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We study the long-term evolution of weakly nonlinear random gravity water wave
fields developing with and without wind forcing. The focus of the work is on
deriving, from first principles, the evolution of the departure of the field statistics from
Gaussianity. Higher-order statistical moments of elevation (skewness and kurtosis) are
used as a measure of this departure. Non-Gaussianity of a weakly nonlinear random
wave field has two components. The first is due to nonlinear wave–wave interactions.
We refer to this component as ‘dynamic’, since it is linked to wave field evolution.
The other component is due to bound harmonics. It is non-zero for every wave field
with finite amplitude, contributes both to skewness and kurtosis of gravity water waves
and can be determined entirely from the instantaneous spectrum of surface elevation.
The key result of the work, supported both by direct numerical simulation (DNS)
and by the analysis of simulated and experimental (JONSWAP) spectra, is that in
generic situations of a broadband random wave field the dynamic contribution to
kurtosis is small in absolute value, and negligibly small compared with the bound
harmonics component. Therefore, the latter dominates, and both skewness and kurtosis
can be obtained directly from the instantaneous wave spectra. Thus, the departure of
evolving wave fields from Gaussianity can be obtained from evolving wave spectra,
complementing the capability of forecasting spectra and capitalizing on the existing
methodology. We find that both skewness and kurtosis are significant for typical
oceanic waves; the non-zero positive kurtosis implies a tangible increase of freak
wave probability. For random wave fields generated by steady or slowly varying wind
and for swell the derived large-time asymptotics of skewness and kurtosis predict
power law decay of the moments. The exponents of these laws are determined by the
degree of homogeneity of the interaction coefficients. For all self-similar regimes the
kurtosis decays twice as fast as the skewness. These formulae complement the known
large-time asymptotics for spectral evolution prescribed by the Hasselmann equation.
The results are verified by the DNS of random wave fields based on the Zakharov
equation. The predicted asymptotic behaviour is shown to be very robust: it holds both
for steady and gusty winds.
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1. Introduction
The ultimate aim of all studies of random water wave fields is to predict the

probability density function (p.d.f.) of the wave characteristics, primarily wave height,
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at any given place and time. A linear wave field is known to obey the stationary
Gaussian statistics (e.g. Komen et al. 1994), which leads to the Rayleigh distribution
for wave heights, under the additional assumption of narrowbandedness of the energy
spectrum (Rice 1954; Longuet-Higgins 1957; Goda 2000).

Although linear models do describe major features of wave statistics (Young 1999;
Goda 2000), they fail in capturing two principal aspects of reality. First, such models
predict no energy exchange between different spectral bands and, correspondingly, no
evolution of wave spectra. Such evolution is most prominently manifested by the
frequency downshift of the spectral peak. Second, nonlinearity leads to a departure of
field statistics from Gaussianity. Although this departure is small for the bulk of the
probability distribution, it is not small for the tails of the distribution and, therefore,
is crucial for predicting rare anomalously high waves (freak or rogue waves), which
is vital for many applications. The slightest difference in the distribution tail shape
could result in huge disparities in the probability of freak waves and, correspondingly,
significant scatter of ‘the highest wave’ type estimates required by industry. The
observed statistics of such waves deviates significantly from the predictions based
upon the Rayleigh distribution (Stansell 2004; Mori & Janssen 2006a). Following
Tayfun (1980), the effect of nonlinearity through bound harmonics onto wave height
distributions started to be taken into account for narrowbanded spectra; skewness
was found to be the dominant non-Gaussian effect. In subsequent developments, the
approach has been extended to include small but finite spectral width (Fedele &
Tayfun 2009). A number of reasonably successful semi-empirical parameterizations of
wave height distributions has been developed; in various ways they incorporate a finite
spectral width and bound harmonic nonlinearity of the wave field (see references in
Fedele 2008; Fedele & Tayfun 2009). However, the available data on statistics of very
rare events are naturally quite sparse; correspondingly, because of the lack of solid
theoretical foundation the reliability and prognostic value of the parameterizations of
the distribution tails remains unknown. In this context, it would be highly desirable
to derive wave height distribution from first principles using only transparent and
verifiable assumptions. The present work is a contribution towards this goal.

A systematic nonlinear theory of random weakly nonlinear waves starting from
first principles is already quite mature, having been successfully developed by efforts
of many scientists over the last 50 years. This theory proved to be very good in
modelling the observed evolution of wave energy spectra (Hasselmann 1962; Komen
et al. 1994; Pushkarev, Resio & Zakharov 2003; Janssen 2004). However, the links
between the already established laws of wave spectra evolution and those of wave
heights distribution are poorly understood. The present work aims at filling this gap.

The established theoretical description of random wind waves is based on the
wave (or weak) turbulence paradigm. The wave field is considered as a continuum
of resonantly interacting random weakly nonlinear waves. Its natural dynamical
description is in terms of nonlinear normal modes in the wavevector space with the
bound harmonics eliminated by the canonical transformation (Krasitskii 1994; Janssen
2004). Here, the term ‘bound harmonics’ refers to all harmonics that are generated
by non-resonant nonlinear interactions and do not satisfy the linear dispersion relation,
including the higher harmonics of Stokes waves, sum and difference harmonics of the
free waves, and combinations of these harmonics with the free waves. In the linear
limit, the statistics of a random wave field is Gaussian and stationary. Interactions
between the modes due to nonlinearity lead to the wave spectrum evolution and,
at the same time, to a departure from Gaussianity. Under the assumption of quasi-
Gaussianity it is in principle possible to deduce theoretically the evolution of all
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statistical moments and structure functions of a wave field (Nazarenko 2011). However,
the realization of this programme is not straightforward and has not been accomplished
yet. Over the last 50 years the efforts were concentrated on the evolution of the
second moment of a wave field, which represents the energy or wave-action spectrum.
In virtually all studies, this evolution was considered to be governed by the kinetic
(Hasselmann) equation (KE) (Hasselmann 1962; Zakharov, L’vov & Falkovich 1992).
In the KE the nonlinear transfer term is derived via a regular asymptotic procedure
based on smallness of nonlinearity and verifiable transparent additional assumptions,
which include quasi-Gaussianity (Hasselmann 1962; Zakharov et al. 1992; Komen
et al. 1994; Janssen 2004). A number of parameterizations of wind generation and
dissipation terms in the KE is currently in use (Komen et al. 1994; Kudryavtsev,
Makin & Meirink 2001; Donelan et al. 2006; Babanin 2011). The KE underpins
operational wave models, which are now an integral part of global weather forecasting.
The quality of wave forecasting, in particular that of integral characteristics of wave
fields, such as the total energy or position and magnitude of the spectral peak, is quite
good (Janssen 2008). Among the key achievements of the theory was the discovery
of exact powerlike solutions of the KE (the Kolmogorov–Zakharov spectra) and the
realization of their physical significance in terms of direct and inverse cascades of
general turbulence (Zakharov et al. 1992; Nazarenko 2011). In our context, of special
interest is the observation that under steady wind, both the field data (Toba 1972;
Young 1999; Badulin et al. 2007), and the simulations within the framework of
the KE with various parameterizations of wind input and breaking (Badulin et al.
2005; Zakharov 2005; Gagnaire-Renoud, Benoit & Badulin 2011) demonstrate that
the evolution of wave spectra is self-similar. That is, for sufficiently large times
energy E or wave-action n spectra in terms of frequency ω or wavenumber k have
a distinct shape characterized by a powerlike spectral slope of the form, e.g. n ∼ ωλ
with a moving and growing maximum Np ∼ tα at the peak frequency ωp ∼ tβ , and a
sharp front for frequencies below ωp. The values of λ, α and β are tightly linked
and determined by the specific asymptotic regime. A large family of asymptotic
regimes exists (Badulin et al. 2005; Gagnaire-Renoud et al. 2011), notable cases
being the regimes linked to constant fluxes of wave energy (Toba 1972), momentum
(Hasselmann et al. 1976) and wave action (Zakharov & Zaslavsky 1983). It is usually
assumed that the majority of cases of wind–wave growth are described by the well-
known Toba’s ‘3/2 law’ corresponding to the constant flux of energy from wind to
waves and α = 8/3, β = −1/3. Another asymptotic regime, associated with a later
stage of wave development (Zakharov & Zaslavsky 1983; Gagnaire-Renoud et al.
2011), corresponds to constant wave-action flux and α = 23/11, β = −3/11. One of
the specific aims of this study is to relate these well-established, both theoretically
and experimentally, regimes of wave spectra evolution with their counterparts for the
higher moments of wave height distribution.

As was noted above, a linear wave field with Gaussian statistics leads to the
Rayleigh distribution for wave heights only under the additional assumption of
narrowbandedness of a wave field (Longuet-Higgins 1983). The reason for this
counterintuitive constraint is that wave height, obtained by analysing time series
of surface elevation, is not a natural quantity in the theoretical context of water
wave statistics, being well-defined for a narrowband wave field only. As noted
by Goda (2000) ‘. . . in fact, there is no absolute method of definition. However,
the customary practice . . . is to utilize either the zero-upcrossing method or the
zero-downcrossing method as the standard techniques for defining waves’. The
shortcomings of such definitions are discussed by Janssen (2007), where a much
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more theoretically appealing alternative based on the concept of envelope of analytical
signal has been put forward. The idea of the analytical signal introduced by Gabor
(1946) is widely used in many branches of science. In our context, if we have
a time record of surface elevation ζ(t), one can introduce an analytical signal
as Z(t) = ζ(t) + iξ(t) = ζ(t) + iH[ζ(t)], where H[ζ(t)] is the Hilbert transform of
ζ(t). One can always present Z(t) in polar form, Z(t) = ρeiϕ , where ρ =√ζ 2 + ξ 2,
ϕ = arctan(ξ/ζ ) and ζ = ρ cosϕ, ξ = ρ sinϕ. Thus, ρ is the envelope amplitude and
ϕ is the phase of the signal. It is convenient to define the wave height as 2ρ, which
would coincide with the zero-crossing engineering definitions for narrowband spectra.
The advantage of this definition is that it applies to arbitrary spectra, including the
broadband ones. Then, for linear wave fields the distribution of the wave height
defined in this way is the Rayleigh distribution, irrespective of the spectral width. Any
other definition of wave height does not have this property for arbitrary spectra. Since
there is no established view on how to define maximal wave heights for non-narrow
spectra, we will examine the statistics of wave envelope based upon the analytical
signal. However, we formulate our results in terms of statistical moments of surface
elevation, such as kurtosis and skewness, which are functionals of directly measurable
surface elevation and do not depend on the way wave heights are defined. Different
applications might rely on different definitions of wave heights; the invariant moments
we find are the necessary elements for constructing any p.d.f.

Thus, our main interest in this paper is in the deviations from the Rayleigh
distribution of the wave heights due to nonlinearity, manifested in the skewness
and kurtosis. While the spectral evolution is reasonably well-understood, effects of
nonlinearity on the departure from Gaussianity are less studied. The first major step
towards understanding the evolution of wave distributions beyond spectra for generic
broadband wave fields was made by Janssen (2003). Staying within the standard
kinetic description employed in the derivation of the kinetic (Hasselmann) equation,
Janssen (2003, 2009) was able to link the evolution of the third and fourth moments
of surface elevation, and the related skewness and kurtosis, to that of the energy
spectra. It is beneficial to separate the non-Gaussianity due to resonant interactions
of nonlinear normal modes in the canonically transformed space from the effects due
to bound harmonics, which are eliminated by the canonical transformation. When the
non-Gaussianity is small, the effects due to these contributions just sum up and we
gain a better insight by studying them separately. If it is not small, then, strictly
speaking, the whole weak turbulence concept underpinning the KE is not applicable.

The first contribution to the non-Gaussianity comes from resonant nonlinear
interactions. In the absence of resonant three-wave interactions in a gravity wave field,
the quadratic nonlinearity of a wave field is completely excluded by the canonical
transformation. Then the wave field in the transformed space becomes Gaussian to
this order. Therefore, the lowest-order non-Gaussian effect for the interacting nonlinear
normal modes is due to resonant four-wave interactions, manifesting itself in the non-
zero kurtosis of the transformed wave field. Following the notation and terminology of
Annenkov & Shrira (2009b), we will refer to this kurtosis as ‘dynamic’ and denote
it as C(d)

4 . Generally speaking, the dependence of C(d)
4 on wave spectra is non-local

in time, i.e. C(d)
4 depends on the history of spectral evolution. Assuming that the

spectrum is changing slowly on the time scale of the KE solutions, Janssen (2003)
expressed C(d)

4 explicitly in terms of instantaneous wave-action spectra n(k) as an
integral over the six-dimensional domain with an oscillating kernel. In the large-time
limit, implicitly employed in the standard derivation of the KE, the integral becomes
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singular and should be understood as a principal value integral (Janssen 2003, 2004).
The further developments (e.g. Mori & Janssen 2006b; Onorato et al. 2006) were
confined to narrowband wave fields, which are of special interest in the context of
freak wave formation due to modulational instability. Such narrowband situations,
being at the limits, or beyond, of the applicability of weak turbulence theory, are
characterized by a significant departure from the Gaussianity. They are short-lived and
relatively rare, although they might contribute disproportionately to statistics of freak
wave events. A version of this approach is now used for the operational forecasting of
freak waves (Janssen & Bidlot 2009).

In this work we are interested not in these rare situations with higher probability of
freak wave events, but in the most typical wind–wave fields with broadband spectra.
The crucial question is to find the dynamic kurtosis, since its evolution has not been
studied before. In this work, we adopt the following strategy. First, we simulate
the development of a random wave field under the action of constant wind, for a
few different wind speeds, by direct numerical simulation (DNS). Along with the
simulations, we find the dynamic kurtosis directly, calculating the correlations between
the phases of interacting waves, with ensemble averaging. Then, we make use of the
approach developed by Janssen (2003), calculating the dynamic kurtosis as a function
of time from the spectra obtained via the DNS. This approach, which involves the
evaluation of an integral, derived by Janssen (2003), over all (resonant and non-
resonant) interactions, represents a challenging computational problem and has not
been used before to estimate the kurtosis for a broadband spectrum. The resulting
kurtosis is shown to be in agreement with the kurtosis obtained directly via the DNS.
The main conclusion is that the dynamic kurtosis is small in absolute value, of the
order O(10−2) for a developed wave spectrum generated by a constant wind. A similar
result is obtained in the large-time limit of the integral for a model (Joint North Sea
Wave Project (JONSWAP)) spectrum, which is chosen as a generic example of mature
sea conditions. We also derive the long-term asymptotic of the dynamic kurtosis, based
on the self-similar properties of a developed wave field, show that in the self-similar
regime of wind–wave field development the kurtosis decays with time as ts, and find
the exponent s of this decay.

These results enable us to conclude that in the generic case of mature wind–wave
spectra the dynamic contribution to higher moments is small, so that virtually all non-
Gaussianity of a wave field can be described in terms of the canonical transformation.
Then, the bound harmonic contribution to the second- and higher-order moments
of elevation is straightforward to find, using the integral formulation developed by
Janssen (2009). Note that quadratic and cubic nonlinearity affect the wave field p.d.f.
in the same order. Janssen (2009) has derived the contributions to the second, third and
fourth moments of the envelope elevation, and made a conjecture that the contributions
to the second moment cancel out due to symmetry. Here, we prove this conjecture
in the general case of a two-dimensional wave field, and use Janssen’s formulae to
calculate the bound harmonic skewness and kurtosis for the spectra obtained via the
DNS. The obtained values of the bound harmonic skewness and kurtosis are typically
in the range 0.1–0.5 and thus are at least an order of magnitude larger than the
dynamic kurtosis for the developed spectra. Therefore, we confirm that in a generic
wind–wave field the bound harmonic contribution to the non-Gaussianity dominates.
This fundamental conclusion enables us to find the departure from Gaussianity of an
evolving wind–wave field directly in terms of the original physical variables via the
formulae for bound harmonic contribution derived by Janssen (2009), provided that the
spectrum evolution is known. The bound harmonics kurtosis C(b)

4 and skewness C(b)
3
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can serve as a convenient characteristics of this departure. They can be also used
to find all other higher moments, and to reconstruct the p.d.f. of envelope elevation.
Since all of the higher moments of wave height distribution obtained in this way are
integrals of the spectrum, it is natural to expect that the already established self-similar
evolution of the spectra will manifest itself in the corresponding self-similar behaviour
of higher moments. In this paper, we first show that under steady wind forcing the
skewness and the kurtosis indeed closely follow, although in their own specific way,
the spectrum evolution, and derive the self-similar laws for the skewness and kurtosis.
For example, for wind waves in the regime of constant wave-action flux the kurtosis
asymptotically decays as t−4/11 and the skewness decays as t−2/11. These analytical
results are shown to agree with numerics, both for a wind–wave field generated by
constant wind, and for swell. Furthermore, we demonstrate the robustness of these
results by extending them numerically to fluctuating winds. Thus, we can speak of the
multi-dimensional self-similarity of wave field evolution: each of the higher moments
obeys its own law of evolution determined by the specific dynamics of the spectrum.

The paper is organized as follows. In § 2 we present the problem statement and
theoretical background. In § 3, the self-similar properties of wind–wave spectra under
constant wind are discussed and then used to derive the large-time asymptotics for
higher statistical moments of elevation. In § 4, the DNS algorithm, based on the
Zakharov equation, is described. In § 5 we discuss the results of numerical simulations.
First, we focus on the dynamic non-Gaussianity, using the DNS results to demonstrate
that it is indeed small in generic case. Then, the numerical results for bound harmonic
skewness and kurtosis are discussed. In particular, the self-similar behaviour, derived
analytically in § 3, is demonstrated numerically. Finally, we discuss the results of the
simulations with fluctuating or random (gusty) forcing, demonstrating the robustness of
the conclusions obtained for the case of the steady forcing. Concluding remarks and
a discussion are in § 6. The lengthy formulae for the bound harmonic skewness and
kurtosis in terms of the spectrum are given in the Appendix.

2. Theoretical background
2.1. Evolution of spectra

The starting point of the analysis is the Zakharov integrodifferential equation for
surface gravity waves in deep water, which is derived from the Hamiltonian
formulation of primitive water wave equations (Zakharov 1968; Krasitskii 1994).
Consider potential gravity waves on the free surface of a homogeneous, incompressible
and inviscid fluid of infinite depth, choosing a coordinate system (x, y, z) with the
vertical axis z oriented upward, and the origin at the undisturbed water surface. Then
the wave motion can be described by two canonical dependent variables ζ(x, y, t) (the
elevation of the surface) and ψ(x, y, t) (the velocity potential at the surface), the total
energy of the system being used as the Hamiltonian (Zakharov 1968; Zakharov et al.
1992). Introducing Fourier transforms ζ̂ (k, t) and ψ̂(k, t) and Zakharov’s canonical
complex variables a(k),

ζ̂ (k)=
[

q(k)
2ω(k)

]1/2 [
a(k)+ a∗(−k)] , ψ̂(k)=

[
ω(k)
2q(k)

]1/2 [
a(k)− a∗(−k)] , (2.1)

the Hamiltonian evolution equations can be written as

i
∂a(k)
∂t
= δH

δa∗(k)
, (2.2)
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where k = (kx, ky), the asterisk denotes complex conjugation and ω(k) = [gq(k)]1/2 is
the linear dispersion relation, q(k)= |k| = k for infinite depth and g is the acceleration
due to gravity. The Hamiltonian H is a functional of a(k), a∗(k), usually written in the
form of a series in powers of these variables, utilizing the smallness of nonlinearity.

The Zakharov equation is formulated in terms of new variables b(k)

i
∂b0

∂t
= (ω0 + iγ0) b0 +

∫
T0123b∗1b2b3δ0+1−2−3 dk123, (2.3)

where iγ (k) is the small imaginary correction to frequency describing net
forcing, i.e. forcing minus dissipation. Here and below, we use the compact
notation that designates the arguments by indices, e.g. b0 = b(k0, t),T0123 =
T(k0, k1, k2, k3), δ0+1−2−3 = δ(k0+k1−k2−k3), dk123 = dk1 dk2 dk3, b(k, t) is a nonlinear
normal variable, linked to a(k, t) through an integral-power series (Krasitskii 1994)

a0 = b0 +
∫

A(1)012b1b2δ0−1−2 dk12

+
∫

A(2)012b∗1b2δ0+1−2 dk12 +
∫

A(3)012b∗1b∗2δ0+1+2 dk12 + · · · , (2.4)

which represents a canonical transformation that eliminates non-resonant triplet and
quartet interactions. Integration is performed over the entire k-plane. Expressions for
all kernels in (2.3) and (2.4), as well as all details of the derivation of (2.3), can
be found in Krasitskii (1994). The Zakharov equation operates in the canonically
transformed space of b(k), essentially describing the free-wave part of the wave field.
The bound harmonics contribution up to third order in nonlinearity are accounted for
by the canonical transformation (2.4).

For the most of practical applications such as wave forecasting, the information
on the phases of waves is not available. The phases of the initial state of the wave
field are never known, while even small inaccuracies in the initial conditions diverge
exponentially with time (Annenkov & Shrira 2001). Therefore, a statistical description
is the only meaningful way of describing long-term evolution of nonlinear wind–wave
field. The evolution of statistical characteristics of a wave field is usually studied in
terms of correlators of b(k, t). The classical derivation (e.g. Zakharov et al. 1992) uses
(2.3) as the starting point and leads to the equation for the second statistical moment

∂n0

∂t
= 4π

∫
T2

0123f0123δ0+1−2−3δ(1ω) dk123 + Sf , (2.5)

where n0 is the second-order correlator, 〈b∗0b1〉 = n0δ0−1, angular brackets mean
ensemble averaging, f0123 = n2n3(n0+ n1)− n0n1(n2+ n3), 1ω = ω0+ω1−ω2−ω3, and
Sf is the forcing/dissipation term. The kinetic (Hasselmann) equation (2.5) describes
the evolution of the wave spectra in terms of wave action. It assumes a random wave
field to be close to Gaussianity and stationarity, which makes (2.5) inapplicable for
wave fields far from equilibrium, e.g. subjected to a rapid change of wind (Annenkov
& Shrira 2009a).

2.2. Higher statistical moments
The presence of nonlinear wave interactions leads to evolution of the spectra and to a
departure of the field from Gaussianity. The skewness and kurtosis of the field follow
from the third and the fourth statistical moments, being a convenient measure of this
departure in a generic case.
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Let us first consider the non-Gaussianity of the canonically transformed wave field
b(k, t), denoting its statistical moments as mj, j = 2, 3, 4. The second moment has the
form

m2 =
∫
ω0b0b∗0 dk0. (2.6)

Since in this paper only deep-water gravity waves are considered, the third moment m3

and, hence, the skewness,

C(d)
3 =

m3

m3/2
2

, (2.7)

are identically zero, due to the absence of resonant three-wave interactions. Here and
below we use the superscript (d) (‘dynamic’) to denote the skewness and the kurtosis
of the canonically transformed wave field, emphasizing the fact that these quantities
can be non-zero only in the presence of nonlinear resonant interactions, within wave
triplets and quartets, respectively. The fourth moment m4 can be calculated from the
known wave field b(k, t) as (Janssen 2003)

m4 = 3
4

∫
(ω0ω1ω2ω3)

1/2〈b∗0b∗1b2b3〉 dk0123 + c.c., (2.8)

where c.c. is the complex conjugate, and then the kurtosis C(d)
4 is

C(d)
4 = m4/m

2
2 − 3. (2.9)

Note that C(d)
4 cannot be obtained from the simulations of the kinetic equation (2.5).

One possible way of calculating it is by DNS, i.e. by integrating the Zakharov
equation (2.3) or primitive dynamic equations for the wave field numerically and
averaging (2.8) over realizations. This will be done on the basis of the Zakharov
equation in the next section.

Another possibility is to use the statistical approach pioneered by Janssen (2003).
Here we briefly outline how it can be exploited. Let us first write down the expression
for the fourth-order correlator

〈b∗0b∗1b2b3〉 = n0n1(δ0−2δ1−3 + δ0−3δ1−2)+ J(1)0123δ0+1−2−3, (2.10)

where J(1)0+1−2−3 is the fourth-order cumulant. Janssen (2003) made an assumption that
the action density n(k, t) evolves on the slow O(ε−4) time scale. Then, employing
the standard statistical closure and assuming that J(1)0+1−2−3 = 0 at the initial moment,
Janssen obtained the approximate expression

J(1)0+1−2−3 = 2T0123R(1ω, t)f0123, (2.11)

where

R(1ω, t)= cos(1ωt)− 1
1ω

+ i
sin(1ωt)

1ω
. (2.12)

Using (2.8) and (2.11), the fourth moment can be expressed as

m4 ≈ m(J)
4 = 3m2

2 + 3Re
∫

T0123(ω0ω1ω2ω3)
1/2R(1ω, t)f0123δ0+1−2−3 dk0123, (2.13)
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where the superscript (J) denotes the approximation suggested by Janssen (2003). Then
the kurtosis can be calculated as

C(d)
4 ≈

3
m2

2

Re
∫

T0123(ω0ω1ω2ω3)
1/2R(1ω, t)f0123δ0+1−2−3 dk0123. (2.14)

In the large-time limit adopted in the standard derivation of the kinetic equation, this
expression tends to

C(d)
4 ≈−

3
m2

2

−
∫ ∞

0
T0123(ω0ω1ω2ω3)

1/2 f0123

1ω
δ0+1−2−3 dk0123, (2.15)

where Cauchy principal value of the integral is taken. Note that within this
approach the kurtosis depends on all interactions except the exactly resonant ones.
Approximations (2.14) and (2.15) will be used for the evaluation of the dynamic
kurtosis in the next section.

However, even if the wave field in canonical variables b(k, t) is Gaussian (for
example, if there are no nonlinear interactions close to resonance), in the physical
space non-Gaussianity is non-zero for any finite-amplitude wave field, since there is
an additional source of non-Gaussianity due to the presence of bound harmonics. This
part of the non-Gaussianity is eliminated by the canonical transformation (2.4). For
brevity we will refer to it as bound harmonic non-Gaussianity. It is described in the
physical space in terms of the surface elevation, and can be calculated from (2.4),
provided that the dynamic component is small; otherwise the separation of the two
components is not possible.

Let us now assume that the dynamic non-Gaussianity is small and consider the
statistical moments of the surface elevation

µj = 〈ζ j〉. (2.16)

Janssen (2009) derived expressions for µj, j = 2, 3, 4, in terms of energy density
defined as E(k)= ωn(k)/g. Note that

m2 =
∫
ω0b0b∗0 dk0 = g

∫
E0 dk0. (2.17)

For the second statistical moment in physical space, Janssen (2009) obtained

µ2 = 〈ζ 2〉 =
∫

E1 dk1 +
∫ (

A 2
1,2 +B2

1,2 + 2C1,1,2,2

)
E1E2 dk12, (2.18)

where expressions for coefficients A1,2,B1,2,C1,1,2,2 are given in the Appendix.
Janssen (2009) showed that in the case of one-dimensional wavevectors the second
integral is equal to zero due to symmetry, and made a conjecture that this property
also holds in the general two-dimensional geometry. The proof of this conjecture is
given in the Appendix. Thus, we can write

µ2 = 〈ζ 2〉 =
∫

E1 dk1 = m2

g
. (2.19)

The third and fourth moments have the form (Janssen 2009)

µ3 = 〈ζ 3〉 = 3
∫ (

A1,2 +B1,2

)
E1E2 dk12, (2.20)

µ4 = 〈ζ 4〉 = 3
∫

E1E2 dk12 + 12
∫

J1,2,3E1E2E3 dk123, (2.21)
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where

J123 =A1,3A2,3 +B1,3B2,3 + 2A1,3B2,3 + 1
2C1+2−3,1,2,3 + 1

2D1+2+3,1,2,3. (2.22)

The coefficients are given in the Appendix. Then, we can write out the expressions for
the bound harmonic components of skewness and kurtosis as

C(b)
3 =

µ3

µ
3/2
2

, C(b)
4 =

µ4

µ2
2

− 3. (2.23)

In our context it is important that all coefficients in the expressions for moments,
listed in the Appendix, are homogeneous functions of k. In particular, J123 is a
homogeneous function of degree two, that is

J (αk1, αk2, αk3)= α2J (k1, k2, k3), (2.24)

while A and B are homogeneous functions of degree one.

3. Self-similarity of spectra and higher statistical moments
The key feature of water wave spectra, observed both experimentally (Hasselmann

1973; Toba 1973) and obtained as numerical solutions of the kinetic equation (2.5)
(Badulin et al. 2005, 2007; Gagnaire-Renoud et al. 2011), is a strong tendency
towards self-similar behaviour. There is a rich family of self-similar solutions for
different power-law dependencies of wave forcing on fetch or duration of wave growth.
In particular, in the duration-limited (spatially homogeneous) case, the wave-action
spectrum n(k, t), k = |k|, tends to the form (Badulin et al. 2005; Gagnaire-Renoud
et al. 2011)

n(k, t)= aBtαU
(
bBktβ

)
, (3.1)

where U is a self-similar function, α = (19β − 2)/4, aB and bB are constant
for a specific asymptotic regime. Under wind forcing, the magnitude of the self-
similar solution (3.1) grows with time (α > 0), while the characteristic frequency (or
wavenumber) decreases (β > 0). Total wave action Ntot , energy Etot and momentum
Mtot grow as

Ntot ∼ tr, r = α − 2β, (3.2a)
Etot ∼ tp, p= α − 5β/2, (3.2b)
Mtot ∼ tm, m= α − 3β. (3.2c)

Our aim is to derive the asymptotic properties of moments µ2, µ3, µ4 and the
‘dynamic’ moment m4 capitalizing on the above asymptotics for Ntot,Etot and Mtot .

Let us first assume that wave field b(k, t) is free, i.e. C(d)
4 is negligible. Then,

substituting (3.1) into (2.19) and employing a change of variable ξ = bBktβ, dk =
k dk dθ , we obtain

µ2 = aB

b2
B

tα−2β

∫
ω1U1ξ1 dξ1 dθ1, (3.3)

where U1 = U (ξ1). Using the long-term asymptotics of the frequency downshift
ω ∼ t−β/2, which follows from (3.1), we obtain

µ2 = c2tp2, (3.4)

where c2 is a constant and p2 = α − 5β/2. The value of p2 corresponds to the exponent
for energy growth in (3.2b).
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Similarly, substituting (3.1) into (2.20), we get

µ3 = 3
a2

B

b4
B

t2α−4β

∫ [
A (k1, k2)+B(k1, k2)

]
ω1ω2U1U2ξ1ξ2 dξ12 dθ12. (3.5)

Then, using the fact that both A and B are homogeneous functions of degree one,

µ3 = c3tp3, (3.6)

where p3 = 2(α − 3β). For the fourth moment,

µ4 = 3
a2

B

b4
B

t2α−4β

∫
ω1ω2U1U2ξ1ξ2 dξ12 dθ12

+ a3
B

b6
B

t3α−6β

∫
J (k1, k2, k3)ω1ω2ω3U1U2U3ξ1ξ2ξ3 dξ123 dθ123, (3.7)

which, using the second-degree homogeneity of J , yields

µ4 = c4t2p2 + d4tp4, (3.8)

where p4 = 3α − 19β/2. All of the coefficients cj and dj are constants.
Substituting the expressions for µj, j = 2, 3, 4, into (2.23), we obtain the following

large-time asymptotics for bound harmonics skewness and kurtosis:

C(b)
3 ∼ tq/2, C(b)

4 ∼ tq. (3.9)

where q= α − 9β/2.
Let us now consider estimate (2.13) for the dynamic fourth moment m4. Again

substituting the self-similar form (3.1) into (2.13), we obtain

m(J)
4 = 3m2

2 + 3
a3

B

b6
B

t3α−6β

×Re
∫

T0,1,2,0+1−2(ω0ω1ω2ω0+1−2)
1/2R(1ω, t)F012ξ0ξ1ξ2 dξ012 dθ012, (3.10)

where

F012 =U2U0+1−2(U0 +U1)−U0U1(U2 +U0+1−2). (3.11)

The factor Re[R(1ω, t)] for large time tends to the generalized function P/1ω,
where P means the Cauchy principal value (Janssen 2003). The four-wave interaction
coefficient T is a homogeneous function of degree three. Taking this into account, and
again using the long-term asymptotics of the frequency downshift, we obtain

m4 = 3c2
2t2p2 + c̃4tp4, (3.12)

with some constant coefficient c̃4. Then, the large-time asymptotics for the dynamic
kurtosis is

C(d)
4 ∼ tq, (3.13)

and thus the dynamic and the bound-harmonic kurtosis decay at the same rate, for all
asymptotic regimes with q< 0.

In the generic self-similar form (3.1), it is illuminating to focus upon specific
values of α and β corresponding to distinguished asymptotic regimes characterized by
constant fluxes of energy, wave action or wave momentum. For these regimes one of
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Regime α β p2 p3 p4 q

Constant momentum
flux

25/7 6/7 10/7 2 18/7 −2/7

Constant energy flux 8/3 2/3 1 4/3 5/3 −1/3
Constant action flux 23/11 6/11 8/11 10/11 12/11 −4/11
Swell 4/11 2/11 −1/11 −4/11 −7/11 −5/11

TABLE 1. Self-similarity parameters (α, β) and exponents for higher moments for
distinguished asymptotic regimes corresponding to constant fluxes and for swell.

the exponents in (3.2a) is equal to unity. These asymptotic regimes were known for
a long time in terms of parametric laws linking significant wave height and frequency
of the wave peak. For the original descriptions of the regimes see Toba (1972) for the
regime of constant energy flux, Hasselmann et al. (1976) for constant momentum flux,
and Zakharov & Zaslavsky (1983) for the regime of constant action flux to waves. The
parameters of these distinguished cases are listed in table 1, with the corresponding
exponents for moments. Similar results can be obtained for the corresponding regimes
in the case of fetch-limited growth (e.g. Gagnaire-Renoud et al. 2011).

The above results for the bound harmonics moments are valid only if the dynamic
contribution to non-Gaussianity is small, i.e. C(d)

4 � 1. We have shown that in the
self-similar regime of spectrum evolution C(d)

4 always decays, but so far have not
discussed the sign and absolute value of C(d)

4 . In § 5, these values will be obtained
numerically.

4. Numerical algorithm
In this paper, we are studying the evolution of higher statistical moments of a

wave field, which cannot be obtained within the standard statistical approach based
on the kinetic equation. Hence, we need to reproduce the evolution of a wave field
with a DNS algorithm, obtaining, under some standard forcing and dissipation, wave
spectra and other characteristics. At present, the algorithm described in this section is
the only existing DNS algorithm for water waves capable to trace the evolution of a
random wave field generated by realistic wind for sufficiently long time, exceeding 104

characteristic wave periods. Previously, it has been successfully used to verify by DNS
the self-similarity properties of the kinetic equation (Annenkov & Shrira 2006b), and
to model the adjustment of a wave field to instantly changing (Annenkov & Shrira
2009a) or rapidly fluctuating (Annenkov & Shrira 2011) forcing. Here we will use it
for the simulation of higher statistical moments of a wave field. In this section, we will
describe the concept and implementation of the algorithm.

The algorithm is based on the efficient numerical scheme built for the integration
of the Zakharov equation (2.3) and used for the study of wave dynamics (Annenkov
& Shrira 2001). However, the application of the dynamical algorithm for the study of
wave statistics has to overcome one substantial difficulty. For numerics, a continuous
wave field needs to be discretized, i.e. the complex amplitude a(k, t) or b(k, t) must be
replaced by a set of N discrete variables

b(k, t)=
N∑

j=1

bj(kj, t). (4.1)
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Most numerical models of the evolution of weakly nonlinear waves employ a
fast Fourier transform on each step, which requires a regular grid. The Zakharov
equation allows the use of an arbitrary grid (Annenkov & Shrira 2001). However,
for any grid the resulting discrete wave system will have properties differing from
those of a continuous wave field. For example, the use of regular grids for the
numerical simulation of wave turbulence leads to ‘frozen turbulence’ effects, due to
the insufficient number of resonant and approximately resonant interactions (Pushkarev
& Zakharov 2000). A simple estimate of Lvov, Nazarenko & Pokorni (2006) shows
that for the resonant interactions to be fully efficient, one must have a computational
box far beyond the present computational capacity. Meanwhile, in order to model
a continuous wave field correctly, every degree of freedom of a discretized wave
field is expected to interact with every other degree of freedom. This means that we
need, instead of a straightforward discretization, to work out the concept of coarse-
graining of the continuous wave field, which would retain its fundamental properties of
nonlinear interactions.

To that end, we build in Fourier space a grid consisting of ∼5 × 103 wavepackets,
coupled through exact and approximate resonant interactions. A wavepacket, centred
at k0, is characterized by one amplitude and one phase, but has finite bandwidth
in Fourier space, and is allowed to enter into nonlinear interactions with other
wavepackets, provided that the wavevector mismatch

1k= k0 + k1 − k2 − k3 (4.2)

does not exceed a certain threshold (the coarse-graining parameter). Thus, the standard
resonance condition k0+k1−k2−k3 = 0 is relaxed. It has been verified that we need to
consider only resonant and approximately resonant interactions, prescribing a similar
condition on the frequency mismatch 1ω, where

1ω = ω0 + ω1 − ω2 − ω3. (4.3)

In more practical terms, the following condition is formulated: a quartet of grid points
is assumed to be in approximate resonance if its wavevector and frequency mismatch
satisfies

1ω/ωmin < λω, |1k|/kmin < λkω̄/ωmin, (4.4)

where 1ω and |1k| are the frequency and wavevector mismatch in the quartet, ωmin

and kmin are the minimum values of frequency and wavenumber in the quartet, ω̄ is
the mean frequency and λω and λk are the detuning parameters, chosen to ensure
that the total number of resonances is O(N2), where N is the number of grid points.
The resulting system of N discrete equations can be integrated in time by a standard
Runge–Kutta scheme.

Previously, the algorithm was tested to provide good agreement with the kinetic
equation where the latter is applicable (Annenkov & Shrira 2006a,b), and then
used for the study of the wave field ‘fast’ evolution, when the standard statistical
theory cannot be applied (Annenkov & Shrira 2009a). For this study, the grid
of N wavepackets is logarithmic in the wavenumber k (161 points within a span
0.13 < k < 2.12 m−1) and regular in the angle θ (31 point within −π/3 6 θ 6 π/3,
N = 4991 and λω = λk = 0.01. The total number of resonant and near-resonant
interactions is approximately 5.4 × 107. Results were verified to be non-dependent on
specific values in a wide range of λω, λk. Initial phases of waves are chosen randomly,
and averaging over 30 realizations is performed. A typical DNS computation of one
realization took a few hours of parallel computation on 64 Opteron CPU cores.
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An important part of a numerical model of wind–wave evolution is the
parametrization of wind input and dissipation. Here, we make no attempt to model
these terms in all their complexity. Wind input is introduced in a simple form
prescribed by the empirical formula by Hsiao & Shemdin (1983), with an additional
simplifying assumption that all forcing is confined to the relatively narrow range
1.0< k < 1.29 m−1. This allows us to model the long-term evolution of mature waves,
where wind input in the part of the spectrum that is close to the peak is approximately
balanced by dissipation, without having a long wavenumber spectrum, which would be
difficult to obtain with DNS. Dissipation is applied to k > 1.62 m−1. While discussing
the numerical results, we will quantify the wind input by the wind speed value used
in the formula by Hsiao & Shemdin (1983). Simulations without the simplifying
assumption of spectrally confined forcing were found to produce similar outcome;
since such simulations are considerably more expensive computationally they were not
used for ensemble averaging.

The statistical moments m2,m3,m4 are computed from wave-action spectra n(k) by
numerical evaluation of the integrals in (2.19)–(2.21). The evaluation of the triple
integral in (2.21) requires substantial computational resources, and it is computed
using the grid with angle resolution reduced by a factor of two. Computations of
moments are performed for k < 2.5kp, where kp in the wavenumber of the spectral
peak, specified as the local maximum of n(k). Employing DNS, we were also able to
trace the evolution of the dynamic part of kurtosis C(d)

4 , using formulae (2.8)–(2.9) and
averaging over realizations.

5. Evolution of wind-generated waves
5.1. Constant forcing

We start this section with presenting the results of the DNS of random wind–wave
fields generated by a steady wind. In the simulations, a broadbanded wave field is
generated by constant wind, starting with a low-intensity white noise, and then its
evolution is traced up to a few thousand characteristic wave periods τ , until the wave
field is well into the self-similar regime. Here and below we use the period of the
wave with ω = 2.14 s−1, approximately corresponding to the peak frequency of the
developed spectra in all simulations, as a characteristic wave period. A few values
of wind speed in the range 6–20 m s−1 are used. Wind forcing, specified by the
parametrization of Hsiao & Shemdin (1983), is applied to the high-frequency part of
the spectrum only (ω > 3.13 s−1), so that the most energetic part of a developed wave
field evolves entirely due to nonlinear interactions.

An example of evolution of the wave-action wavenumber spectrum n(k) is shown in
figure 1, for wind speed U = 12 m s−1. Steepness ε and mean wave height Hrms are
defined as

Hrms =
∫

2E(k) dk, E(k)= ωn(k)
g

, ε = 1
2

Hrmskp, (5.1)

where kp is the wavenumber of the spectral peak, specified as the local maximum of
n(k). Evolution of ε and Hrms for various values of constant wind speed in the range
6–20 m s−1 is shown in figure 2(a,b).

5.2. Dynamic non-Gaussianity
In this paper, we are interested in the evolution of higher statistical moments of the
wave field, primarily skewness and kurtosis. The key task is to estimate the value of
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FIGURE 1. An example of evolution of wave-action wavenumber spectrum n(k) under
constant wind speed U = 12 m s−1. Curves are drawn in steps of approximately 400
characteristic wave periods, spectral regions of forcing and dissipation are shown by up
and down arrows, respectively.
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FIGURE 2. Evolution in time of (a) wave steepness and (b) wave height Hrms for waves
generated by constant wind in the range 6–20 m s−1. Here and in subsequent figures, time is
measured in characteristic wave periods τ = 2π/2.14 s, approximately corresponding to the
dominant wave period of developed spectra.

the dynamic kurtosis C(d)
4 . Previously it was found that the kurtosis can be O(1) large

for a one-dimensional narrowband wave field (e.g. Janssen 2003), but no information
on its value is available for a generic two-dimensional broadband wave field generated
by a realistic wind.

We use two different approaches. First, we make use of the information on the
phases of interacting waves, available in each DNS realization, to calculate the real
part of the fourth-order cumulant, and then the kurtosis. This approach uses the same
grid of harmonics and the same set of approximately resonant interactions as the
DNS, so that only the interactions that contribute to the spectral evolution (that is,
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FIGURE 3. Evolution of dynamic kurtosis C(d)
4 for waves generated by constant wind with

speed (a) 8, 12 and 20 m s−1 and (b) 6, 10 and 16 m s−1, calculated using (2.8)–(2.9).
Integration in (2.8) is performed over the resonant and approximately resonant nonlinear
interactions taken into account in the DNS of the spectral evolution, with averaging over 30
realizations. Dots show the time when the maximum of steepness is reached (cf. figure 2a).
The part of the spectrum under the direct wind forcing (ω > 3.13 s−1) is excluded from
the computations. The initial part of the evolution is not shown. Time is measured in
characteristic wave periods, as in figure 2.

near-resonant interactions satisfying (4.4)) are accounted for in the calculation of the
dynamic kurtosis. In figure 3, we show the evolution of C(d)

4 , calculated from the DNS
solution using (2.8)–(2.9). The part of the spectrum which is under the direct wind
forcing (ω > 3.13 s−1) is excluded from the computation; this has negligible effect on
kurtosis of a well-developed spectrum, when the most energetic waves are far from the
forcing domain.

The results show that C(d)
4 can be large during the initial part of the wave field

evolution, corresponding to the linear stage of wave spectrum development. Transition
of a wave field to nonlinear regime of evolution occurs near the maximum of steepness
(cf. figure 2a); this moment is marked with dots in figure 3. Later, in the nonlinear
stage, dynamic kurtosis tends to a small value, not exceeding 0.02 in absolute value
for the considered range of wind speeds. For large time this value is negative and
nearly constant, approximately scaled as square of wind speed.

It is important to note that the DNS only takes into account nearly resonant
interactions. While it has been verified that the interactions further away from
resonance do not contribute to the spectral evolution in any noticeable way, it cannot
be guaranteed that they do not contribute to the dynamic kurtosis. Although the
DNS with all non-resonant interactions included would have been impossible, it is
technically possible to include all interactions into the kurtosis calculation once the
amplitudes and phases of all harmonics are found via the DNS. However, the approach
that accounts for correlations between all combinations of harmonics, but is still
based on the DNS of the evolution with the account for near-resonant interactions
only, would be inconsistent, since the phases of harmonics that are not linked by
nonlinear interactions should be formally considered as uncorrelated. For this reason,
we consider the kurtosis obtained by DNS as an estimate.

To provide an alternative estimate, we perform the calculation of the dynamic
kurtosis using only the information about the wave spectra, obtained either by DNS
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FIGURE 4. Evolution of dynamic kurtosis C(d)
4 for waves generated by constant wind in

the range 6–20 m s−1 , calculated using (2.14) and the spectra obtained by DNS. Grid
used in computations is the same as that used for the DNS. Dots show the time when
the maximum of steepness is reached (cf. figure 2a). The part of the spectrum under the
direct wind forcing (ω > 3.13 s−1) is excluded from the computations. The initial part of
the evolution (t < 300) is not shown. Time is measured in characteristic wave periods, as in
figure 2.

or taken from observations. This approach is based on the approximate formulae
(2.13) and (2.14), derived by Janssen (2003) under the assumption that the spectrum
is evolving slowly. Within this approach, the dynamic kurtosis is determined by
the instantaneous spectrum and depends on all nonlinear interactions, including
approximately resonant and non-resonant interactions. In figure 4, we plot the dynamic
kurtosis calculated from the DNS spectra, using the DNS numerical grid, but, unlike in
the DNS case, accounting for all nonlinear interactions (the total number is 1.3× 1010).
For this purpose, a special numerical approach with the parallel processing of
interactions was worked out. To avoid the loss of accuracy due to small denominators
at the exact resonance, interactions with 1ω/ωmin 6 10−4 were excluded. The results
were verified to be not sensitive to the chosen value of the cutoff in 1ω/ωmin. Again,
we excluded from the computation the part of the spectrum under the direct forcing;
this has been verified to have negligible effect on the value of kurtosis in the nonlinear
regime of spectrum development. For all values of wind speed, C(d)

4 is again negative.
For the strongest wind, the value of C(d)

4 for a short time can exceed 0.1 in absolute
value during the initial fast downshift of the spectral peak (note that (2.14), strictly
speaking, is not applicable at the fast stage of the spectral development). During the
subsequent evolution, C(d)

4 approaches zero, being of the order O(10−2) for the times
exceeding several times the characteristic time scale of establishing of the nonlinear
regime.

Using the same numerical method, we have also calculated the dynamic kurtosis of
several empirical (JONSWAP) parameterizations of spectra (e.g. Young 1999)

E(k)= α

2k3
exp

[
−5

4

(
k/kp

)−2
]
γ

exp[−(
√

k/kp−1)
2
/(2σ2

A)]D(θ), (5.2)
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γ ε C(d)
4

1.0 0.1 0.017
3.3 0.125 −0.001
10 0.168 −0.070

TABLE 2. Steepness ε and dynamic kurtosis C(d)
4 for the JONSWAP spectrum with

α = 0.0258, kp = 1, N = 10 and different values of the peakedness parameter γ , calculated
using (2.15).

where E(k)= ω(k)n(k)/g, k= k(cos θ, sin θ),

D(θ)= 1
k
√
π

Γ (N/2+ 1)
Γ (N/2+ 1/2)

cosNθ, (5.3)

Γ is the gamma function, σA = 0.07 for k 6 kp and 0.09 for k > kp. We have
chosen N = 10, corresponding to a spectrum with wide angular spreading, kp = 1
and α = 0.0258, so that the steepness ε = 0.1 for γ = 1. An extended numerical
grid with 200 logarithmically spaced values of ω in the range 0.5ωp 6 ω 6 3.0ωp,
where ωp = 3.13 s−1, and 75 values of θ in the range −π/2 < θ < π/2 were used,
corresponding to the total number of interactions exceeding 1012. The computation
time for one spectrum was about 1 week on 64 Opteron CPU cores. The dynamic
kurtosis was calculated in the large-time limit, using the principal value integral (2.15).
Again, we have excluded the nearly exactly resonant interactions with 1ω/ωmin 6 10−4.
In table 2 we show the values of the dynamic kurtosis C(d)

4 for three characteristic
values of the peakedness parameter: γ = 1, corresponding to a mature sea state,
γ = 3.3, typical of relatively young wind–wave fields (JONSWAP experiment average),
and γ = 10, corresponding to a very young wave field. Except for the latter case, the
kurtosis is found to be of the order of O(10−2).

These results, obtained by different methods, lead to the conclusion that at the
nonlinear stage of wind–wave field evolution the dynamic kurtosis is typically small
(C(d)

4 � 1) and is decreasing with time. In this work, we have made no attempt to
check numerically the theoretical rate of this decrease (3.13). Note that the DNS are
not exactly self-similar, due to the fact that the forcing and dissipation are set for
fixed wavenumber bands. In order to study the self-similar evolution of the dynamic
kurtosis, one has to consider the most energetic waves only, limiting the computations
to wavenumbers k 6 Mkp, where kp is the wavenumber of the spectral peak, and
M cannot be large, since the DNS spectra are rather short in Fourier space, due
to the unavoidable computational limitations of the DNS approach. This could lead
to the dynamic kurtosis being underestimated, so the self-similar properties of the
dynamic kurtosis were not studied in this paper. The main conclusion, however, is
the smallness of the dynamic kurtosis in typical conditions or for large time. This
conclusion justifies a posteriori the derivation of the bound harmonics skewness and
kurtosis in § 2.2.

5.3. Non-Gaussianity due to bound harmonics

Now we can proceed to the numerical calculation of bound harmonics skewness C(b)
3

and kurtosis C(b)
4 . Since we are interested in the properties of the self-similar evolution

of C(b)
3 and C(b)

4 , the computation is limited to wavenumbers k 6 2.5kp, where kp is the
wavenumber of the spectral peak.
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FIGURE 5. Evolution of (a) bound harmonic kurtosis C(b)
4 and (b) skewness C(b)

3 for a wave
field generated by constant wind of different speeds, in the range 6–20 m s−1, calculated using
(2.23). Computation is limited to k 6 2.5kp, where kp is the wavenumber of the spectral peak.
The initial part of the evolution is not shown. Dashed lines show theoretical asymptotics for
large time. Dotted curves correspond to values of wave steepness reached during the wave
field development. Large dots show the time when the maximum of steepness is reached (cf.
figure 2a). Time is measured in characteristic wave periods, as in figure 2.

Evolution in time of skewness and kurtosis under constant wind in the range
6–20 m s−1, obtained using (2.19)–(2.23), is shown in figure 5. Under steady wind, the
evolution of the developed spectrum is slow and is described by large-time asymptotics
of the kinetic equation, corresponding to the constant wave-action flux regime in
table 1. Kurtosis C(b)

4 is much larger in absolute value than the dynamic kurtosis and
positive, slowly decreasing with the powerlike increase of the total energy. The rate of
decrease is close to the theoretical rate ∼t−4/11. Skewness C3 = C(b)

3 does not have a
dynamic part, and its evolution for large time also follows the theoretical rate ∼t−2/11.

All curves in figure 5 have universal behaviour, which becomes evident when both
C(b)

3 and C(b)
4 are rescaled by

√
U and U respectively. This is shown in figure 6, which

demonstrates that the rescaled skewness and kurtosis collapse onto a single universal
curve with powerlike dependence on time, not depending on the value of forcing.
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FIGURE 6. Evolution of (a) bound harmonics kurtosis C(b)
4 and (b) skewness C(b)

3 , shown in
figure 5, normalized by wind speed U and by U1/2, respectively.

0.1

t

C4
(b) C3

(b)

103 104

t
103 104

0.2

0.3

0.1

(a) (b)

FIGURE 7. Evolution of (a) bound harmonics kurtosis C(b)
4 and (b) skewness C(b)

3 for swell,
calculated using (2.23). Computation is limited to k 6 2.5kp, where kp is the wavenumber of
the spectral peak. Dashed lines show theoretical asymptotics for large time. Time is measured
in characteristic wave periods, as in figure 2.

A similar computation is performed for swell and shown in figure 7. The initial
condition is taken in the form of a broad energetic wavepacket, and then the evolution
is computed for a long time, with the calculation of higher statistical moments. Again,
the dynamic part of kurtosis is found to be negligible and the bound harmonic parts
of skewness and kurtosis closely follow the theoretical asymptotes for large time. The
decrease of both skewness and kurtosis slows down slightly at the end of simulations,
due to the finite size of the computational domain.

5.4. Fluctuating wind
In nature, even when wind is nearly constant on average, it is often characterized by a
considerable level of gustiness (Komen et al. 1994), and it is not a priori clear to what
extent the above results are applicable to natural conditions.

In Annenkov & Shrira (2011), the field evolution of a random wave field generated
by a non-stationary wind with constant mean and constant direction was studied by
DNS. The main conclusion was that self-similarity of spectra evolution survives under
rapidly changing forcing, and the wave spectra averaged over the forcing time scale
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FIGURE 8. Dependence of forcing (growth rate γ (k) at |k| = 1) on time for two different
models of gustiness: flip–flop wind with period equal to 1000 characteristic wave periods
(dashed curve) and generic gusty wind (solid curve). The thick solid line shows constant
forcing.

evolve as if the wave field was generated by a certain constant ‘effective’ wind. Here,
we consider the evolution of skewness and kurtosis for similar fluctuating forcing.
This issue has never been considered previously and the question of whether the
self-similarity of higher moments survives is completely open.

For wind gustiness, we use two different models. First, we use the ‘flip–flop’
model, where wind speed is periodically alternating between two fixed values, 10
and 16 m s−1, the period of wind oscillation TU being in the range 40τ 6 TU 6 1000τ ,
where τ is the characteristic wave period. Second, we apply a more realistic model of
wind gustiness proposed by Abdalla & Cavaleri (2002), applying it to the growth rate
γ (k) instead of wind speed, to make sure that the average forcing remains the same
as in the cases of constant and ‘flip–flop’ wind. We build a random sequence in the
form

ξi = ᾱξi−1 + µ̄i, (5.4)

where µ̄i is a Gaussian random number with zero mean and unity variance, ᾱ = 0.9
is a coherence coefficient and normalize this sequence to represent the values of
γ (k) with the mean corresponding to the average γ (k) in the other models and
the coefficient of variation (relative standard deviation) 0.2. Dependence of forcing
on time for both gustiness models is shown in figure 8. Figure 9 shows a sample
of evolution of the dynamic kurtosis C(d)

4 for the case of realistic gusty wind. In
figure 10, evolution of bound harmonics skewness and kurtosis is shown for the
constant, periodically changing and gusty wind.

Thus, we can conclude that the assumed smallness and rapid decay of C(d)
4 and

predicted self-similar behaviour of moments proved to be very robust. Both hold even
in the situations of gusty wind where, strictly speaking, no theoretical foundation for
such a behaviour has been developed yet.
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FIGURE 9. Evolution of dynamic kurtosis C(d)
4 for a wave field generated by gusty wind

according to (5.4) with the mean equal to constant wind 13.5 m s−1 and variance 0.2. The
dynamic kurtosis is calculated using (2.8)–(2.9). Integration in (2.8) is performed over the
resonant and approximately resonant nonlinear interactions taken into account in the DNS of
the spectral evolution, with averaging over 30 realizations. The part of the spectrum under the
direct wind forcing (ω > 3.13 s−1) is excluded from the computations. Time is measured in
characteristic wave periods, as in figure 2.

6. Discussion
In nature wind–wave fields developing under a constant or fluctuating winds

are invariably broadband, except for a relatively short initial stage (Young 1999).
Evolution of spectra of such broadband fields is well-described within the conceptual
framework of weak turbulence (Komen et al. 1994; Pushkarev et al. 2003). In this
work we are concerned with the evolution of higher moments of surface elevation
of broadband wave fields within the same weak turbulence framework. Thus, the
narrowband wave fields, which attracted most of the attention in the context of
abnormal wave statistics, are not considered. Strictly speaking, these narrowband
situations, characterized by the Benjamin–Feir index (BFI) criterion BFI > 1 (Janssen
2003), are outside the realm of the classical weak turbulence paradigm. In this
paradigm (e.g. Zakharov et al. 1992), random weakly nonlinear waves interact via
nonlinear resonant interactions. Here we confine our attention to the lowest-order
resonant interactions for gravity water waves, i.e. the quartet interactions.

The essential feature of this work is the clear separation of the two different
contributions to non-Gaussianity of a wave field: dynamic non-Gaussianity, linked to
nonlinear resonant interactions, and bound harmonic non-Gaussianity, present in any
wave field with finite amplitude and eliminated by the canonical transformation. This
separation is possible only if the dynamic non-Gaussianity is small (the dynamic
kurtosis C(d)

4 � 1). Strictly speaking, this smallness is also the necessary condition
for the weak turbulence paradigm to hold. However, this crucial condition has never
been verified a posteriori within weak turbulence models, and little is known about
the evolution of the dynamic non-Gaussianity of a generic broadband wave field, apart
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FIGURE 10. Evolution of (a) bound harmonic kurtosis and (b) skewness. Waves are
generated by wind changing instantly with period TU equal to 40 or 200 characteristic wave
periods, by constant wind 13.5 m s−1, corresponding to the average of linear growth rate, and
by gusty wind forcing with the same mean and relative standard deviation 0.2. Computation
is limited to k 6 2.5kp, where kp is the wavenumber of the spectral peak. The initial part of
the evolution is not shown. Dashed lines show theoretical asymptotics for large time, for the
constant forcing case. Time is measured in characteristic wave periods, as in figure 2.

from the numerical observation made earlier by Annenkov & Shrira (2009b) that the
dynamic kurtosis C(d)

4 is negligibly small.
In this paper this observation has been extended to a wider range of situations

and supported in three independent ways. First, it was verified by the DNS for
generic situations of waves developing under a constant or fluctuating wind for a wide
range of winds. It was found that C(d)

4 is small (of the order O(10−2)), negative and
approximately scales with the constant wind speed U as U2. Second, for the first time
C(d)

4 was found by evaluating directly the six-dimensional integral derived by Janssen
(2003). The numerical method developed for evaluating this integral for an arbitrary
spectrum with the account for all (resonant and non-resonant) interactions can be used
for finding the dynamic kurtosis for a wide class of situations where its value might
be important. We have used the method to demonstrate the smallness of C(d)

4 for the
spectra obtained by the DNS. The U2 scaling with wind was confirmed. The method
also provided us with an insight into what interactions contribute to the dynamic
kurtosis and with what effect, the most non-trivial observation being the significant
role played by the non-resonant interactions. Third, using the same numerical method
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with a refined grid, we have calculated the dynamic kurtosis for the model empirical
(JONSWAP) spectra corresponding to mature sea conditions, and again found it to be
of the order of O(10−2).

The specific cause of the revealed smallness of the dynamic kurtosis is not yet
clear and requires a dedicated study. At this stage we can only note that according
to our simulations, which will be reported elsewhere, the smallness is a feature of all
broadband spectra, both close to the solutions of the KE (simulated or empirical) and
artificially constructed, with no resemblance to the solutions of the KE.

The simulations carried out here for realistic spectra allowed as to conclude that the
dynamic kurtosis of a wave field developing under steady wind is small (of the order
of O(10−2)) for the times exceeding, by a factor two or three, the characteristic time
of the onset of the nonlinear regime. Thus, the dynamic non-Gaussianity is negligible,
and one can find the skewness and the kurtosis due to bound harmonics using the
integral formulae by Janssen (2009). The obtained values are much larger than the
dynamic kurtosis, typically in the range 0.1–0.5, and found to be slowly decreasing
with time. We have derived the rate of this decrease from the known asymptotic
self-similar regimes of wave spectra evolution. These regimes are characterized by
powerlike dependence of various characteristics of the spectra on time, determined
by the degree of homogeneity of the interaction coefficients. In this sense, these
power laws are as fundamental as the exponents of spectra corresponding to the
direct and inverse cascade. In this work, we have complemented these known power
laws with the laws for higher statistical moments. For all self-similar regimes the
kurtosis decays twice as fast as the skewness. The exponents for a few distinguished
asymptotic regimes are summarized in table 1. It might be possible to deduce these
exponents using just the dimensional analysis, as it was done for derivation of the
spectra exponents in the pioneering work by Connaughton, Nazarenko & Newell
(2003), but this line has not been pursued yet. The numerically found smallness of the
dynamic kurtosis means that the bound harmonic kurtosis dominates, and that the total
non-Gaussianity of a wave field can be approximately determined by calculating the
bound harmonics non-Gaussianity from instantaneous wave spectra employing integral
expressions derived by Janssen (2009). Thus, the already existing machinery of wave
spectra forecasting can be easily extended to provide the forecasting of the skewness
and the kurtosis. DNS experiments with a fluctuating (periodic or gusty) wind have
shown that the properties of the higher moments and the exponents of the power
law decay are remarkably robust. The dynamic non-Gaussianity remains negligible for
non-steady wind, and the power decay laws hold, in an averaged sense. More precisely,
the moments averaged over wind fluctuations behave as if there was an effective
constant wind. Recently, the effective wind for the evolution of wave spectra under
gusty forcing was discussed by Annenkov & Shrira (2011). The relation between this
effective wind and the effective wind for higher moments remains an open question
requiring a dedicated study.

The results of this work can be extended to other situations, in particular to
wave fields where bound harmonics are more pronounced and, correspondingly, the
departure of the moments from Gaussianity can be noticeably stronger. Good examples
are short gravity waves near the gravity–capillary range (e.g. Longuet-Higgins 1995;
Fedorov & Melville 1998) and waves in fluid of finite (but not small) depth. In
the latter case the bound harmonics are the strongest for k0h ∼ 1, where k0 is the
dominant wavenumber and h is the depth of the fluid. For smaller depths the triad
quasi-resonances become important and the approach ceases to be applicable.
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On finding the evolution of skewness and kurtosis, one can in principle express all
higher moments in terms of the second, third and fourth moments, and construct a
p.d.f. This goes beyond the scope of the present work. Here, one needs to be careful
considering the higher moments that might be affected by breaking, not taken into
account in the weakly nonlinear description.

The present study was confined to the evolution of the skewness and the kurtosis
of surface elevation. In some applications, primarily in the context of remote sensing,
different statistical characteristics of a wave field may be of greater interest, such as
higher moments of velocities, slope distribution, asymmetry, structure functions, etc.
It seems possible to extend our approach to finding the moments of these quantities,
which are determined by the dominant waves. This extension is not straightforward
and requires a substantial extra work.

We make no attempt to compare our results with observations. The most tempting
would be to test the theory against high-quality tank data obtained in carefully
controlled environment. However, we are not aware of a suitable data set of field
observations. The available studies of higher moments of short gravity wind waves
(Leykin et al. 1995; Caulliez & Guerin 2012; Zavadsky, Liberzon & Shemer 2013)
are concerned with the very early stage of wave spectra evolution, which we did
not consider. It should be also mentioned that the tank observations describe wave
field development in terms of spatial, rather than temporal, evolution, which makes
a comparison less straightforward. The theory should be reformulated accordingly,
which is possible, but has not been done yet. Hence, a meaningful comparison of the
presented theory and observations requires a dedicated study.

Thus, the present work gives a new conceptual picture of wave field non-
Gaussianity, provides specific formulae for the evolution of skewness and kurtosis
of deep water wind waves of gravity range, and also opens a number of new directions
of research that seem to be promising.
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Appendix. Coefficients for statistical moments
Janssen (2009) derived the following expression for the second statistical moment:

〈ζ 2〉 =
∫

E1 dk1 +
∫ (

A 2
1,2 +B2

1,2 + 2C1,1,2,2

)
E1E2 dk12, (A 1)

where

A1,2 = f1+2

f1f2

(
A(1)1+2,1,2 + A(3)−1−2,1,2

)
, B1,2 = 1

2
f1−2

f1f2

(
A(2)2−1,1,2 + A(2)1−2,2,1

)
, (A 2)

C0,1,2,3 = f0

f1f2f3

(
B(2)0,3,2,1 + B(3)−0,1,2,3

)
. (A 3)

Here

f1 =
(
ω1

2g

)1/2

. (A 4)
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Using the expressions for the functions A and B listed in Krasitskii (1994), it is easy to
show that

A1,2 = g
−ω2

1+2K1,2 + (ω1 + ω2)
[
ω1K−2,1+2 + ω2K−1,1+2

]
4πω1ω2

[
ω2

1+2 − (ω1 + ω2)
2
] , (A 5)

B1,2 = g
ω2

1−2K−1,2 − (ω1 − ω2)
[
ω1K2,1−2 − ω2K−1,1−2

]
4πω1ω2

[
ω2

1−2 − (ω1 − ω2)
2
] , (A 6)

where we have denoted

K1,2 = k1k2 + q1q2, K−1,2 =−k1k2 + q1q2, (A 7)

and q= |k|. Expression for C1,1,2,2 is longer and can be presented in the form

C1,1,2,2 =− g2

32π2ω2
1ω

2
2

{
1

(ω1+2 − ω1 − ω2)
2(ω1+2 + ω1 + ω2)

2

×[(ω2
1 − ω2

2 + ω2
1+2)(ω

2
1+2K2

1,2 + ω2
2K2
−1,1+2)

+ω2
1(3ω

2
1 + ω2

2 − ω2
1+2 + 4ω1ω2)K

2
−2,1+2

+ 2ω2(ω
2
1ω2 + (ω2 + 2ω1)(ω

2
2 − ω2

1+2))K1,2K−1,1+2

− 2ω2
1(ω

2
1+2 + (ω1 + ω2)

2)K1,2K−2,1+2 + 4ω2
1ω2(ω1 + ω2)K−1,1+2K−2,1+2]

+ 1

(ω1−2 + ω1 − ω2)
2(ω1−2 − ω1 + ω2)

2

×[(ω2
1 − ω2

2 + ω2
1−2)(ω

2
1−2K2

−1,2 + ω2
2K2
−1,1−2)

+ω2
1(3ω

2
1 + ω2

2 − ω2
1−2 − 4ω1ω2)K

2
2,1−2

+ 2ω2(ω
2
1ω2 + (ω2 + 2ω1)(ω

2
2 − ω2

1−2))K1,2K−1,1−2

− 2ω2
1(ω

2
1−2 + (ω1 − ω2)

2)K−1,2K2,1−2 + 4ω2
1ω2(ω2 − ω1)K−1,1−2K2,1−2]

+ ω2
1ω

2
2

(
2ω4

1 − 2ω4
2 − (ω2

1 − ω2
2)(ω

2
1−2 + ω2

1+2)
)}

. (A 8)

Then the coefficient in brackets in (A 1),

J (2)
1,2 = C1,1,2,2 + 1

2A
2

1,2 + 1
2B

2
1,2, (A 9)

can be shown to take the form

J (2)
1,2 =−

g2

32π2ω2
1ω

2
2

{
1

(ω1+2 − ω1 − ω2)
2(ω1+2 + ω1 + ω2)
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− 2(ω2
1(ω1 − ω2)

2 + ω2
1−2ω1ω2)K−1,2K2,1−2

− 2(ω2
1 − ω2

2)ω1ω2K−1,1−2K2,1−2]

+ ω2
1ω

2
2(2ω

4
1 − 2ω4

2 − (ω2
1 − ω2

2)(ω
2
1−2 + ω2

1+2))

}
. (A 10)

In this form, it becomes evident that J (2)
1,2 is antisymmetric (a non-trivial fact, since

A1,2 and B1,2 are both symmetric). This completes the proof that the contribution of
J (2)

1,2 to the integral (A 1) cancels out in the general two-dimensional case.
The fourth moment has the form (Janssen 2009)

〈ζ 4〉 = 3
∫

E1E2 dk12 + 12
∫

J (4)
123E1E2E3 dk123, (A 11)

where

J (4)
123 =A1,3A2,3 +B1,3B2,3 + 2A1,3B2,3 + 1

2C1+2−3,1,2,3 + 1
2D1+2+3,1,2,3. (A 12)

Coefficients C and D can be written as

C1+2−3,1,2,3 = g2
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1+2+3ω1ω2ω3

×[[ω1ω2(ω
2
1 + ω2

2 − ω2
2+3 − ω2

1+3)+ ω1ω3

× (ω2
1 + ω2

3 − ω2
2+3 − ω2

1+2)+ ω2ω3(ω
2
2 + ω2

3 − ω2
1+3 − ω2

1+2)]
− (ω1 + ω2 + ω3)[ω1(ω

2
1+2+3 + ω2

1 − ω2
1+3 − ω2

1+2)

+ ω2(ω
2
1+2+3 + ω2

2 − ω2
2+3 − ω2

1+2)+ ω3(ω
2
1+2+3 + ω2

3 − ω2
2+3 − ω2

1+3)]]
}
.

(A 14)

For a single wavetrain with k= k0,

A00 = k0

2π
, B00 = 0, C0+0−0,0,0,0 =− k2

0

8π2
, D0+0+0,0,0,0 = 3k2

0

8π2
. (A 15)

It is easy to see that J (4)
123 is a homogeneous function of degree two:

J (4)(αk1, αk2, αk3)= α2J (4)(k1, k2, k3). (A 16)
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