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Spatial and Temporal Transformation of Shallow Water Wave Energy 

SASITHORN ARANUVACHAPUN ! AND EDWARD B. THORNTON 

Department of Oceano•traphy, Naval Post•traduate School 

The surface wave spectra from the Atlantic Ocean Remote Sensing Land-Ocean Experiment 
(ARSLOE), during the passage of a 26-hour storm, were subjected to an empirical eigenfunction analysis. 
Results from the analysis are interpreted as the spatial and temporal variation of surface gravity waves 
propagating from deeper water into the shallow region where breaking finally occurs. The temporal 
variation is found to be approximately 7-17% of the total variance in the data and is considered as 
stochastic, with a fluctuation of about 2-3 cycles that appear correlated with the variation of the 
atmospheric forcing. The spatial variation (1-3%) is significantly less than the temporal variation but 
exhibits a deterministic part, indicating that the wave processes associated with the spatial variation can 
be considered deterministic. The principal eigenfunctions obtained from the analysis provide a good 
representation of the principal variations in the wave spectra as shown by the first eigenvalue of the 
covariance matrices. The radiative transfer equation is projected onto the eigenvector space, and the 
source function obtained from the suitable projection function is presented. By using the information 
extracted from the empirical eigenfunction analysis, various source functions for the wave field are 
inferred. The source functions evaluated in the present study are associated with the wave mechanisms of 
refraction and shoaling, atmospheric input, bottom friction, and wave-wave nonlinear interaction. The 
functions provide a good picture of the spectral wave energy balance, although further development of 
the current work can provide more detailed information about the energy transfer and may enhance the 
present picture of wave energy balance in the shallow water. 

1. INTRODUCTION 

Since our knowledge of the principal processes controlling 
the energy balance of the surface wave spectrum remains in- 
complete, numerical wave prediction models have to rely on a 
synthesis of empirically derived information from wave 
measurements. Without much consideration for the physical 
wave processes and energy transfer of the wave field, most 
empirical models tend to suffer a poor degree of accuracy. 
However, as more wave measurements have become available, 
models of the spectral wave energy balance have been suc- 
cessfully improved. The parametric wave prediction model of 
Hasselmann et al. [1976] (hereafter called PWPM) is an exam- 
ple of the improvement of wave prediction models based on 
the energy transfer equation. The model is essentially a func- 
tion containing five free parameters, two scale parameters, and 
three shape parameters that fits closely to nearly all fetch- 
limited frequency spectra measured during the Joint North 
Sea Wave Project (JONSWAP) [Hasselmann et al., 1973]. 
Hasselmann et al. [1976] also show that it is possible to de- 
scribe the wave field in terms of only two such parameters. 
The parameters are related to the source functions of the wave 
field by projecting the radiative transfer equation, or the 
energy balance equation, onto the parameter space with ap- 
propriate projection functions. Therefore, for known wave 
mechanisms associated with the spectral energy transfer and 
the corresponding spectral parameters, the PWPM can be 
used to predict the wave conditions. Since the wave growth 
mechanism and resonant wave-wave interaction have been 

thoroughly investigated by Hasselmann et al. [1973], both 
processes have been implemented in the original PWPM. The 
model has also been applied to the hindcast of wave spectra 
under rapidly varying wind fields during the JONSWAP 1973 
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[Giinther et al., 1979a] and the hindcast study of extreme wave 
conditions in the North Sea [Ewing et al., 1979]. Although the 
results are generally found to be encouraging, Giinther et al. 
[1979a] suggest three important improvements to the model: 
(1) the implementation of shallow water effects, (2) the incor- 
poration of a directional relaxation time for turning winds, 
and (3) a physically more realistic algorithm for the transfor- 
mation between wind, sea, and swell. Initial attempts at both 
items 2 and 3 have been made by Giinther et al. [1981, 1979b]. 
The papers provide careful analyses of the subject matters. 

The nonlinear and linear bottom interaction effects in shal- 

low water have been examined by Shemdin et al. [1978] to 
estimate the rate of energy dissipation. In their computation of 
the energy balance equation, each source function used is a 
known expression derived from an individual mechanism, 
while the actual source functions associated with the measured 

wave field have not been examined. Although the improve- 
ment of item 1 has so far been addressed, the source functions 
of the wave field in a shallow region have not yet been thor- 
oughly investigated. 

Furthermore, each individual source function used in the 
energy balance equation is, in general, derived from an iso- 
lated mechanism. For example the atmospheric input source 
function is usually derived from the Miles-Phillips-type gener- 
ation [Miles, 1957; Phillips, 1958], whereas the nonlinear 
wave-wave interaction source function tends to assume the 

Hasselmann-type nonlinear interactions [Hasselmann, 1968]. 
Thus a wave prediction model that relies on these kind of 
source terms, generally performs well in the growing wind sea 
environment where wave generation is the most dominant 
mechanism. For a wave field with more than one competing 
mechanism, additional source functions can be added to the 
energy balance equation. Nevertheless, each mechanism re- 
mains independent of each other. The source functions do not 
account for any interaction between mechanisms, despite their 
competition in the wave field. Therefore, questions arise con- 
cerning the accuracy of theoretical source functions in repre- 
senting the actual wave energy transfers. If a measured wave 
field has several competing wave mechanisms as well as the 
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mechanism interactions, will the actual source functions com- 
puted from the wave field be different from the source func- 
tions theoretically derived from each independent mechanism ? 
Without assuming certain wave processes in the wave field, 
what do the actual source functions representing the energy 
transfers look like ? 

Our present study is motivated by an attempt to answer 
some of the above questions as well as a need to understand 
the principal processes controlling the spectral wave energy 
balance in the shallow water, as addressed by Glinther et al. 
[1979a]. However, the study requires the wave measurements 
that describe the spectral evolution in both time and space. 
The Atlantic Ocean Remote Sensing Land-Ocean Experiment 
(ARSLOE) [Vincent and Lichy, 1982], conducted at Duck, 
North Carolina, from October 6 to November 30, 1980, pro- 
vides a large data base of wave measurements suitable for 
determining the spectral wave energy balance in a shallow 
water wave regime. The spatial and temporal transformation 
of wave energy as the waves propagate into the nearshore 
zone is well represented in the data collected during the exper- 
iment. Wave data from ARSLOE during the passage of a 
26-hour storm (October 24-25, 1980) are studied by using the 
empirical eigenfunction analysis. It is found that more than 
80% of the frequency wave spectrum can be fitted by the first 
empirical eigenfunction, and therefore the principal eigenvec- 
tor is used to represent each frequency spectrum measured. 
Using a projection method similar to Hasselmann et al. [1973, 
1976] and Giinther et al. [1979a, b-I, the energy balance equa- 
tion is projected onto the eigenvector space. Since there is a 
lack of specific source term measurements, such as precise 
wind field measurements, the source terms are treated as un- 
knowns. The unknown source terms are also projected with 
an appropriate projection function, which enables them to be 
solved. The objectives of this study are (a) to establish an 
algorithm for estimating the actual source terms from a mea- 
sured wave field in the nearshore region; (b) to derive infor- 
mation concerning the energy transfer of the wave field; and 
(c) to use the information to infer the principal processes con- 
trolling the spectral wave energy balance in the shallow water. 

The paper briefly describes the ARSLOE data acquisition 
and the measured wave field. The empirical eigenfunction 
analysis of the frequency wave spectra is presented where the 
results are interpreted in terms of spatial and temporal vari- 
ation of spectral wave energy. Since the data were collected 
during the storm period, the temporal variation is found to be 
considerably larger than the spatial variation. The energy bal- 
ance equation, its projection onto the eigenvector space, and 
the source functions are developed. Results from the compu- 
tations of the source functions exhibit interesting variability of 
the source terms, which are used to infer the spectral energy 
transfer of the wave field, and the physical wave processes 
that might attribute to the energy transfer. An attempt has 
also been made to identify the principal physical processes 
modifying the wave field in this shallow water regime by 
using the qualitative spectral shapes of the source functions. 

2. DESCRIPTION OF WAVE FIELD 

The ARSLOE was conducted near the U.S. Army Coastal 
Engineering Research Center's ocean pier at Duck, North 
Carolina [Vincent and Lichy, 1982]. During the experiment a 
large low-pressure storm system occurred from October 
23-25, 1980, with maximum sustained wind of greater than 15 
m/s and significant wave heights up to 5 m. The wave data 
selected for our analysis were measured during the time of the 

storm. The measurements were acquired by using a transect of 
five wave-rider buoys between 12 and 0.7 km offshore and a 
line of seven Baylor wave gages attached to the 600-m pier in 
9 to 1.3 m of water (see Table 1). The wave-rider buoys were 
pre- and post-calibrated. According to Ribe [1981], the total 
instrumentation error was estimated to be less than 4%. The 

error analysis includes the buoy sensitivity and the instrumen- 
tation drift caused by temperature variation. The Baylor gages 
and the pressure sensors are typically 99% accurate. Simulta- 
neous wind measurements were obtained by using an ane- 
mometer located at the shoreline 19 m above MSL. The waves 

and wind were measured for 20 min every 2 hours throughout 
the experiment. The wave spectra were calculated for all the 
wave sensors given in Table 1. There are 13 time intervals 
during the period of 26 hours when wave spectra of all the 
sensors were computed. The wave measurements were digi- 
tally sampled at 0.25 s, resulting in a Nyquest frequency of 2.0 
Hz. Spectra were obtained by dividing the 20-min records into 
36 segments and applying a Fast Fourier Transform (FFT) 
algorithm to each segment. The raw spectra were averaged by 
frequency band to yield an averaged spectrum. The resulting 
spectra have 72 degrees of freedom with a resolution of 
0.03125 Hz. 

To illustrate the environments of the wave field during the 
storm, the rms wave heights for selected wave gages are plot- 
ted along with the mean sea level depicting variations caused 
by tide, wind speed, and direction (Figure 1). The winds were 
generally in the 10 to 15 m/s range, and they were initially 
from the northeast (winds directly onshore at Duck are from 
the ENE at 70 ø azimuth). As the extratropical low moved up 
the east coast, followed by a cold front passage, the winds 
turned clockwise until finally blowing offshore. The sea re- 
sponded to the intensified winds with the waves growing to a 
maximum of 5 m on October 25, 1980 and then decaying as 
the winds shifted around to offshore direction. 

As the waves propagate shoreward, there is a general de- 
crease in wave height (and hence energy) as can be seen in 
Figure 1. The decrease in energy can be attributed to dissi- 
pation and/or wave divergence. The dissipation of wave 
energy can be attributed to the mechanisms of bottom friction, 
wave breaking percolation, coupled wave-bottom motions, 
sediment transport, and bottom scattering. For shoaling on a 
shallow shelf composed of fine grain sand, bottom friction 
would be expected to be the dominant dissipative mechanism 
prior to wave breaking [Shemdin et al., 1978]. Once the waves 
start to break, turbulent dissipation caused by breaking be- 
comes the dominant mechanism. The bathymetry about the 

TABLE 1. Details of the Instruments and Their Locations 

Distance From Distance From Depth 
Instrument Baseline Pier Centerline relative to 

ID Type (on-offshore), m (alongshore), m MSL, m 

615 Baylor 189.0 0.0 1.3 
635 Baylor 213.0 0.0 2.4 
645 Baylor 238.0 0.0 3.8 
655 Baylor 274.0 0.0 5.5 
665 Baylor 323.0 0.0 5.7 
621 pressure 620.0 110.0 6.0 
675 Baylor 433.0 0.0 6.3 
625 Baylor 579.0 0.0 9.1 
620 wave rider 3,250 -44.0 17.1 
630 wave rider 6,090 -490.0 18.9 
710 wave rider 12,400 - 510.0 21.3 
730 wave rider 12,040 500 22.3 
720 wave rider 12,270 - 1,290.0 23.5 
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Fig. 1. Waves, tides, and winds, October 24-25, 1980. 

pier is shown in Figure 2. It is noted that a scour hole about 
the end of the pier was present during the experiment. Wave 
refraction/diffraction can cause the waves to diverge as they 
pass over the scour hole, resulting in the decrease of wave 
height. 

The spatial decay of wave energy at various depths can be 
seen in Figure 3, where the evolution of wave spectra in time 
during the storm is presented according to the transect from 
deep water to very shallow region. The spectra show a general 
decrease in energy across all spectral bands as the waves pro- 
ceed shoreward. The temporal changes appear to reflect the 
variation in the wind field. Initially, the energy density has a 
maximum at 0.155 Hz. As the storm intensifies and the winds 

shift more onshore, the energy density grows with an increas- 
ing lower frequency. Swell at 0.123 Hz may be seen in Figure 
3a. The higher-frequency sea waves (0.248 Hz) also reach a 
maximum on the 24th (or the 7th time interval) and then 
decrease as the winds shift around to the south. 

The dependence of waves on the bottom topography is ap- 
parent in Figure 3(b, c), where refraction and shoaling are 
depicted respectively. The spectra presented in Figure 3b are 
from the area of the scour hole, and a divergence of wave 
energy is evident. Figure 3d shows dominant energy dissi- 
pation caused by wave breaking, where the time evolution of 

the spectra has much less energy than the deeper water 
(Figure 3a or 3b) and is more variable than the shallower 
water (Figure 3e). As the waves progress across the surf zone 
they become more and more depth limited, such that in the 
inner surf zone their height is approximately proportional to 
the depth [Thornton and Guza, 1982]. When waves begin to 
break, the breaking is primarily a function of wave height and 
water depth. Figure 3e represents an after-breaking situation 
when the waves appear to follow the tidal elevation. It is 
evident from the wave measurements in Figure 1 (also in 
Figure 3e) that the wave heights in the inner surf zone are 
almost independent of the offshore conditions and primarily 
dependent on the local depth. 

3. EMPIRICAL EIGENFUNCTION ANALYSIS OF FREQUENCY 
WAVE SPECTRA 

An empirical eigenfunction analysis was selected to analyze 
the ARSLOE wave measurements, which are essentially the 
time series of the spatially varying wave field. The technique 
has been extensively used in analysis of data with more than 
one independent variable [e.g., Wang and Mooers, 1977; Wall- 
ace and Dickinson, 1972; Aranuvachapun and Johnson, 1979]. 
In particular the method is useful in discerning which part of 
the variability is related to temporal or spatial processes. The 
empirical eigenfunction analysis not only allows the variance 
distribution of the data to be represented by the empirical 
eigenvalues but also provides some information concerning 
the stochastic and deterministic properties of the data. Fur- 
thermore, the principal eigenfunction can represent the prin- 
cipal structure of the data, which is important since the repre- 
sentation is very useful for both data interpretations and mod- 
eling purposes. The analysis is applied to the wave spectral 
evolution. The wave spectra form arrays at the regular resolu- 
tion interval of 3.125 x 10 -2 Hz from 0.025 Hz to 0.650 Hz 

(or from 40.0-s to 1.5-s periods, respectively). Only the sea- 
swell band of wave transformation is to be examined. The 

spectral densities are stored in three-dimensional arrays whose 
x axes represent frequency, y axes represent the spatial distri- 
bution of the instruments, and z axes represent the time series. 
Figure 4 illustrates the frame of reference used for storing the 
digitized data as described. At a particular time the three- 
dimensional block of data is reduced to a two-dimensional 

data matrix A on the xy plane (see also Figure 4), where the 
columns represent discrete frequencies and the rows represent 
distances between two instruments along the transect from 
shallow water to deep region. There are 13 data matrices of A 

Fig. 2. 
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Fig. 3. Wave spectra as a function of time at (a) 18-m depth, (b) 10-m depth, (c) 7-m depth, (d) 6-m depth, (e) 2-m depth. 

according to 13 realizations. Similarly, at a constant space the 
block of data is sliced horizontally along the xz plane to pro- 
vide a two-dimensional data matrix B (see also Figure 4), 
where the columns still represent the same discrete fre- 
quencies, but the rows represent time scale. Because each data 
block has 13 discrete distances, there are also 13 data matrices 
of B. 

Each data matrix of A is used to compute two covariance 
matrices P and Q, given by the following expressions: 

ATA 
P- 

ch 

where 

and 

] h 

Pat = •-• i•ai•,ait 

Q I 

k,l=l, 2 ..... c 

AA T 

ch 

where 

Q•,t =•-• a•,jat.• k, I= 1, 2 ..... h j=l 

where A r is the transpose of A, h is the number of discrete 
frequencies that is 20 in our present analysis, and c is the 
number of discrete distances that is 13. Similarly, two covari- 
ance matrices R and S are also computed from each data 
matrix B by using the same relations as above. Since P is 
essentially a sum over the frequency domain of the basic data, 
its eigenvalues and eigenvectors are associated with the spatial 
variation. The same consideration is applied to R, and there- 
fore, its eigenvalues and eigenvectors are associated with tem- 
poral variation. Matrices Q and S are, again, sums over space 
and time domains, respectively, and so their eigenvalues and 
eigenvectors are associated with frequency spectra. Notice 
that, by reducing the three-dimensional data base to two di- 
mensions, the interpretations of the resulting eigenvalues and 
eigenvectors are significantly simplified. 

The P, Q, R, and S covariance matrices were fitted by em- 
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Fig. 4. Illustration of the frame of reference used for storing the 
spectral densities. 

pirical eigenfunctions, and their eigenvalues and eigenvectors 
were computed. An example of the eigenvalues for covariance 
matrices P and Q calculated from data matrix A at a constant 
time (0715, October 25, 1980)is shown in Table 2, where the 
eigenvalues ,•. are well ordered so that ,•1 > 22 > •3 .... 
Figure 5 illustrates a plot of eigenvalues against eigennumbers 
(or modes) that is known as an eigen index. Notice that the 
magnitude of ,•. decreases very rapidly as n increases (Table 2), 
and therefore, we will concentrate only on the first two eigen- 
functions associated with the large leading eigenvalues ,•1 and 
,•2. However, before attempting the interpretations of the re- 
sults, certain properties of the empirical eigenfunctions should 
be stated as follows: 

If the nth eigenvector u. of P corresponding to the eigen- 
value 9•. have components u. 1, u.2, ..., U.c and the nth eigen- 
vector v. of Q have components v. 1, v. 2, ..., v.h; then it can be 
shown that each wave spectrum may be represented as a 
linear combination of the % in which the coefficients consist 
of the u.i and ,•.. The appropriate formula for the energy 
density at ith instrument and jth frequency is 

a u = • (ch'•,n)l/2Unil)nj 
.=1 

The average over various instruments, or over space of a u, is 

1• 1• • 1/2UniVn j - a u - _ (ch•n) 
C i=l C i=l n=l 

-'-n=•l(ch,•n)l/2f! i=•lUnitI')nj 
Let 6j = 1/c Y',i= 1 c aij and !• n --- ]/C Zi = 1 c Uni. The above ex- 
pression can be rewritten as 

•j = • (ch,)cn)l/:anVnj (1) 
n=l 

where /•n is the mean of the elements of u n and 6j is the mean 
of the spectra at various eigenmodes. For •1 >> ,•2 the leading 
term of (1) can give a good approximation to the frequency 

TABLE 2. The Eigenvalues of Covariance Matrices P and O 
Calculated From the Data Matrix A at the Constant Time of 

0715, October 25, 1980 

Contribution Accumulation 

Mode Eigenvalues Rate of '•n' Rate of '•n' 
n '•n ¾o ¾o 

1 0.178E -t- 01 96.60 96.60 
2 0.436E - 01 2.37 98.97 

3 0.945E - 02 0.51 99.48 
4 0.532E - 02 0.29 99.77 
5 0.230E - 02 0.13 99.89 
6 0.114E - 02 0.06 99.95 
7 0.591E - 03 0.03 99.99 

8 0.179E - 03 0.01 100.00 
9 0.354E - 04 0.00 100.00 

10 0.196E - 04 0.00 100.00 

11 0.772E - 05 0.00 100.00 

12 0.400E - 05 0.00 100.00 
13 0.849E - 06 0.00 100.00 

spectrum of spatial mean. Hence the spatial mean energy den- 
sity function is approximated by the function 

(ch21)l/2•lUlj j- 1, 2 ..... h (2) 

Furthermore, the sum of the eigenvalue of the covariance 
matrix is equal to the mean square value of the data, i.e., 

__ 2 
'•n -- Pkk • aik n=l k=l k=l i= 

Thus, for centered data, the eigenvalue is the distribution of 
variance within the data. The largest eigenvalue ,• represents 
the greatest variability of the data; hence its corresponding 
eigenfunction, as given by (2) for ;•1, is termed the principal 
wave spectrum. 

4. RESULTS AND INTERPRETATIONS 

The computations of eigenfunctions of the form (2) for ,•1 
and ,•2 were carried out, and the results are presented in 
Figure 6a, where the functions are plotted against the wave 
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Fig. 5. Eigen index of the spatial evolution of the wave field at a 
constant time of 0715, October 25, 1980. 
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genfunctions shown in Figure 6b, are illustrated in Figure 6c, 
where the functions are plotted against the time series of the 
data in 26 hours. Although the analysis provides 26 sets of 
eigenvalues (eigen indices) and 52 sets of eigenfunctions, the 
interpretations will be focused on the results from the above 
examples, which are selected to represent typical cases of the 
data. The interpretations are summarized as follows: 

4a. Properties of the Wave Field 

Preisendorfer et al. [1981] state that the eigenvalues of a 
system composed of both deterministic and stochastic pro- 
cesses can be expressed as 

1 2 
2•, = • •,2 + a•, k = 1, 2, ..., n 

0.31 i • • • I 
I- FUNCTION OF X 1 

'..'-' / BREAKING t,,., 

• L + ---FUNCTIONOF X 

t •'"'/ (b) 
--0.3 • • 5 I0 15 2 

ITER DEPTH 

Fig. 6. (a) The eigenfunctions corresponding to the eigen index of 
Figure 5 that are obtained from space and frequency domain. The 
principal eigenfunction represents the spatial mean wave frequency 
spectrum. (b) As in (a), except the eigenfunctions are in space domain. 
Therefore they represent the spatial variation of the wave field. (c) As 
in (a), except the eigenfunctions correspond to the eigen index of 
Figure 7. They are obtained from the time domain and thus represent 
the temporal variation of wave field. 

frequencies. Similarly, the spatial eigenfunctions computed 
from (ch•n)l/2ffnUni , i= 1, 2 .... , c, for the same 21 and 22 
(n- 1 and 2) are presented in Figure 6b. The spatial eigen- 
functions are plotted against the water depths. Notice that, 
from one data matrix A, two covariance matrices P and Q can 
be estimated, and they provide empirical eigenfunctions in 
space and frequency domains, respectively, that indicate the 
principal structures of the data and their orthogonal vari- 
ations (see also Figure 6(a, b)). The same calculations were 
repeated for a data matrix B chosen at the constant depth of 
approximately 23 m, where two covariance matrices R and $ 
provide the empirical eigenfunctions in time and frequency 
domains, respectively. The eigenvalues from R and $ are tabu- 
lated in Table 3, while the eigen index is shown in Figure 7. 
The temporal eigenfunctions for ;• and ;•2, similar to the ei- 

where the deterministic part of the system has rn degrees of 
freedom with amplitudes of oscillations fli, i= 1, 2 .... , rn, 
while the stochastic part has a standard derivation of aj, j = 1, 
2 .... , n. For rn < n the eigenvalues for k = rn + 1 .... , n are 
essentially ak 2, since at k = m the extra contribution on ak2 
from «/Sn 2 stops and is missing for k > m. These n-rn eigen- 
values are the purely stochastic tails of the sequences that 
usually provide different decay rates than the earlier eigen- 
values where the extra contribution from « fin2 is found. Thus 
there is a region where the changing of decay rate occurs, 
which is significant and generally detectable in a plot of the 
eigen index. For example, Figure 5 shows the dotted region 
where the changing of slope of the eigenvalue curve occurs, 
which implies that the processes associated with the wave 
propagation into shallow water are deterministic. Thus, wave 
mechanisms such as wave refraction and shoaling may pro- 
duce deterministic properties of the wave field. On the other 
hand, Figure 7, which is similar to Figure 5, except the eigen 
index is for the data of time and frequency domain, does not 
show a slope-changing region. The curve seems to have a 
constant slope as shown by the dashed line, indicating that the 
temporal wind forcing of the waves is purely stochastic. 

In general, results from the analysis suggest that almost 
99% of the data is contained within the first seven modes of 

the empirical eigenfunction analysis as shown, for example, by 
the accumulative rate of the eigenvalues tabulated in both 
Tables 2 and 3; this indicates that the wave field exhibits a 
minimum of 7 degrees of freedom. Since the principal eigen- 
function in the frequency domain generally contains more 

TABLE 3. The Eigenvalues of Covariance Matrices R and S 
Calculated From the Data Matrix B at the Constant Depth of 

Approximately 23 m 

Contribution Accumulation 

Mode Eigenvalues Rate of 2,, Rate of 2, 
n 2. % % 

1 0.387E + 01 84.18 84.18 
2 0.631E + 00 13.72 97.90 
3 0.769E - 01 1.67 99.57 
4 0.125E - 01 0.27 99.84 
5 0.576E - 02 0.13 99.97 
6 0.102E - 02 0.02 99.99 
7 0.249E - 03 0.01 100.00 
8 0.726E - 04 0.00 100.00 
9 0.459E - 04 0.00 100.00 

10 0.288E - 04 0.00 100.00 
11 0.135E - 04 0.00 100.00 
12 0.320E - 05 0.00 100.00 
13 0.919E - 06 0.00 100.00 
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Fig. 7. Eigen index of the temporal evolution of the wave field at 
a constant depth of approximately 23 m. The index is obtained from 
the time and frequency domain. 

than 80% of the variance, it gives an excellent approximation 
of the principal wave energy density spectrum. It is found 
from the eigenvalues of space and frequency domains that the 
significant spatial variation corresponding to '•2 to ,•7 is ap- 
proximately 1-3% of the variance, and it may be deterministic 
as suggested by the eigen index (see Figure 5). Likewise, from 
the eigenvalues of time and frequency domains it is found that 
the significant temporal variation is approximately 7-17% of 
the variance, and it could be stochastic with the fluctuation of 
about 2-3 cycles. The fluctuation tends to vary with wind 
speed, which will be further discussed in the next section. 

4b. Temporal and Spatial Variation of Wave Spectra 

Most of the principal wave spectra obtained from the fre- 
quency domain analysis generally exhibit a dominant peak at 
0.12 Hz (8.1-s period) (see Figure 6a for example), except 
during the onshore high wind condition (wind speed greater 
than 15 m/s) when a dominant peak at 0.16 Hz (6.4-s period) 
is found. Waves at higher frequency can be generated by the 
wave growth mechanism, produced by strong surface wind, 
and the wave-wave resonant interaction. Both of these wave 

processes are well described and explained in Hasselmann et 
al. [1973]. Because the wave field was very energetic, another, 
smaller significant peak at 0.20-0.25 Hz (4-5 s period) in the 
high-frequency end is also found throughout the results from 
the analysis. Since the extreme high wind condition lasted for 
several hours, the significant wave energy at 0.16 Hz still re- 
mained in the proceeding records, and therefore, the peak at 
0.16 Hz is found together with the dominant swell peak at 0.12 
Hz in the corresponding principal eigenfunctions. The eigen- 
functions associated with ,•2, in general, show a smaller ampli- 
tude of oscillation that decreases to almost zero with the in- 

crease in frequency, indicating that most of the variance in the 
spectra is well captured within the lower end of the fre- 
quencies. 

Although the eigenvalues resulting from the analysis suggest 
that the magnitude of the spatial variation is approximately 
1-3% of the total variance in the data, which is considerably 
smaller than the magnitude of the temporal variation, there 
are interesting features given by the principal eigenfunction in 
space domain. The typical features may be seen in Figure 6b, 
where large variations of wave spectra caused by water depth 

are found at depths 4-6 m and 17-22 m. The features are 
consistently found throughout the results and suggest that, at 
depth 4-6 m, the breaking of storm waves occurs and conse- 
quently causes a variation in very shallow water, while at 
depth 17-22 m, the refraction and shoaling of swell, which are 
wave processes associated with the energy dissipation caused 
by bottom topography, may occur, and therefore a large spa- 
tial variation could be found. Notice however, the eigenfunc- 
tion of ,•2 tends to vary in a similar way as the principal 
eigenfunction (of ,•), except at depths greater than 22 m, sug- 
gesting that there is no distinguished feature shown by the 
eigenfunction of ,• in the shallow water which can be used to 
infer any other physical wave process. 

Because the measurements were made during a storm pas- 
sage, the temporal variation is significantly higher, with its 
magnitude as large as 17% of the total variance in the data. 
The principal eigenfunction in the time domain generally illus- 
trates 2-3 cycles of fluctuation over the 26 hours duration. 
The fluctuation is enhanced in deeper water where the depth is 
greater than 10 m, while in very shallow water the tidal oscil- 
lation tends to interfere and dominate the overall temporal 
variation. The temporal variation at depth 23 m exhibits a 
correlation with the fluctuation of wind speed. Figure 6c 
shows the temporal variation represented by the principal ei- 
genfunction (of ,•) in a solid line superimposed on the wind 
speed variation shown by the dotted line. Once again, the 
eigenfunction of ,•2 is small and insignificant compared to the 
principal eigenfunction (of ,•). 

5. EIGENVECTOR RADIATIVE TRANSFER EQUATION 

In general, when the empirical eigenfunction analysis is ap- 
plied to a data matrix, it is hoped that the eigenfunction corre- 
sponding to a particular eigenvalue will represent a certain 
variation used to infer a physical process in the data. The 
eigenvalue will also indicate the amount of the variance and 
the variance distribution. Then, for various eigenvalues and 
eigenfunctions, different mechanisms could be identified so 
that knowledge of these processes can be derived. However, 
our analysis indicates that the oscillation shown in each eigen- 
function of the leading eigenvalues of the same domain is 
associated with several competing wave mechanisms, which 
are not separable by means of variance partition alone. This is 
clearly demonstrated by the eigenfunctions of ,• and ,•: in the 
space domain, as shown in Figure 6b. Nevertheless, the prin- 
cipal eigenfunctions of frequency, space, and time domains are 
very useful in providing the principal structures of the wave 
field given by the data. The rates of change of the wave spec- 
tra with respect to time and space are the quantities needed in 
the calculations based on the energy balance equation. In par- 
ticular, the principal wave spectrum, which contains more 
than 80% of the data variability, is a valuable representation 
of the measured wave spectra. Thus we use the principal wave 
spectrum in this study to represent the wave field so that the 
energy balance equation can be projected onto the eigenvector 
space. Other use of the principal wave spectrum may be found 
in Vincent and Resio [1977-1, where the empirical eigenfunc- 
tion analysis is applied to the wave spectra only in the fre- 
quency domain. They show that a reconstruction of a spec- 
trum to a good degree of accuracy only requires the first five 
modes of the empirical eigenfunctions. 

The evolution in time (t) and space (x) of the one- 
dimensional energy density spectrum E (f; x, t) of surface 
gravity waves is governed by the radiative transfer equation 
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(i.e., energy balance) of the form 

DE •E •E 

Dt - r3t + vf •xx = • (3) 
where v s is the group velocity of E at frequency f, and • is the 
source function that can be a summation of various source 

terms (• = • + •2 + ... )- In our eigenfunction analysis the 
results indicate that for each measured spectrum there exists a 
class of eigenfunctions E*(u•, u2, ..., un; x, t) containing n 
independent components un that can represent the actual mea- 
sured spectrum. There is also the algorithm for computing the 
component u, for any given spectrum E(f; x, t), and so we 
may write 

uj = ½j(E) (4) 

where the functional •j is differentiable, i.e., a small variation 
in E (denoted • E) yields a small variation of the component 
uj. Thus the functional derivative •j' is of the form 

= (5) 

The expressions (4) and (5) together are our linear projection 
operator, which provides the relation [see Hasselmann et al. 
[1973, 1976] for examples) 

½• •uj J = g•J (6) 
Since E can be approximated by E* for all x and t, we may 
substitute E* in the radiative transfer equation and write the 
equation in terms of eigenfunction components 

The projection of the radiative transfer equation onto the ei- 
genvector space is the same projection method used by Hassel- 
mann et al. [1973, 1976]. The linear projection operator is now 
applied to the above expression and by invoking (6), the eigen- 
vector radiative transfer equation takes the form 

•ui 
•W -•- Hij • "-- •i (7) 

where 

and 

•i = (•it(•) 

For the shallow water waves the group velocity is a smoothly 
varying function over depth, i.e., vœ = (•]d) •/2. (For deep water 
where vœ = •]/4•tf, this smoothly varying function may be re- 
placed to its first order by the constant value of group velocity 
at the peak frequency [Hasselmann et al., 1973].) The velocity 
vœ is essentially a constant over a finite narrow range of fre- 
quency, and therefore, we may drop the subscript f and rewrite 
the expression for Hij , after invoking (6), as 

Hij = l)(•ij 

Substituting Hij into (7), the eigenvector radiative transfer 
equation becomes 

The first and the second terms on the left side are essentially 
the rates of change of the principal eigenfunction in time and 
space domains, i'espectively. Both terms are known from the 
empirical eigenfunction analysis of the frequency wave spectra, 
and therefore, the term •i on the right side of the expression is 
also known. Notice a significance of the analysis; it provides 
not only a good approximation of the principal structures of 
the wave data but also the quantitative spectral evolution. The 
latter is very essential in both wave predictions based on the 
energy balance equation and source function calculations, 
which will be discussed in the following section. 

6. SOURCE FUNCTIONS 

To solve for the source function •, the linear projection 
functional q•' is made more tractable by defining 

(•i'(E) = t•uiE(f ) df fa < f < f2 
1 

which has a property 

r2E( f ) df = 1 1 

The property implies that there is only a finite unit area of the 
spectrum that can be projected by the linear functional •i'. 
Similarly, we write 

(/)it(•) •- (Su,•(f) df 
1 

This projection function has the form of a Fredholm integral 
equation, which can be rewritten in the matrix form as 
[Chambers, 1976] 

ß = (9) 

where ß and • are column matrices with n elements of •i'(•) 
(or •i) and •(f), respectively. The square matrix U has dimen- 
sion n x n with elements Jui, whereas the constant length scale 
• is defined as 

•- •0 

The matrix equation (9) has a unique solution 

• = (gW)-• (10) 

provided that U is a nonsingular matrix. Once again, the n 
elements of ß are the same n elements of • that can be com- 
puted by using (8). 

Computations of the source function • were carried out by 
using (10) and the • or • obtained from (8). The term 3ui/3t 
was evaluated at two different constant depths of approxi- 
mately 7 m and 23 m because the first depth represents the 
beginning of the surf zone, while the second depth is where the 
enhanced temporal variation is found. However, results of the 
computations show no significant difference between the two 
depths, and therefore 3ui/3t at depth 7 m is selected for all the 
calculations. The term 3ui/3x was evaluated at each constant 
time. The n x n square matrix U is the principal eigenvector 
component, which has been arranged in two distinct manners: 

1. The principal eigenvector components in frequency and 
space domains, which represent the principal wave spectra, are 
arranged such that the columns denote the discrete fre- 
quencies while the rows denote the discrete realizations. Since 
the principal components in frequency and space domains ex- 
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Fig. 8. Schematic wave energy balance for the energetic wave field 
in shallow water. 

hibit the spatial variation of wave data, the matrix U con- 
structed in this manner will also contain the inherent spatial 
variation. Thus the source function • computed from this type 
of matrix U is associated with the physical wave processes, 
such as shoaling and refraction, that are known to cause the 
spatial variation in wave field. 

2. The principal eigenvector components in frequency and 
time domains are arranged similarly to 1, except the rows 
denote the discrete spacing of the instruments. Likewise, the 
principal components in frequency and time domains exhibit 
the temporal variation, and therefore, the matrix U construct- 
ed in this manner will have the inherent temporal variation 
that makes the source function • computed from this type of 
matrix U belong to the wave processes that generate the tem- 
poral variation. Examples of such processes are the transfer of 
momentum from wind to waves (the atmospheric input) and 
the wave-wave nonlinear interaction. 

The computations were also repeated for different eigenvec- 
tor components. The principal eigenvector was replaced by 
the summation of the eigenvectors corresponding to •'2 to ;•7, 
and the matrix U was constructed following 1 and 2. To make 
the results of our calculations more tractable, we denote •{a) as 
the source function computed from the matrix U as construct- 
ed in 1 and similarly, •(b)for the matrix U as constructed in 
(2). We also denote •(c• as the source function computed from 
the sum of the eigenvectors corresponding to '•2 to '•7, where 
the matrix U is constructed following 1, and finally, •{d• for the 
similar matrix U but constructed following 2. Thus for each 
set of calculations there are four source functions representing 
different energy transfer processes provided by the variance 
partition in the data. The source functions offering infor- 
mation on the energy balance of the wave field are discussed 
as follows: 

6a. Theoretical and Computed Source Function 

A schematic wave energy balance is shown in Figure 8, 
where various source functions resulting from different physi- 
cal wave processes are plotted against the frequency. The func- 
tions are synthesized from the information obtained in Hassel- 

mann et al. [1973] and Shemdin et al. [1978]. Each source 
function is a theoretical estimate for a known independent 
process. There is no allowance for interactions between the 
processes. Such theoretical source functions are unlike the 
computed source functions presented here, since the latter 
functions make no assumption on the known independent 
wave process. Thus the computed source functions do account 
for the mechanism interactions as well as the existing mecha- 
nisms in the wave field. Figures 9-12 show the four computed 
source functions plotted against wave frequency for depths 2.0 
m, 6.7 m, 18.5 m, and 24.4 m, respectively. Although the theo- 
retical source functions shown in Figure 8 may not be directly 
comparable to the computed source functions shown in Fig- 
ures 9-12, as a result of the different wave conditions and 
circumstances, the comparisons provide the most valuable dis- 
cussion. It may be seen in general that •{a• agrees qualitatively 
with the schematic source function caused by refraction and 
shoaling as shown in Figure 8, while •{b• tends to agree with 
the source function of the atmospheric input. Similarly, the 
computed source function •{c) resembles qualitatively the 
shape of the theoretical source function of bottom friction, 
while •(d• generally agrees with the source function of nonlin- 
ear wave-wave transfer. Because of these similarities found in 

the comparisons, it is suggested that the source functions •{a•, 
•(t,•, •{c}, and •{a) obtained in this study might be associated 
with the following wave mechanisms respectively: refraction 
and shoaling, atmospheric input, bottom friction, and nonlin- 
ear transfer. 

Fig. 9. 
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Fig. 10. As in Figure (9), except for depth of 6.7 m. 

It must be noted that differences are also found in the com- 

parisons. For example, in the high-frequency range (f > 0.25 
Hz or the period less than 4 s) the computed source functions 
•(a) and •(b) do not agree well with their corresponding theo- 
retical functions. The discrepancies could be attributed to the 
differences in the wave field environments and situations. The 

theoretical •o)usually assumes the Miles-Phillips-type gener- 
ation that neglects the effects caused by the rapid change of 
wind direction, whereas the computed source function •(0• in- 
cludes the response of wave field caused by the rapid change 
of wind direction that occurred during the measurements. 
Also, the function •a•, which represents the energy balance 
caused by wave refraction and shoaling, depends on the to- 
pography of the nearshore region. Therefore, a discrepancy of 
the function as a result of different locations is to be expected. 
Furthermore, the computed source functions represent both 
the wave processes and their interactions. The latter is lacking 
in the theoretical source functions, and thus significant dis- 
crepancies between the computed and the theoretical func- 
tions are, once again, to be expected. 

6b. Variability of Computed Source Functions 
It is found that all the source functions for four different 

water depths (see also Figures 9-12), in general, exhibit consis- 
tent patterns of energy transfer within a wave spectrum, except 
the nonlinear transfer. The source function •d• (representing 
nonlinear transfer) in very shallow water (depth less than 6 m) 
has a slightly higher value at the low-frequency end than at 

the high-frequency range, as can be seen in Figure 9, and the 
situation seems to reverse in deep water (see Figure 12), where 
the function has a higher value at the high-frequency end. The 
first situation suggests that in very shallow water the domi- 
nant nonlinear energy transfer is due to energy dissipation 
mechanisms such as breaking and interaction with bottom 
friction, which is enhanced at the lower frequencies. The situ- 
ation is in agreement with the source function ({•c•) in the 
same figure (Figure 9), indicating a large magnitude of bottom 
friction effects on the energy transfer. The latter situation (see 
Figure 12), however, indicates that in deep water the dominant 
nonlinear transfer of energy is the wave-wave interaction in 
the wave growth mechanism occurring at the high frequency. 
This ties in well with the atmospheric input source function 
({•)) that shows a significant peak at approximately 3.2 s, 
indicating an active wave generation process. The response of 
the wave field to such an atmospheric input is evidently shown 
by the existence of the 4-s waves, which are found in most of 
the principal wave spectra, as discussed in the section 4b. 

Although the energy transfer resulting from refraction and 
shoaling ({•) and bottom friction ({(c•) is found to be consis- 
tent throughout the depths (see Figures 9-12), the magnitude 
of the source function {• is largest at depth 18.5 m, as illus- 
trated in Figure 11. It implies that at depth 18.5 m the low- 
frequency swell shoaled significantly, which consequently 
makes the energy dissipation caused by the bottom topogra- 
phy significant, as shown by the trough of the curve. The peak 
of the curve also implies an energy gain in the spectrum. Fur- 
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Fig. 11. As in Figure (9), except for depth of 18.5 m. 
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thermore, in the surf zone where breaking of waves is known 
to be pronounced, the bottom friction (•(c)) is also found to be 
greatest, as can be seen in Figure 9. Notice that the energy 
transfer caused by wave breaking is not incorporated as an 
individual mechanism in the present study because our under- 
standing of the breaking mechanism and its energy transfer 
has not yet been fully established. However, the energy trans- 
fer as shown by the source functions •(") and •c• at depths 2.0 
m and 6.7 m, where breaking of wind waves could have oc- 
curred, should also represent partial energy transfer caused by 
breaking. Thus, although the functions are associated with 
refraction and shoaling and bottom friction beyond the surf 
zone and inside the surf zone, they also include the wave 
breaking energy transfer. 

Since the eigenvector radiative transfer equation (8) used 
here accounts for only one dimension in space (i.e., cqui/cqx), the 
wave refraction mechanism is not well represented by the 
source function •"•. For example, at depth 9.3 m, where the 
bottom topography (see Figure 2) suggests that there may be 
wave refraction caused by the depression in the topography, 
the corresponding source function • does not show any pro- 
nounced effect on the magnitude of the function that can be 
related to the refraction. There seems to be no evidence of 

wave refraction given by •"•. 

DISCUSSION 

A consequence of fitting the empirical eigenfunction to the 
data is that the variance is divided according to the eigenvalue 

based on the orthogonal property. Although the property is 
inherent in the variance, it does not mean that the processes 
affecting the variance should have the same orthogonal prop- 
erty. For example the principal eigenvectors of matrix U were 
replaced by the summations of the eigenvectors corresponding 
to •2 to •7 so that the energy transfer associated with the 
variance, which is orthogonal to the principal axes of the data, 
can be investigated as demonstrated in the preceding section. 
The replacement essentially corresponds to the variance parti- 
tion according to the eigenvalues, where the first matrix U has 
the principal components of the data and the latter matrix U 
has the orthogonal variance components. This however, does 
not necessarily imply that the wave processes associated with 
the orthogonal variance have the same orthogonal property. 
In fact the variance partition, according to the eigenvalues, 
may not be exactly the same amount as the variance at- 
tributed to the wave processes. Nevertheless, the results of our 
study indicate that the variances attributed to various wave 
mechanisms appear to be reasonably approximated by the 
variances given by the division of eigenvalues into two major 
partitions as stated earlier. This is supported by the qualitative 
agreement between the source functions obtained in our calcu- 
lations and the source functions resulting from the theoretical 
analysis of an individual wave mechanism. 

The significance of the source functions derived from wave 
data must be emphasized, since the theoretical source func- 
tions may not accurately represent the actual energy transfers 
of a complicated wave field such as the one measured during 
the ARSLOE. Because the derivation of the theoretical source 

functions assumes that certain wave mechanisms occurred in 

the wave field, the energy balance is constrained by such 
mechanisms. Thus the accuracy of the energy transfers de- 
pends on the accuracy of the assumption made. However, the 
source functions derived from wave data make no assumption 
on the processes in the wave field, and therefore, they directly 
represent the actual wave energy transfers. Furthermore, it 
should be noted that the wave spectral evolution, as governed 
by the radiative transfer equation (7), exhibits temporal sto- 
chastic and spatial deterministic properties, which can be a 
basis for stochastic-dynamic modeling for prediction purposes. 
The temporal forcing, cqui/cqt, can be modeled as a time series 
autoregressive process so that the advanced spectral evolution 
in time can be predicted. Expression (8) is valid for the compu- 
tation of predicted •. Since the spatial wave dynamics in shal- 
low water depend on the topography of the region, the deter- 
ministic part, c•ui/c•x, may remain consistent for the area se- 
lected. Also notice that such a spatial evolution accounts for 
the local effects. The predicted • may be inverted to the pre- 
dicted source functions, which can then be used to hindcast or 
forecast the wave spectrum by using the integral form of the 
radiative transfer equation 

E(t, x)= E(t o, x) + •(t', x') dt' 

where t' and x' vary along a wave-group trajectory from an 
initial value to, Xo to the point t, x. Although the above ex- 
pression does not generally represent the solution of the radi- 
ative transfer equation, it indicates how the source functions 
can be used for spectral wave prediction. The prediction effort, 
therefore, relies on the knowledge of the source terms. In other 
words the better approximation of the actual source terms in 
the wave field will enhance the accuracy of the prediction. 
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This is why the source functions derived from wave data are 
very important quantities. 

The study has also addressed a lack of the independent 
source term to represent the energy balance caused by wave 
breaking. Although this energy balance is accounted for in the 
source functions •a• and •{c•, an individual source term for 
breaking waves is still needed, since it may provide important 
information for our understanding of the wave-breaking phe- 
nomenon. A detailed field experiment over the breaker zone 
where wave breaking is the most dominant process, together 
with the application of the present calculations, may provide 
the wave breaking source function. The function could offer a 
valuable support to the theoretical investigation of breaking 
waves, as well as enhance the picture of wave energy transfers 
in the strongly nonlinear region of the surf zone. In addition a 
significant deficiency is also found in the study: the lack of a 
spatial dimension to account for the energy balance caused by 
wave refraction in two-dimensional space. The refraction pro- 
cess is important in energy transformation, particularly in the 
wave propagation regime, but it has not been well represented 
by the source function •{a•, as shown in the preceding section. 
Thus an increment of the spatial dimension in the radiative 
transfer equation could be a useful improvement to the energy 
balance in the surf zone. 

CONCLUSIONS 

The frequency wave spectra from ARSLOE were subjected 
to the empirical eigenfunction analysis. The wave data were 
acquired in frequency, time, and space domains, but to sim- 
plify the analysis, the three variables were reduced to two 
variables for each computation of the empirical eigenfunction 
by holding either the time or the space constant. In the case of 
constant time the data set is in frequency and space domains 
with the increment according to the time series, and similarly 
for the constant space, the data set is in frequency and time 
domains with the increment of various instruments at different 

depths. All the 52 covariance matrices were fitted by the em- 
pirical eigenfunctions. The results suggest that almost 99% of 
the variance is contained within the first seven eigenvalues, 
with the first eigenvalue being as high as 80% or more and the 
remaining values decreasing very rapidly. This implies that the 
wave field may have the minimum of 7 degrees of freedom 
with the principal eigenfunctions, which provide a good ap- 
proximation to the principal structures of the wave field. The 
spatial variation is found to be approximately 1-3% of the 
variance, and it could be deterministic, as shown by the eigen 
index. The temporal variation is estimated at 7-17% of the 
variance, and it could be stochastic, with approximately 2-3 
cycles of fluctuation. The fluctuation is found to be correlated 
with the variation of the corresponding wind speed. Although 
the major variabilities in the data are well represented by the 
principal eigenfunctions, the eigenfunctions associated with 
each eigenvalue from the second to the seventh values do not 
provide additional information about the physical wave pro- 
cesses. This is because there are several competing wave mech- 
anisms that are not separable by means of variance partition 
according to each eigenvalue. 

However, since the principal eigenfunction in frequency and 
space domains can provide a good approximation of the prin- 
cipal frequency wave spectrum, it is used to represent the 
measured wave field in the radiative transfer equation. The 
equation is then projected onto the eigenvector space with a 
suitable projection function, which allows the source function 

to be solved. The rates of change of the energy density spectra 
in time and space are available from the empirical eigenfunc- 
tion analysis, and thus the computations of various source 
functions were attempted. The calculations demonstrate how 
the source functions can be evaluated from wave data via the 

empirical eigenfunction analysis. The analysis is important in 
the calculations because it provides two essential quantities: a 
good approximation of the principal frequency wave spectrum 
and the quantitative spectral evolution in time and space. Be- 
cause the computed source functions are derived directly from 
the wave data and have made no assumption on the wave 
process and their interactions, the functions are direct repre- 
sentations of the actual energy transfers in the wave field. 
Furthermore, the calculations require no detailed knowledge 
of the forcing terms or the precise measurement of the wind 
field, which could be an advantage of the computations. 

When the computed source functions are compared with 
the theoretically derived source functions of known wave 
mechanisms there are certain similarities as well as differences. 

The qualitative agreements seem to suggest that the functions 
are associated with refraction and shoaling, atmospheric 
input, bottom friction, and wave-wave nonlinear interaction. 
On the other hand the differences may be attributed to the 
different wave field environments and circumstances. At 

various depths it is shown that the computed source functions 
provide a reasonable picture of the energy balance in the shal- 
low water. In the surf zone it is interesting to note that the 
nonlinearity at low frequency (f < 0.25 Hz) is found to be 
greater than at high frequency (f > 0.25 Hz), whereas beyond 
the surf zone, the reversed situation is found. This implies that 
beyond the surf zone the nonlinearity associated with wave 
growth mechanism is most pronounced, while inside the surf 
zone the nonlinearity associated with energy dissipation of 
large wave is most dominant. 
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