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ABSTRACT

The authors consider the deviations of wave height statistics from Gaussianity, manifested in higher sta-

tistical moments of random wind-wave fields, namely, in the nonzero values of the skewness and the kurtosis.

These deviations are examined theoretically under the standard set of assumptions used in the established

statistical theory of water waves, in particular in the derivation of theHasselmann kinetic equation. P. Janssen

proposed integral representations of the skewness and the kurtosis in terms of multidimensional integrals of

wave spectra. However, the use of these representations for broadband wind-wave fields proved to be

challenging; it requires substantial computational resources, which is unsuitable for applications. Using

specially designed parallel algorithms to evaluate the integrals, the authors provide a comprehensive picture

of the behavior of the kurtosis and the skewness of windwaves in themultidimensional parameter space of the

most commonly used Joint North Sea Wave Project (JONSWAP) parameterizations of wind-wave spectra.

Except for very narrow angular distributions where the overall picture is qualitatively different, the behavior

of the higher moments proved to be not sensitive to the particular form of the directional spectrum. On this

basis for the broad angular spectra typical of the ocean, the study puts forward simple parameterizations of the

skewness and the kurtosis in terms of the JONSWAP peakedness parameter g and in terms of the inverse

wave age. These parameterizations can be used in operational wave forecasting and other applications.

1. Introduction

For practical applications, it is important to know the

probability of wave height in seas and oceans at a given

place and time. It is essential to predict the probability

density function (PDF) of surface elevations, along with

the meteorological forecasting (e.g., Goda 2000). If

a wave field is linear, it obeys the Gaussian statistics, and

the wave heights follow the Rayleigh distribution, under

the additional assumption of the narrowbandedness of

the energy spectrum (Rice 1954; Longuet-Higgins 1957;

Goda 2000). The Rayleigh distribution captures quali-

tative features of the observed wave heights distribu-

tions. However, the real oceanic waves are neither linear

nor narrowbanded, and the discrepancies between the

Rayleigh distribution and observations are important

and, at present, poorly understood. The key uncertainty

is in the behavior of the tails of the distribution. The

knowledge of this behavior is crucial for the prediction

of rare events, such as extreme waves, which remain

a serious danger for ships and offshore structures. The

observed statistics of such waves deviate significantly

from the predictions based on the Rayleigh distribution

(Stansell 2004; Mori and Janssen 2006). Even a slight

difference in the distribution shape could result in huge

disparities in the probability of freak waves and, corre-

spondingly, significant scatter of ‘‘the highest wave’’–

type estimates required by the industry.

Over the last few decades, improvements of the sim-

plest Gaussian model were carried out in several di-

rections. For linear waves, the Rayleigh distribution was

extended to narrow but finite width spectra (Longuet-

Higgins 1980). Further efforts were concentrated on

taking into account the effects of quadratic nonlinearity

through bound harmonics, while retaining the assump-

tion of narrowbandedness (Tayfun 1980; Forristall 2000;

Fedele and Tayfun 2009). A number of semiempirical

parameterizations of wave height distributions has been
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developed; in various ways they incorporate a finite

spectral width and bound harmonic nonlinearity of the

wave field [see references in Fedele and Tayfun (2009)].

A totally different line of research is based on the non-

linear Schr€odinger equation and its generalizations (e.g.,

Onorato et al. 2001; Slunyaev 2006; Dysthe et al. 2008;

Kharif et al. 2009; Mori et al. 2011) for narrowbanded

spectra, but the domain of applicability of this approach

to real oceanic broadband spectra is not clear.

Meanwhile, studies of oceanic broadband wave fields

were mostly concentrated on the evolution of the ener-

gy or wave-action spectrum.Within the framework of the

wave turbulence paradigm, where the wave field is con-

sidered a continuum of resonantly interacting random

weakly nonlinear waves, the evolution of wave spectra is

described by the kinetic (Hasselmann) equation derived

from the first principles in 1960s (Hasselmann 1962). The

approach applies to broad spectra only and was validated

to be good in modeling the observed evolution of wave

energy spectra (Komen et al. 1994; Janssen 2004, 2008).

This theory underpins the present wave forecasting, and

its predictions are being continuously tested around the

globe (e.g., Komen et al. 1994; Janssen 2008). However,

the spectrum is just the second statistical moment of

a wave field. If the field is Gaussian, moments of all

orders can be expressed in terms of the second moment.

Nonlinearity causes spectral evolution and, at the same

time, leads to a departure of wave field statistics from

Gaussianity. This departure is manifested in higher

moments of the wave field—skewness and kurtosis.

Knowledge of these moments allows one to build the

PDF of surface elevations, but the links between the

modeled wave spectra evolution and wave height dis-

tributions are still poorly understood. It is also worth

noting that the field measurements of the spectra are

incomparably more numerous and reliable than those

of higher moments, and the spectral evolution is also

modeled reasonably well. The few available high-quality

observations of wave statistics are mostly confined to

wind tank measurements (Caulliez and Gu�erin 2012;

Zavadsky et al. 2013), and although the spectra mea-

sured in the tanks look very similar to those observed in

the ocean, it is not a priori clear to what extent the

similarity holds for the higher moments.

For weakly nonlinear gravity windwaves, there are two

primary causes of departure fromGaussianitymanifested

in nonzero skewness and kurtosis. The first contribution is

caused by resonant nonlinear interactions. Because res-

onant three-wave interactions in a gravity wave field are

absent, the quadratic nonlinearity of a wave field can be

excluded by a suitable change of variables (canonical

transformation) that eliminates bound harmonics. Here,

the term ‘‘bound harmonics’’ refers to all harmonics that

are generated by nonresonant nonlinear interactions and

do not satisfy the linear dispersion relation, including the

higher harmonics of Stokes waves, sum and difference

harmonics of the free waves, and combinations of these

harmonics with the free waves. Then the wave field in the

transformed space is Gaussian to this order, and the

lowest-order non-Gaussian effect is due to exactly and

approximately resonant four-wave interactions. This non-

Gaussianity is manifested in the nonzero value of kurtosis

of the transformed wave field, but does not contribute to

skewness. Following Annenkov and Shrira (2009b,

2013), we will refer to this component of kurtosis as

‘‘dynamic’’ and denote it as C
(d)
4 . Strictly speaking, the

value of C
(d)
4 cannot be determined from instantaneous

wave spectra, but requires either the information about

the phases of interacting waves or the knowledge of the

history of spectral evolution (Annenkov and Shrira

2013). However, under the additional assumption that

the evolution of the spectrum occurs on the time scale

O(«24), where « is a small nondimensional measure of

nonlinearity, C
(d)
4 can be estimated from the spectrum

approximately. In this case, it can be expressed in terms

of the instantaneous wave action spectrum n(k) as an

integral over the six-dimensional wavenumber domain

with an oscillating kernel (Janssen 2003). Numerical

evaluation of this integral is quite challenging; the in-

tegral has been first evaluated by Annenkov and Shrira

(2013) for a number of typical spectra. These computa-

tions, complemented by direct numerical simulations

(DNS) of the dynamic kurtosis by Annenkov and Shrira

(2009a, 2013) have shown that in generic situations the

dynamic kurtosis remains small both in the absolute

value [being O(1022)] and compared to the total value

of kurtosis. The scale of required computations rules out

this route as an option for operational wave forecasting

and many other applications.

The second contribution to non-Gaussianity is due to

bound harmonics. It manifests in both kurtosis and

skewness and is present in any finite-amplitude wave

field, even in the absence of resonant nonlinear in-

teractions. The smallness of the dynamic kurtosis allows

one to consider this contribution separately. Using the

concept of wave height envelope rather than the usual

trough-to-crest wave height, which is not well defined

for broadband wave fields, Janssen (2009) has derived

expressions for the second, third, and fourth moments of

the envelope elevation in terms of wave spectra. Using

these expressions, the formulation of the dynamic kur-

tosis in terms of spectra by Janssen (2003), and the DNS,

Annenkov and Shrira (2013) have calculated both

components of non-Gaussianity for various wave fields

generated by stationary or fluctuating wind. It was found

that while the dynamic kurtosis remains small during the
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wave field evolution, the bound harmonic kurtosis and

skewness slowly decrease with time. The rate of this

decrease was derived analytically for the known self-

similar regimes of wave field evolution. These results

provided a way to calculate higher moments of wave

heights for the given spectra as well as a valuable insight

into their evolution, but fell short from delivering

a comprehensive picture of the higher moments’ evo-

lution. These calculations of skewness and kurtosis are

very expensive computationally and therefore even in

the long term cannot be made suitable for use in the

operational forecasting and other applications.

The main purpose of this study is to translate the

established understanding of the wind-wave spectral

evolution into a quantitative description of higher mo-

ments of surface elevation. The specific aims are as

follows:

(i) employing the established theory of wave interac-

tions to get a comprehensive picture of the behav-

ior of kurtosis and the skewness of sea wind waves

in the multidimensional parameter space for the

very broad range of parameters, which includes all

conceivable situations in the sea but extends fur-

ther in order to capture the tendencies indiscern-

ible otherwise;

(ii) to examine the sensitivity of kurtosis and skewness

to the shape of wind-wave spectra; and

(iii) to find simple parameterizations of these moments,

making use of the most common Joint North Sea

Wave Project (JONSWAP) parameterization of

the wave spectra and spectral evolution.

In this paper, we use the JONSWAP spectrum

widely accepted as the design spectrum in the engi-

neering community. Two different parameterizations

of the angular spreading are used: the cosNu model,

where u is the angle and N is the parameter of the

spreading, and the sech2bu model of Donelan et al.

(1985), which does not contain an additional spread-

ing parameter, but takes into account the dependence

of b on v/vp, the frequency normalized by the fre-

quency of the spectral peak. A comprehensive picture

of the dependence of skewness and kurtosis on the

JONSWAP parameters is presented. It is found that

for the broad angular spectra, the dependence is ro-

bust, which enables us to parameterize it. We also use

the modification of the JONSWAP spectrum sug-

gested by Donelan et al. (1985), which is based on

the v24 shape of the spectral tail, supported theo-

retically and by observations. This version of the

JONSWAP spectrum relates all spectral parameters

to the wind forcing parameter U10/cp, where U10 is the

wind speed at 10-m height in the direction of the wave

propagation, and cp is the phase speed at the spectral

peak. We propose simple parameterizations of skew-

ness and kurtosis in terms of U10/cp, which can be

easily used in operational wave forecasting.

The paper is organized as follows. A brief theoretical

background outlining the basic assumptions and key steps

in the derivation of the integral expressions we employ

for evaluation of skewness and kurtosis is given in section

2. Section 3 briefly reviews the JONSWAP parameteri-

zations of wind-wave spectra and its modifications that

we use throughout the paper. The numerical procedure

employed to evaluate the integrals is briefly described in

section 4. The results of simulations of skewness and

kurtosis providing a detailed picture of their dependence

on parameters are given in section 5. The conclusions are

formulated and discussed in section 6.

2. Theoretical background

a. Basic equations

Inmost studies of randomwind-wave fields, it is usually

assumed that the evolution of statistical characteristics of

a wave field is governed by the kinetic (Hasselmann)

equation, which can be written in the form (e.g., Komen

et al. 1994)

›n0
›t

5 4p

ð
T2
0123f0123d0112223d(Dv) dk1231 Sf , (1)

where n0[ n(k0, t) is the spectral density at wavevector k0,

f0123 5 n2n3(n0 1 n1) 2 n0n1(n2 1 n3), Dv5 v0 1 v1 2
v2 2 v3, T0123 is the interaction coefficient, and Sf is the

forcing/dissipation term. Here and below, we use the

compact notation that designates the arguments by in-

dices, for example, b0 5 b(k0, t), T0123 5 T(k0, k1, k2, k3),

d01122235 d(k01 k12 k22 k3), and dk1235 dk1dk2dk3.

The spectral density n(k) is the second-order corre-

lator of the (complex) dynamical amplitude b(k, t),

hb0*b1i5 n0d021. Here and below angle brackets denote

ensemble averaging. It is important to note that b(k, t)

[and, hence, n(k)] is not a directly measurable quantity,

but the result of a transformation of the physical am-

plitude a(k, t) in the form

a05 b01

ð
A

(1)
012b1b2d02122dk12

1

ð
A

(2)
012b1*b2d01122dk12

1

ð
A

(3)
012b1*b2*d01112dk12 1

. . . . (2)

Expressions for all kernels in (2), as well as the co-

efficient T0123, can be found in Krasitskii (1994). The
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physical amplitude a(k, t) is related to Fourier-transformed

physical variables z(x, y, t) (the elevation of the surface)

and c(x, y, t) (the velocity potential at the surface) as

ẑ(k)5

�
q(k)

2v(k)

�1/2
[a(k)1 a*(2k)] and

ĉ(k)5

�
v(k)

2q(k)

�1/2
[a(k)2 a*(2k)] ,

where the hat denotes Fourier transform, the asterisk

means complex conjugation, v(k) 5 [gq(k)]1/2 is the lin-

ear dispersion relation, q(k) 5 jkj 5 k for infinite depth,

and g is the acceleration due to gravity. The canonical

transformation (2) makes use of the fact that in the ab-

sence of capillarity, resonant three-wave interactions for

gravity waves are not allowed by the dispersion relation,

eliminating the nonresonant terms. Essentially, the de-

pendent variables b(k, t) and n(k) describe the free-wave

part of the wave field, while the bound harmonics contri-

bution up to the third order in nonlinearity is accounted for

by the canonical transformation (2).

Resonant and nearly resonant four-wave interactions,

present in the wave field, lead to the spectral evolution,

which is described by (1), and to a departure of the field

from Gaussianity, which, however, cannot be described

by means of (1).

b. Dynamic non-Gaussianity

Consider first the non-Gaussianity of the transformed

wave field b(k, t), denoting its statistical moments asmj,

where j 5 2, 3, and 4. The second moment has the form

m25

ð
v0b0b0* dk0 ,

and the third moment m3 is identically zero, due to the

absence of resonant three-wave interactions. The fourth

moment m4 in terms of the known wave field b(k, t)

reads as (Janssen 2003)

m45
3

4

ð
(v0v1v2v3)

1/2hb0*b1*b2b3i dk0123 1 c. c. , (3)

where c. c. stands for complex conjugate. The kurtosis

C
(d)
4 is defined in terms of the moments as

C
(d)
4 5m4/m

2
2 2 3. (4)

The superscript (d), which stands for dynamic, is used to

emphasize that the kurtosis of a transformed wave field

b(k, t) can be nonzero only in the presence of nonlinear

resonant interactions.

The most straightforward way of calculating C
(d)
4 is by

DNS, that is, by integrating the dynamical equations for

the wave field numerically and averaging (3) over the

realizations; this approach is prohibitively expensive

and allows us to examine only a fraction of the pa-

rameter space. Another possibility is to use the statistical

approach exploiting the proximity of wave statistics to

Gaussian put forward by Janssen (2003). Under the same

set of assumptions as employed in the standard derivation

of the kinetic equation, this approach leads to the ex-

pression in the form of the following six-dimensional

singular integral

C
(d)
4 ’2

3

2m2
2

ð
T0123(v0v1v2v3)

1/2 f0123
Dv

d0112223 dk0123 ,

(5)

where the Cauchy principal value of the integral is

taken. The notable counterintuitive feature of the ex-

pression is that in contrast to the integrand of the kinetic

equation, there is no delta function in frequency, that is,

all the quartets, not only the resonant ones, make

a contribution into dynamic kurtosis. A way to calculate

the integral was first developed in Annenkov and Shrira

(2013); it will be described below in section 4a.

c. Bound harmonic non-Gaussianity

Even if the wave field in the transformed variable

b(k, t) is Gaussian, the finite-amplitude wave field in

the physical space a(k, t) is not Gaussian. This addi-

tional source of non-Gaussianity is due to the presence

of bound harmonics and is eliminated by the canonical

transformation (2). For brevity, we will refer to it as

bound harmonic non-Gaussianity and indicate the

corresponding quantities by the superscript (b). It is

described in the physical space in terms of the surface

elevation and can be calculated from (2), provided that

the dynamic component is small; otherwise, the clear

cut separation of the two components is not possible.

Assuming that the dynamic non-Gaussianity is small,

consider the statistical moments of the surface elevation:

mj 5 hzji .

Janssen (2009) derived expressions for mj, where j5 2, 3,

and 4, in terms of energy density defined as E(k) 5
vn(k)/g. Note that

m25

ð
v0b0b0* dk05 g

ð
E0 dk0 .

For the second statistical moment in physical space,

Janssen (2009) obtained
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m25 hz2i

5

ð
E1 dk11

ð
(A2

1,21B2
1,21 2C1,1,2,2)E1E2 dk12 ,

where expressions for coefficients A1,2, B1,2, and C1,1,2,2
are given in Janssen (2009) and Annenkov and Shrira

(2013), where it is also proved that the second integral is

equal to zero due to the symmetry. Therefore,

m25 hz2i5
ð
E1 dk15

m2

g
. (6)

The third and fourth moments have the form (Janssen

2009)

m35 hz3i5 3

ð
(A1,21B1,2)E1E2 dk12 and (7)

m45 hz4i5 3

ð
E1E2 dk12 1 12

ð
J 1,2,3E1E2E3 dk123 .

(8)

The coefficients A, B, and J can be found in Janssen

(2009) and Annenkov and Shrira (2013). Then, we can

write out the expressions for the bound harmonic com-

ponents of skewness and kurtosis as

C
(b)
3 5

m3

m3/2
2

and C
(b)
4 5

m4

m2
2

2 3. (9)

3. JONSWAP spectra

It is widely accepted that under nearly constant unidi-

rectional wind and in the absence of swell the energy

spectrum of wind waves has a universal shape. Its most

common parameterization is the JONSWAP spectrum in

thewavenumber and frequency domains (e.g., Young 1999),

E(k)5 4p2 a

2k3
exp

�
2
5

4
(k/kp)

22

�

3 g
exp

�
2

� ffiffiffiffiffiffiffi
k/k

p

p
21

�2

/(2s2)

�
Dk(u) , (10)

or in terms of frequency

E(v)5 4p2ag
2

v5
exp

�
2
5

4
(v/vp)

24

�

3 gexp[2(v/v
p
21)2/(2s2)]Dv(u) , (11)

where parameter s has the following two fixed values

dependent on k: 0.07 for k # kp and 0.09 otherwise.

Thus, the one-dimensional spectrum is completely

specified by setting just two parameters: a and g, where

a is a magnitude parameter proportional to the square

of wave steepness «, while g is a shape factor charac-

terizing the peakedness of the spectrum and position of

the spectral peak. Functions Dk(u) or Dv(u) describe

directional distribution of the two-dimensional spec-

trum; in one horizontal dimension Dv(u) 5 Dk(u) 5 1.

In this study, we mostly employ the commonly used

parameterization forDv(u) proposed by Donelan et al.

(1985):

Dv(u)5
1

2
b sech2(bu) and Dk(u)5Dv(u)/k , (12)

where the mean wave direction corresponds to u 5 0,

and

b5

8>>><
>>>:

2:61(v/vp)
1:3 for 0:56,v/vp , 0:95,

2:28(v/vp)
21:3 for 0:95,v/vp , 1:6, and

1:24 otherwise.

To have more flexibility for examining dependence on

the angular spreading in parameter space, we also use

the popular cosN(u) model, which includes an additional

parameter N,

Dv(u)5
1ffiffiffiffi
p

p G(N/21 1)

G(N/21 1/2)
cosNu , (13)

for juj # p/2, and 0 otherwise. Here, G is the gamma

function.

Donelan et al. (1985) also proposed a modification of

the one-dimensional spectrum (11), adopting the v24

shape of the spectral tail, which has a better theoretical

and observational support. This parameterization has

the form

Ed(v)5 4p2adg
2

v5
(v/vp) exp[2(v/vp)

24]

3 g
exp[2(v/v

p
21)2/(2s2

d)]

d Dv(u) , (14)

where the spectral parameters ad, gd, and sd are rigidly

linked to the inverse wave age parameter U10/cp, with

U10 being the wind speed in the mean direction of wave

propagation at the 10-m height, and cp is the corre-

sponding phase speed. The parameters have the fol-

lowing values:

ad 5 0:006(U10/cp)
0:55 for 0:83,U10/cp, 5,
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sd 5 0:08[11 4/(U10/cp)
3] for 0:83,U10/cp , 5,

gd5

8<
:

1:7 for 0:83,U10/cp, 1,

1:71 6:0lg(U10/cp) for 1#U10/cp , 5.

Wewill use themodified JONSWAP spectrum (14) with

the directional distribution (12); in this way, the two-

dimensional spectrum is completely specified by setting

the single parameterU10/cp. Further on we will drop the

subscript in U10 for brevity.

4. Numerical method

a. Dynamic kurtosis

The dynamic kurtosis C
(d)
4 is calculated using (5). The

numerical grid used has 160 logarithmically spaced

values of frequency v in the range 0.5vp # v # 3.0vp,

where vp is the frequency of the spectral peak, and 75

uniformly spaced values of angle u in the range 2p/2 ,
u,p/2. This (v, u) resolution was tested to be sufficient;

there were no considerable changes to C
(d)
4 from further

refining of the grid.

The main computational difficulty was because all reso-

nant and nonresonant interactions needed to be taken into

account. The total number of four-wave interactions on

a 1603 75 grid exceeds 5.53 1011, so a special parallelized

algorithm had to be designed. The computation for one

spectrum required about 8h on 64 Xeon X5650 cores, but

actually groups of spectra were processed simultaneously

to save the CPU the time required to compute the lengthy

coefficients. The dynamic kurtosis was calculated in the

large time limit, using the principal value integral (5). To

avoid the loss of accuracy due to small denominators at the

exact resonance, interactions with Dv/vmin , 1024 were

excluded.The resultswere verified to be not sensitive to the

chosen value of the cutoff in Dv/vmin.

b. Bound harmonics skewness and kurtosis

The bound harmonic skewness and kurtosis are cal-

culated using (7), (8), and (9). Because of the robustness

of the bound harmonics higher statistical moments, the

computational grid was reduced to 81 values of v and 41

values of u. The results were verified not to depend on

a further refinement of the computational grid.

5. Results

a. JONSWAP spectra with directional spreading (12)

First, we consider as a typical generic wind-wave spec-

trum using the classical JONSWAP parameterization (11)

with the directional spreading function proposed by

Donelan et al. (1985) in the sech-squared form (12). Be-

cause gravity waves on deep water do not have a charac-

teristic length scale, the wavenumber of the spectral peak

is normalized to 1, without the loss of generality. Thus,

the spectrum (11) with angular spreading (12) is charac-

terized by two parameters a and g.

The dynamic kurtosis C
(d)
4 as function of (a, g) is

shown in Fig. 1a. The value of C
(d)
4 can be positive or

negative, but remainsO(1022), except for large values of

a and g, which correspond to unphysical values of wave

steepness, defined as

«5
1

2
Hrmskp and Hrms 5

1

p

�
2

ð
E(k) dk

�1/2
.

Because the steepness depends on both a and g, and the

range of realistic wave steepness is relatively narrow, it is

instructive to plotC
(d)
4 as function of « and g, as shown in

FIG. 1. Dynamic kurtosis C
(d)
4 for JONSWAP spectra (a) vs the

JONSWAP parameters (a, g) and (b) vs wave steepness « and the

JONSWAP parameter g. Directional spreading is according to (12).
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Fig. 1b. For a certain value of g, close to 3.4, the dynamic

kurtosis is equal to zero for all values of wave steepness.

Bound harmonic kurtosis, shown in Figs. 2a and 2b in

terms of (a, g) and («, g), respectively, is positive and

typically an order of magnitude larger than the dynamic

kurtosis, except for large values of g where the two

components become comparable. The sum of the two

components of the kurtosis is plotted in Figs. 3a and 3b.

Parameters P1, P2, and the dashed curves are discussed

in section 6 below.

Figure 4 shows the ratio of the dynamic and bound

harmonics kurtosis as function of g; its absolute value

remainsO(1021), increasing up to 1/4 for large values of g.

Because both components of the kurtosis are pro-

portional to a (or «2) for a fixed value of g, the total

kurtosisC4 is shown inFig. 5 normalized by «2, as function

of g. The kurtosis is approximated by the power fit

C45 12:6g20:328«2 .

For comparison, the bound harmonic component of the

kurtosis is shown by red dots. In Fig. 6, skewness C3 is

shown for the same range of g, normalized by «, and

approximated by the power fit

C35 (0:08971 0:02g20:5)« .

b. JONSWAPspectrawith cosN(u)directional spreading

The dependence of kurtosis on the angular distribution

of the JONSWAP spectrum is considered by assuming

the cosN(u) directional spreading (13) for values of N in

the range 4#N# 100. Although wind-wave spectra with

large values of N are unrealistic, it is useful to study the

sensitivity of kurtosis to the angular spreading of the

spectrum. The dynamic kurtosis is shown in Figs. 7a and

7b, where the dependence on g considered in the

FIG. 2. Bound harmonics kurtosis C
(b)
4 for JONSWAP spectra

(a) vs the JONSWAP parameters (a, g) and (b) vs wave steepness

« and the JONSWAP parameter g. Directional spreading is ac-

cording to (12).

FIG. 3. Total kurtosisC4 5C
(d)
4 1C

(b)
4 for JONSWAP spectra (a)

vs the JONSWAP parameters (a, g) and (b) vs wave steepness «

and the JONSWAP parameter g. Directional spreading is ac-

cording to (12). Parameters P1, P2, and the dashed curves are

discussed in section 6.
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previous subsection is plotted for comparison. If the an-

gular spectrum is not particularly narrow (N # 20), the

dynamic kurtosis remains close to the values obtained

with the sech-squared-type directional spreading (12).

For larger values ofN, C
(d)
4 is negative for all values of g,

and a fixed value of « weakly depends on g. For very

narrow spectra with N . 100, the angular resolution of

75 values of u in the range 2p/2 , u , p/2 becomes

insufficient. Such spectra are studied separately in sec-

tion 5d.

The bound harmonics kurtosis is shown in Figs. 8a and

8b. Its dependence on N is weaker for small N and vir-

tually absent for N . 50.

c. Modified JONSWAP spectrum (14)

For the modified JONSWAP spectrum parameteri-

zation tightly linked to the wave age (14) with sech-

squared directional spreading (12), the kurtosis and the

skewness are functions of the single parameter U/cp
(inverse wave age). They are shown in Figs. 9 and 10,

respectively, together with the power fits

C45 0:041 0:022(U/cp)
0:87 and

C3 5 0:153(U/cp)
0:3 . (15)

d. JONSWAP spectrawith narrow directional spreading
and the unidirectional limit

Although this study is primarily focused on realistic

wind-wave spectra with wide directional spreading, it

would be incomplete without an analysis of the limit of

narrow angular distributions and of the transition to

quasi-one-dimensional spectra, often encountered in

laboratory experiments. For a purely one-dimensional

narrowband spectrum, the dynamic kurtosis is known to

be positive (Janssen 2004). Moreover, in the experi-

mental study of Shemer et al. (2010), the dynamic kur-

tosis of such spectrum was found to be dominant, while

the contribution due to bound harmonics was in-

significant. The results of sections 5a and 5b, however,

show that the dynamic kurtosis is much smaller than the

FIG. 4. Ratio of dynamic and bound harmonic kurtosis C
(d)
4 /C

(b)
4

for JONSWAP spectra vs the JONSWAPparameter g. Directional

spreading is according to (12). FIG. 5. Bound harmonic kurtosis C
(b)
4 (red dots) and total kur-

tosis C4 5C
(d)
4 1C

(b)
4 (black dots) vs JONSWAP parameter g,

normalized by «2, for directional spreading (12). Dashed curve

shows the power fit C4 5 12.6g20.328«2.

FIG. 6. Skewness C3 (black dots) vs JONSWAP parameter g,

normalized by «, for directional spreading (12), and the power fit

C3 5 (0.0897 1 0.02g20.5)«, shown by the dashed curve.
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bound harmonics component for spectra with a broad

directional distribution, and when a spectrum is nar-

rower in angle [say, for N 5 O(100) in the cosN di-

rectional model], it is negative for all values of the

JONSWAP parameter g. To perform a more detailed

study of the case of narrow angular spreading, in Fig. 11a

the dynamic kurtosis is plotted versus g for large values

of N up to 1000. For the computation of kurtosis of such

narrow spectra, a computational grid with a refined an-

gular resolution is used, with 35 uniformly spaced values

of angle u in the range2p/8, u, p/8 for N5 100 and

N5 200 and in the range2p/16, u, p/16 forN$ 300;

the frequency resolution is unchanged. For comparison,

the dynamic kurtosis in the purely one-dimensional model

with the same frequency resolution is shown in Fig. 11b.

Contrary to expectations that the two-dimensional model

with a narrow angular spreading should tend to the one-

dimensional case, it follows from Fig. 11a that when the

spectrum is very narrow in angle, the dynamic kurto-

sis remains negative and increases in absolute value,

with weak dependence on g. Even for N 5 O(1000), no

tendency toward the one-dimensional results can be

observed.

To resolve this apparent contradiction, in Fig. 12 we

show the results of the study of JONSWAP spectra with

very narrow directional spreading, using the model (12)

with large values of b in the range 10# b# 1000. In this

case, computations were performed with the same fre-

quency resolution as before and 35 uniformly spaced

values of angle u in the range 2Q , u , Q, with Q
chosen for each value of b to satisfy the condition that

99.9% of the spectral energy lies within the angle 6Q.

For narrow spectra with 10 # b # 70, the dynamic

kurtosis remains negative and continues to increase in

absolute value with increasing b for all values of g,

reaching the values below 21 for b close to 70. For

larger values of b, the kurtosis undergoes a fast change

to positive values, which depend on the value of g and

are close to the corresponding values for the purely one-

dimensional spectrum with the same g, shown as black

dots in Fig. 12. It appears that the values of the dynamic

FIG. 7. Dynamic kurtosis C
(d)
4 vs JONSWAP parameter g for

(a) a5 0.1 and (b) «5 0.1. Variousmodels of directional spreading

are used: the cosN(u) family (11) with various values ofN and sech-

squared directional spreading (12), denoted byD and shown by the

dashed curve.

FIG. 8. Bound harmonics kurtosis C
(b)
4 vs JONSWAP parameter

g for (a) a 5 0.1 and (b) « 5 0.1. Various models of directional

spreading are used: the family cosN(u) (11) with various values ofN

and sech-squared directional spreading (12), denoted by D and

shown by the dashed curve.
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kurtosis obtained in the one-dimensional case remain

valid for a two-dimensional spectrum only if the spec-

trum is very narrow in angle, withb. 200; this value ofb

corresponds to nearly all (99.9%) spectral energy con-

tained within a 28 angle.

6. Discussion

In this work, we have evaluated the kurtosis and skew-

ness for the most widely used family of parameterizations

of the observed wind-wave spectra. The earlier observa-

tion (Annenkov and Shrira 2009a, 2013) that except for the

qualitatively different situations with very narrow angular

distributions the dynamic kurtosis is almost always much

smaller than the bound harmonic contribution has been

confirmed for a much wider range of parameters. An in-

teresting feature of the dynamic kurtosis for broad angular

distributions typical of the ocean is that it changes sign at

g ’ 3.4, that is, close to the most typical value g ’ 3.3

found in the JONSWAP experiment (Young 1999). The

main conclusion of this work is that the behavior of both

the kurtosis and the skewness is robust in the wide range

of parameters. This allows one to circumvent the need to

perform very expensive simulations for each observed or

simulated wave spectrum, because the already calculated

dependencies can be parameterized.

We have found the behavior of both components of

kurtosis in the larger than real three-dimensional pa-

rameter space (a, g, N) and their sensitivity to approx-

imations of the spectral shape. This provides a good idea

of the possible degree of departure of wave statistics

from Gaussian for all kinds of wind-wave fields. Thus,

the simple parameterizations found in this work can be

used in a large variety of situations, including the oper-

ational wave forecasting. To the extent we can trust the

Donelan et al. (1985) parameterization of the spectra

(14) entirely controlled by the wave age U/Cp, we have

expressed the higher moments in terms of U/Cp in the

formulae of ultimate simplicity (15). By modeling evo-

lution of U and cp by means of the common operational

models, it is straightforward to predict the evolution of

the kurtosis and the skewness. These predictions might

differ from those given in Annenkov and Shrira (2013),

because the latter presumes complete self-similarity of

the evolving spectra, which is justified only for mature

wave fields with g close to unity. The parameterizations

obtained in this work are free from this restriction and

hence can be used for predictions of probability distri-

butions for a much wider range of situations. The found

dominance of the bound harmonics component of the

kurtosis over the dynamic one in a generic situation al-

lows one to regard these parameterizations with a certain

level of trust, because the bound harmonics kurtosis is

very robust and relatively weakly depends on the details

of the spectrum, in particular on the specific form of the

JONSWAP spectral tail or of its angular spreading.

The question of how wide is the range of situations

where these simple parameterizations are applicable

needs a discussion. Recall that the approach is based on

the same set of assumptions as the kinetic equation

underpinning all wave models; among the assumptions

there is a requirement that the spectra should be broad

FIG. 9. Total kurtosis C4 5C
(d)
4 1C

(b)
4 (black dots) and bound

harmonics kurtosis C
(b)
4 (red dots) for the modified JONSWAP

spectrum (14) with the directional spreading (12) vs the inverse

wave ageU/cp, and the power fitC45 0.041 0.022(U/cp)
0.87, shown

by the dashed curve.

FIG. 10. Skewness C3 (black dots) for the modified JONSWAP

spectrum (14) with the directional spreading (12) vs inverse wave

age U/cp, and the power fit C3 5 0.153(U/cp)
0.3, shown by the

dashed curve.
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enough. Wave fields with too narrow spectra behave

qualitatively differently; in contrast to a continuum of

weakly interacting waves typical of the broadband

spectra, there are interacting coherent patterns that

cannot be captured by the classical kinetic description. The

evolution of such wave fields is described by the nonlinear

Schr€odinger equation and its generalizations. Such re-

gimes were studied in Mori et al. (2011) where the main

conclusion is that the kurtosis is substantial and positive for

strictly unidirectional waves and monotonically decays

with the angular spreading. Our computations of wave

spectra with narrow angular distributions revealed a dif-

ferent scenario. Although for strictly unidirectional and

nearly unidirectional spectra with a pronounced peak (i.e.,

large g), the dynamic kurtosis is positive and large, in ac-

cordance with earlier studies, but for a slightly wider an-

gular spreading it changes sign and becomes large and

negative (with virtually no dependence on g). A sharp

change of the dynamic kurtosis occurs at a certain critical

angular width, approximately corresponding to nearly all

(99.9%) spectral energy contained within 2 angular de-

grees. This nonmonotonic behavior differs qualitatively

from the results obtained by Mori et al. (2011). However,

there is no contradiction here because there is no reason

for the results for the two qualitatively different regimes

based upon contrasting assumptions to coincide. The

boundary between these two regimes is not sharply de-

fined. For the lack of alternatives, to outline the boundary

between the regimes we take as a proxy the boundary of

the transition of random spatially homogeneous wave field

with a given spectrum from stability to instability with

respect to small spatially inhomogeneous perturbations.

This instability is an analog of the Benjamin–Feir in-

stability for a deterministic Stokes wave (Alber 1978). It

should be stressed that the boundary is not sharp: it de-

pends on the amplitude of the perturbations determined

by the noise level (Shemer 2010). The dominance of

nonlinear effects over dispersion results in instability and

the subsequent emergence of coherent patterns. For the

JONSWAP spectra with the cosN(u) directional spreading

(13), it was found that the stability domain, and hence the

applicability of the adopted approach, is specified by the

condition P2 . 1.1 (see Ribal et al. 2013), where

P2 5
«

ag
1

b

«Ad

,

b5 0:0256, and Ad 5
G(N/21 1)ffiffiffiffi
p

p
G(N/21 1/2)

.

FIG. 11. Dynamic kurtosis C
(d)
4 vs JONSWAP parameter g for

a JONSWAP spectrum with steepness « 5 0.1 (a) for two-

dimensional spectrumwith cosN(u) directional model (11) and for

several values of N in the range 100 # N # 1000 (b) for the one-

dimensional spectrum.

FIG. 12. Dynamic kurtosis for a JONSWAP spectrum with « 5
0.1 for several values of the parameter g and a very narrow angular

spreading. The kurtosis is shown vs the angular spreading param-

eter b for the sech-squared directional model (12) and 10 # b #

1000. Thick dots on the right correspond to the values of the kur-

tosis in the one-dimensional model.
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For the idealized one-dimensional spectra the condition

is less restrictive (Ribal et al. 2013):

P1. 1 and P15
«

ag
.

These boundaries of validity are shown in Fig. 3 by

dashed curves. Most of the parameter domain for re-

alistic wave spectra is within the domain of validity. The

domain of invalidity is confined to the top-right corner

corresponding to the very young and very steep waves.

There is another unaccounted for factor with a po-

tential to narrow the validity of our results, which has to

be discussed. Our approach is based on the standard set

of assumptions of weakly nonlinear theory. Crucially, in

this context wave breaking is absent, or to be precise, its

effect is parameterized in the kinetic equation (1) by the

linear term Sf. This is probably justified for the evolution

of wave spectra, butmight lead to palpable distortions of

the statistics, especially of the tails of the probability

distribution function. We cannot quantify this effect at

present, but the qualitative picture is clear: breaking

flattens the distribution of wave heights and hence de-

creases the value of kurtosis; under sufficiently intense

breaking kurtosis might even turn from positive to

negative (Caulliez and Gu�erin 2012; Zavadsky et al.

2013). Probably this is one of the reasons why the wind

tank observations yield negative kurtosis. The second

plausible reason is the very narrow angular distributions.

The only work so far, where the data analysis of wind

tank observations enabled the authors to estimate both

the full and dynamic kurtosis (Shemer et al. 2010), finds

that C4 is only slightly different from C
(d)
4 . These results,

obtained for nearly unidirectional waves, are in quali-

tative agreement with the present simulations for very

narrow angular distributions. However, to make a quan-

titative comparison with tank measurements, the role of

the tank walls has to be properly examined, which goes

beyond the scope of the present paper aimed primarily

at broadband wave fields with moderate and broad an-

gular spreading. The impact of wave breaking on wave

statistics as well as amore general question on the role of

the higher-order nonlinearity also require a dedicated

study. The present work is confined to modeling higher

moments of sea states without swell; however, the ap-

proach can be extended to examine and parameterize

the more complex sea states with coexisting wind and

swell waves.

In this work, we do not attempt to derive the PDF of

surface elevations on the basis of the obtained skewness

and kurtosis. The notion of wave height is not uniquely

defined for the broadband nonlinear wave fields; the issue

is not trivial and needs to be studied in its own right.

Acknowledgments. The work was supported by U.K.

NERC Grant NE/I01229X/1. Computations were per-

formed on the computer cluster at Keele University and

on the ECMWF supercomputing facility, the access to

which is gratefully acknowledged. We are grateful to

Luigi Cavaleri and Lev Shemer for useful suggestions on

the first draft of the manuscript.

REFERENCES

Alber, I. E., 1978: The effects of randomness on the stability of two-

dimensional surface wavetrains. Proc. Roy. Soc. London,

A363, 525–546, doi:10.1098/rspa.1978.0181.

Annenkov, S. Y., and V. I. Shrira, 2009a: Evolution of kurtosis for wind

waves.Geophys.Res.Lett., 36,L13603, doi:10.1029/2009GL038613.

——, and ——, 2009b: ‘‘Fast’’ nonlinear evolution in wave tur-

bulence. Phys. Rev. Lett., 102, 024502, doi:10.1103/

PhysRevLett.102.024502.

——, and ——, 2013: Large-time evolution of statistical moments

of wind–wave fields. J. Fluid Mech., 726, 517–546, doi:10.1017/

jfm.2013.243.

Caulliez, G., and C.-A. Gu�erin, 2012: Higher-order statistical

analysis of short wind wave fields. J. Geophys. Res., 117,

C06002, doi:10.1029/2011JC007854.

Donelan,M.A., J. Hamilton, andW.Hui, 1985:Directional spectra

of wind-generated waves. Philos. Trans. Roy. Soc. London,

A315, 509–562, doi:10.1098/rsta.1985.0054.

Dysthe, K., H. E. Krogstad, and P. M€uller, 2008: Oceanic rogue

waves. Annu. Rev. Fluid Mech., 40, 287–310, doi:10.1146/

annurev.fluid.40.111406.102203.

Fedele, F., and M. A. Tayfun, 2009: On nonlinear wave groups and

crest statistics. J. Fluid Mech., 620, 221–239, doi:10.1017/

S0022112008004424.

Forristall, G. Z., 2000: Wave crest distributions: Observations and

second-order theory. J. Phys. Oceanogr., 30, 1931–1943,

doi:10.1175/1520-0485(2000)030,1931:WCDOAS.2.0.CO;2.

Goda, Y., 2000: Random Seas and Design of Maritime Structures.

World Scientific, 443 pp.

Hasselmann, K., 1962: On the non-linear energy transfer in a

gravity-wave spectrum. J. FluidMech., 12, 481–500, doi:10.1017/

S0022112062000373.

Janssen, P. A. E. M., 2003: Nonlinear four-wave interactions and

freak waves. J. Phys. Oceanogr., 33, 863–884, doi:10.1175/

1520-0485(2003)33,863:NFIAFW.2.0.CO;2.

——, 2004: The Interaction of Ocean Waves and Wind. Cambridge

University Press, 308 pp.

——, 2008: Progress in ocean wave forecasting. J. Comput. Phys.,

227, 3572–3594, doi:10.1016/j.jcp.2007.04.029.
——, 2009: On some consequences of the canonical transformation

in the Hamiltonian theory of water waves. J. Fluid Mech., 637,

1–44, doi:10.1017/S0022112009008131.

Kharif, C., E. Pelinovsky, and A. Slunyaev, 2009: Rogue Waves in

the Ocean. Springer, 216 pp.

Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann,

S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and

Modelling of OceanWaves.CambridgeUniversity Press, 532 pp.

Krasitskii, V. P., 1994: On reduced Hamiltonian equations in the

nonlinear theory of water surface waves. J. Fluid Mech., 272,

1–20, doi:10.1017/S0022112094004350.

Longuet-Higgins, M. S., 1957: The statistical analysis of a random,

moving surface. Philos. Trans. Roy. Soc. London, A249, 321–

387, doi:10.1098/rsta.1957.0002.

JUNE 2014 ANNENKOV AND SHR IRA 1593

https://domicile.ifremer.fr/10.1098/,DanaInfo=dx.doi.org+rspa.1978.0181
https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+2009GL038613
https://domicile.ifremer.fr/10.1103/,DanaInfo=dx.doi.org+PhysRevLett.102.024502
https://domicile.ifremer.fr/10.1103/,DanaInfo=dx.doi.org+PhysRevLett.102.024502
https://domicile.ifremer.fr/10.1017/,DanaInfo=dx.doi.org+jfm.2013.243
https://domicile.ifremer.fr/10.1017/,DanaInfo=dx.doi.org+jfm.2013.243
https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+2011JC007854
https://domicile.ifremer.fr/10.1098/,DanaInfo=dx.doi.org+rsta.1985.0054
https://domicile.ifremer.fr/10.1146/,DanaInfo=dx.doi.org+annurev.fluid.40.111406.102203
https://domicile.ifremer.fr/10.1146/,DanaInfo=dx.doi.org+annurev.fluid.40.111406.102203
https://domicile.ifremer.fr/10.1017/,DanaInfo=dx.doi.org+S0022112008004424
https://domicile.ifremer.fr/10.1017/,DanaInfo=dx.doi.org+S0022112008004424
https://domicile.ifremer.fr/10.1175/,DanaInfo=dx.doi.org+1520-0485(2000)030<1931:WCDOAS>2.0.CO;2
https://domicile.ifremer.fr/10.1017/,DanaInfo=dx.doi.org+S0022112062000373
https://domicile.ifremer.fr/10.1017/,DanaInfo=dx.doi.org+S0022112062000373
https://domicile.ifremer.fr/10.1175/,DanaInfo=dx.doi.org+1520-0485(2003)33<863:NFIAFW>2.0.CO;2
https://domicile.ifremer.fr/10.1175/,DanaInfo=dx.doi.org+1520-0485(2003)33<863:NFIAFW>2.0.CO;2
https://domicile.ifremer.fr/10.1016/,DanaInfo=dx.doi.org+j.jcp.2007.04.029
https://domicile.ifremer.fr/10.1017/,DanaInfo=dx.doi.org+S0022112009008131
https://domicile.ifremer.fr/10.1017/,DanaInfo=dx.doi.org+S0022112094004350
https://domicile.ifremer.fr/10.1098/,DanaInfo=dx.doi.org+rsta.1957.0002


——, 1980: On the distribution of the heights of sea waves: Some

effects of nonlinearity and finite band width. J. Geophys. Res.,

85, 1519–1523, doi:10.1029/JC085iC03p01519.

Mori, N., and P. A. E. M. Janssen, 2006: Freak wave prediction

from directional spectra. Proc. 30th Int. Conf. Coastal Engi-

neering 2006, J. M. Smith, Ed., World Scientific, 714–725.

——,M.Onorato, and P. A. E.M. Janssen, 2011: On the estimation

of the kurtosis in directional sea states for freak wave fore-

casting. J. Phys. Oceanogr., 41, 1484–1497, doi:10.1175/

2011JPO4542.1.

Onorato, M., A. R. Osborne,M. Serio, and S. Bertone, 2001: Freak

waves in random oceanic sea states. Phys. Rev. Lett., 86, 5831,
doi:10.1103/PhysRevLett.86.5831.

Ribal, A., A. V. Babanin, I. Young, A. Toffoli, and M. Stiassnie,

2013: Recurrent solutions of the Alber equation initialized by

Joint North Sea Wave Project spectra. J. Fluid Mech., 719,

314–344, doi:10.1017/jfm.2013.7.

Rice, S. O., 1954: Mathematical analysis of random noise. Selected

Papers onNoise and Stochastic Processes,N.Wax, Ed., Dover,

133–294.

Shemer, L., 2010: On Benjamin–Feir instability and evolu-

tion of a nonlinear wave with finite-amplitude sidebands.

Nat. Hazards Earth Syst. Sci., 10, 2421–2427, doi:10.5194/

nhess-10-2421-2010.

——, A. Sergeeva, and D. Liberzon, 2010: Effect of the initial

spectrum on the spatial evolution of statistics of unidirectional

nonlinear random waves. J. Geophys. Res., 115, C12039,

doi:10.1029/2010JC006326.

Slunyaev, A., 2006: Nonlinear analysis and simulations of mea-

sured freak wave time series. Eur. J. Mech. B/Fluids, 25, 621–

635, doi:10.1016/j.euromechflu.2006.03.005.

Stansell, P., 2004: Distributions of freak wave heights measured in

the North Sea. Appl. Ocean Res., 26, 35–48, doi:10.1016/

j.apor.2004.01.004.

Tayfun, M. A., 1980: Narrow-band nonlinear sea waves. J. Geo-

phys. Res., 85, 1548–1552, doi:10.1029/JC085iC03p01548.

Young, I. R., 1999:WindGenerated OceanWaves.Elsevier, 288 pp.

Zavadsky, A., D. Liberzon, and L. Shemer, 2013: Statistical anal-

ysis of the spatial evolution of the stationary wind wave field.

J. Phys. Oceanogr., 43, 65–79, doi:10.1175/JPO-D-12-0103.1.

1594 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 44

https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+JC085iC03p01519
https://domicile.ifremer.fr/10.1175/,DanaInfo=dx.doi.org+2011JPO4542.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=dx.doi.org+2011JPO4542.1
https://domicile.ifremer.fr/10.1103/,DanaInfo=dx.doi.org+PhysRevLett.86.5831
https://domicile.ifremer.fr/10.1017/,DanaInfo=dx.doi.org+jfm.2013.7
https://domicile.ifremer.fr/10.5194/,DanaInfo=dx.doi.org+nhess-10-2421-2010
https://domicile.ifremer.fr/10.5194/,DanaInfo=dx.doi.org+nhess-10-2421-2010
https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+2010JC006326
https://domicile.ifremer.fr/10.1016/,DanaInfo=dx.doi.org+j.euromechflu.2006.03.005
https://domicile.ifremer.fr/10.1016/,DanaInfo=dx.doi.org+j.apor.2004.01.004
https://domicile.ifremer.fr/10.1016/,DanaInfo=dx.doi.org+j.apor.2004.01.004
https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+JC085iC03p01548
https://domicile.ifremer.fr/10.1175/,DanaInfo=dx.doi.org+JPO-D-12-0103.1

