Earth’s radius, and Δ is the

angle at the Earth center between source and seismic station. c is a nondimensional seismic source coeffi-

cient (Gualtieri et al., 2014; Longuet-Higgins, 1950), �s is the crust density, and �s is the shear wave speed in

the crust. Here we use c = 0.2, �s = 2, 600 kg/m3, �s = 2, 800 km/s, and UQ = 720 km/s. We further set

P = 1, which is a poorly known coefficient accounting for three-dimensional seismic propagation effects (Has-

selmann, 1963; Szelwis, 1982). Given that we investigate frequencies f around 0.1 Hz, the attenuation factor

b = exp(−2�fX∕UQ) over the distance X is less than 3 × 10−8 for X > 20, 000 km, so that we can neglect the

propagation of seismic waves over multiple orbits round the Earth.
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Figure 4. Modeled and measured root mean square vertical ground displacement in the frequency band 0.05–0.073 Hz,

at the Glengowla (IGLA) seismometer located in Ireland, 30 km northwest of Galway. The model uses either a the

bottom spectrum of Figure 3d, using equation (19) for a 10 by 10 km2 region located 150 km from the seismic station or

source all along the world’s shorelines due to a constant slope � = 0.077 represented by equation (21).

Our estimations of Fp1 are performed for a single location off the west coast of Ireland, using the numerical

wave model output of Rascle and Ardhuin (2013), which is forced by winds from the European Center for

Medium range Weather Forecasting operational analyses. We assume that all sources come from a patch of

rockybottomwith a spectrumshown in Figure 3dandanareaof 100 km2. That areawas adjusted to reproduce

the observed seismic amplitude, as shown in Figure 4. The temporal variability of themodel and observations

shows that stormwaves arriving at the Irish coast explainmost of the recorded seismic signal. A similar pattern

is produced by an effective slope of 7.7% all along the coasts. Given that sources along a constant slope are

dominated by the region in water depths D such that kD ≃ 0.76 (Ardhuin et al., 2015), this slope should be

between 20 and 50 m. The first scenario, with an area of 100 km2, probably distributed in several patches, is

more likely than large-scale slopes exceeding 5% on the continental shelf.

4. Discussion and Conclusions

Whereas Hasselmann (1963) only considered vertical forces and Fukao et al. (2010) only considered horizontal

forces, here we have shown that ocean waves propagating over bottom topography of similar wavelengths

produce both horizontal and vertical forces of comparable magnitude. The general wave-wave scattering

theory yields a rate of growth of the seismic waves during their propagation (Hasselmann, 1966) or, equiva-

lently, a collection of equivalent horizontal and vertical point sources from which a seismic response can be

computed.

Aswe focusedonpressureeffects,we ignored themodulationofbottomshear stress amplitude �b due tovary-

ing water depths D. For monochromatic waves, we have �b ≃ �wfwa
2[(2�)f∕ sinh(kD)]2. With a friction factor

fw ≃ 0.01 (e.g.,Smyth & Hay, 2002), the shear force amplitude is typically weaker than the pressure amplitude.

The modulation of this shear, although different from the pressure modulation due to the ga∕ cosh(kD) fac-

tor replaced by fw(2�f )
2a2∕ sinh2(kD), should lead to a large-scale horizontal forceweaker than the horizontal

force discussed above.

As noted in section2, the combinationof horizontal andvertical forces should enhance landwardpropagating

Rayleigh waves and also produce Love waves, possibly explaining the source patterns observed by Juretzek

and Hadziioannou (2017). In that paper they also found that the azimuthal radiation patterns of Love and

Rayleighwaves require a ratio of the horizontal to vertical forces of the order of 1∕� = 1.4which in the present

theory is obtained for a nondimensional water depth kD = 0.3, that is, D = 6m for f = 0.06 Hz, with higher

ratios for deeper water.

For primary microseisms, estimating the magnitude of the source requires a detailed knowledge of ocean

bottom topography at a resolution of 50 m or better. Using examples of real ocean topographies, the vertical

force can bemuch larger over a wavy bottom than over a constant slope. For example, a 100 km2 source area

can explainmicroseismamplitudes, with frequencies in the range 0.05 to 0.073Hz, observed at a seismometer

in the west of Ireland. A similar magnitude with a constantly sloping bottom requires a 7% slope all along the

coast that is not realistic. Thedependenceof theprimarymicroseismamplitudeon the small-scale topography

of shelf seas should cause a spatial distribution of sources that could be much more patchy than previoulsy

envisaged.
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Introduction

Text S1. Modulation factor for the wavenumber over a cosine bottom

For small bottom amplitudes, the non-dimensional coefficient α, is the sum of the two

modulation effects listed in the paper: the variation of the local wavenumber, and the
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Laboratoire d’Océanographie Physique et

Spatiale (LOPS), IUEM, Brest, France.

D R A F T August 2, 2018, 9:40pm D R A F T



X - 2 ARDHUIN: SUPPORTING INFORMATION FOR PRIMARY MICROSEISM SOURCES

variation of the bottom pressure amplitude, which itself can be split into a modulation

of the surface to bottom transfer function, and a modulation of the surface elevation

amplitude, conserving the energy flux. This gives α = α1 + (α2 + α3).

We first estimate the wavenumber, given by Taylor expansion around the depth D0,

k(x) = k0 − d0 cos(kbx)
∂k0
∂D0

+O

(

d2
0

∂2k

∂D2

)

. (1)

Differentiating the dispersion relation

σ2 = gk(x) tanh [k(x)D(x))] . (2)

gives for a constant σ [Ardhuin and Herbers, 2002, appendix D, eq. (D.10)],

2σ
∂σ

∂D
= g tanh(kD)

∂k

∂D
+

gk

cosh2(kD)

(

k +D
∂k

∂D

)

= 0 (3)

which for D = D0 gives,

∂k0
∂D0

=
−2k2

0

2k0D0 + sinh(2k0D0)
. (4)

Second, we estimate the spectrum of a constant amplitude signal that is modulated in

wavenumber. For this we write the phase S(x) using k(x) given by eq. (1),

S(x) =
∫

k(x)dx ≃

∫

(

k0 − d0 cos(kbx)
∂k0
∂D0

)

dx = k0x+ ϵ sin(kbx) +O

(

d2
0

∂2k0
∂D2

0

)

,(5)

where we have used the non-dimensional modulation index ϵ given by

ϵ = −
d0
kb

∂k0
∂D0

. (6)

Following Cuyt et al. [2008], the Fourier decomposition of a signal with such a modu-

lated phase is given by the Laurent expansion of exp[iz sin(kbx)],

cos[k0x+ ϵ sin(kbx)− σt] =
∞
∑

n=−∞

Jn(ϵ) cos [(k0 + nkb)x− σt] , (7)
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where Jn(ϵ) is the n-th order Bessel function of the first kind. When ϵ ≪ 1, we may

replace the Bessel function by its asymptote J−1(ϵ) ≃ −ϵ/2. We define

α1 = −
ϵ

k0d0
. (8)

Considering only the lowest harmonics in (7) and in particular the long wavelength com-

ponent,

cos[S(x)− σt] ≃ cos(k0x− σt)− α1k0d0
1

2
cos(k0x− kbx− σt) + ... (9)

Using kb ≃ k0, the value of α1 simplifies to

α1 = −
d0
k2
0d0

−2k2

0

2k0D0 + sinh(2k0D0)
=

2

2k0D0 + sinh(2k0D0)
. (10)

The neglected terms in eq. (5) can also give long wavelength components but only

at third order with an amplitude O(d3
0
∂3k/∂D3/kb). Indeed, the second order term is

proportional to cos2(kbx) and thus gives Fourier components cos [(k0 + 2nkb)x− σt] that

cannot produce long wavelengths for kb ≃ k0 but would contribute for kb ≃ k0/2 when a

wide bottom spectrum is considered.

Text S2. Modulation factors for the bottom pressure amplitude over a cosine

bottom

Linear wave theory gives

p(z = −D) = ρwg
a(x) cos[S(x)− σt]

cosh(k(x)D(x))
. (11)

With y = k0D0, this expands as

p(z = −D) = ρwg
a(x) cos[S(x)− σt]

cosh y

cosh y

cosh [k(x)D(x)]
(12)

≃ ρwg
a(x) cos[S(x)− σt]

cosh y
[1− α2k0d(x)] , (13)

D R A F T August 2, 2018, 9:40pm D R A F T



X - 4 ARDHUIN: SUPPORTING INFORMATION FOR PRIMARY MICROSEISM SOURCES

with

α2 = −

(

1 +
D0

k0

∂k0
∂D0

)

tanh(k0D0), (14)

= −(sinh2(y))/ [y + sinh(y) cosh(y)] (15)

Similarly, the variation of a(x) given by Cg(x)a
2(x) = Cg0a

2

0
can be expanded as

a(x) ≃ a0 [1− α3k0d(x)] (16)

with α3 = −
0.5

Cg0k0

∂Cg0

∂D0

. (17)

The linear group velocity Cg = σ/k(0.5 + kD/ sinh(2kD)) gives

∂Cg

∂D
=

σ

k0

[

1

sinh(2kD)

∂(kD)

∂D
− 2kD

∂(kD)

∂D

cosh(2kD)

sinh(2kD)2

]

−
∂k

∂D

Cg

k
(18)

=
σ

k0

∂(k0D0)

∂D0

[

1

sinh(2y)
− 2y

cosh(2y)

sinh2(2y)

]

− 0.5
σ

k2
0

∂k0
∂D0

[

1 +
2y

sinh(2y)

]

. (19)

Text S3. Combined modulation factor

We now combine cos[S(x) − σt] using eq. (9) with the results on the bottom pressure

amplitude, giving

p(z = −D) ≃ ρwga0 cos(k0x− σt)/ cosh(k0D0) + pls + · · · (20)

with the large scale components containing a phase [(k0 − kb)x− σt] given by

pls = − (α1 + α2 + α3)
k0d0
2

cos(k0x− kbx− σt)
ρwga0

cosh(k0D0)
. (21)

For ϵ ≪ 1, α is a function of y = kD that is the sum of the three parts

α1 =
2

2y + sinh(2y)
=

1

y + sinh(y) cosh(y)
, (22)

α2 = −
sinh2 y

y + sinh y cosh y
, (23)

α3 = −
2 sinh(2y)− 4y sinh2 y

(2y + sinh(2y))2
= −

sinh y cosh y − y sinh2 y

(y + sinh y cosh y)2
. (24)

D R A F T August 2, 2018, 9:40pm D R A F T



ARDHUIN: SUPPORTING INFORMATION FOR PRIMARY MICROSEISM SOURCES X - 5

Putting all three terms with a common denominator gives,

α(y) =
y + sinh(y) cosh(y)−

[

sinh(y) cosh(y) + cosh(y) sinh3(y)
]

[y + sinh(y) cosh(y)]2
=

y − cosh(y) sinh3(y)

[y + sinh(y) cosh(y)]2
.

(25)
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PSD of pressure

Eq. (12)
PSD of pressure

Eq. (12)

(a) (b)

(c) (d)

Figure S1. (a) example of the surface elevation and bottom pressure field for D0 = 35 m and

f = 0.085 Hz. (b) same surface and elevation with an exponential attenuation of the energy flux

exp(nx) with n = 10−5m−1. (c) and (d) corresponding spectra of the bottom pressure estimated

using the numerical data, or from the theoretical large-scale only given by eq. (13) of the paper.

D R A F T August 2, 2018, 9:40pm D R A F T



ARDHUIN: SUPPORTING INFORMATION FOR PRIMARY MICROSEISM SOURCES X - 7

1 %
2 % Script to verify expressions for depth induced modulations
3 % of bottom pressure. Fabrice Ardhuin, December 1, 2017.
4 %
5 clear all;
6 nf=1000; % Number of frequencies
7 D0=15; % mean water depth used for test
8 freq=linspace(0.0001,1,nf);
9 k=dispNewtonTH(freq,D0); % uses Newton method for inverting ...

sigˆ2 = gk tanh(kD)
10 khp=freq.*0;
11 alphas=khp; % modulation factor
12 alphasi=zeros(nf,4); % different pieces of the modulation factor
13 for i=1:nf
14 om=2.*pi.*freq(i); % radian frequency
15 k0=k(i);
16 y=k(i)*D0; % y=kD
17 khp(i)=y; % stores values of kD for later plot
18 if (y < 7)
19 dkdD= 2*k0ˆ2./(2*y+ sinh(2*y));
20 dkDdD=k0.*sinh(2*y)./(2*y+ sinh(2*y));
21 Cg=om./k0.*0.5*(1+(2*y)/sinh(2*y));
22 dCgdD=om/k(i)*(dkDdD/sinh(2*y) 2*y*dkDdD*cosh(2*y)/(sinh(2*y)ˆ2)) ...

...
23 dkdD*om/k0.ˆ2*0.5*(1+(2*y)/sinh(2*y));
24 alpha2= (sinh(y).ˆ2)/(y+ sinh(y).*cosh(y) );
25 alpha3= (2.*sinh(2*y) 4*y*sinh(y)ˆ2)/((sinh(2*y)+(2*y)).ˆ2);
26 alpha3b= 0.5.*dCgdD./(Cg*k0); % This is for ...

verification ...
27 % Proposed by JFM Reviewer, his eq C3 :
28 % (2*y+sinh(2*y)+sinh(2*y)* ...
29 % (sinh(2*y) 2*y*cosh(2*y)))/(2*y+sinh(2*y)).ˆ2;
30 alpha1=2./(2*y+ sinh(2*y));
31 %alphas(i)=((2 2.*sinh(kh).ˆ2).*(2*x+sinh(2*x)) ...

(2.*sinh(2*x) 4*x*sinh(x)ˆ2)) ...
/((sinh(2*x)+(2*x)).ˆ2);

32 alphas(i)=4*(y cosh(y).*sinh(y).ˆ3 ) ...
/((sinh(2*y)+(2*y)).ˆ2);

33 alphasi(i,1)=alpha1;
34 alphasi(i,2)=alpha2;
35 alphasi(i,3)=alpha3;
36 alphasi(i,4)=alpha3b;
37 else
38 alphas(i) = 1;
39 end
40 end
41 figure(1)
42 clf
43 plot(khp,alphas,'k',khp,alphasi(:,1)+alphasi(:,2)+alphasi(:,3),'ko')
44 axis([0 4 1 5])
45 hold on
46 plot(khp,alphasi(:,1),'r ',khp,alphasi(:,2),'g ',khp,alphasi(:,4),'go', ...

...
47 khp,alphasi(:,3),'b ',khp,alphasi(:,3)+alphasi(:,2),'c ')
48 xlabel('y=k 0 D 0')

55 function dispNewtonTH=dispNewtonTH(f,dep)
56 % inverts the linear dispersion relation ...

(2*pi*f)ˆ2=g*k*tanh(k*dep) to get
57 % k from f and dep. 2 Arguments: f and dep.
58 eps=0.000001;
59 g=9.81;
60 sig=2.*pi.*f;
61 Y=dep.*sig.ˆ2./g ; %a is the squared adimensional frequency
62 X=sqrt(Y);
63 I=1;
64 F=1.;
65 while abs(max(F)) > eps
66 H=tanh(X);
67 F=Y X.*H;
68 FD= H X./cosh(X).ˆ2;
69 X=X F./FD;
70 end
71 dispNewtonTH=X./dep;

Figure S2. Matlab code used to check the analytical results
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