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I was cited for work both. in the field of magnetism and in that of disordered
systems, and I would like to describe here one development in each held
which was specifically mentioned in that citation. The two theories I will
discuss differed sharply in some ways. The theory of local moments in metals
was, in a sense, easy: it was the condensation into a simple mathematical
model of ideas which. were very much in the air at the time, and it had rapid
and permanent acceptance because of its timeliness and its relative simplicity.
What mathematical difficulty it contained has been almost fully- cleared up
within the past few years.

Localization was a different matter: very few believed it at the time, and
even fewer saw its importance; among those who failed to fully understand it
at first was certainly its author. It has yet to receive adequate mathematical
treatment, and one has to resort to the indignity of numerical simulations to
settle even the simplest questions about it. Only now, and through primarily
Sir Nevill Mott’s efforts, is it beginning to gain general acceptance.

Yet these two finally successful brainchildren have also much in common:
first, they flew in the face of the overwhelming ascendancy. at the time of the
band theory of solids, in emphasizing locality : how a magnetic moment, or an
eigenstate, could be permanently pinned down in a given region. It is this
fascination with the local and with the failures, not successes, of band theory,
which the three of us here seem to have in common. Second, the two ideas
were born in response to a clear experimental signal which contradicted the
assumptions of the time; third, they intertwine my work with that of my two
great colleagues with whom I have been jointly honored; and fourth, both
subjects are still extremely active in 1977.

I. The “Anderson Model”: Local Moments in Metals
To see the source of the essential elements of the model I set up for local

moments in metals, it will help to present the historical framework. Just two
years before, I had written a paper on “superexchange” (1) discussing the
source and the interactions of the moments in insulating magnetic crystals
such as MnO, CuSO4. 5H2O, etc. I had described these substances as what
we should now call "Mott insulators" on the insulating side of the Mott
transition, which unfortunately Sir Nevill says he will not describe. Briefly,
following a suggestion of Peierls, he developed the idea that these magnetic
insulating salts were so because to create an ionized electronic excitation would
require an additional excitation energy U, the energy necessary to change the
configurations of two distant atoms from dn+ dn to dn-i{-dn+r.  This energy U
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extra repulsive

Fig. 1. Mott-Peierls mechanism for magnetic state. State with free pair has extra repulsive
energy “U” of two electrons on same site.

is essentially the Coulomb repulsive energy between two electrons on the
same site, and can be quite large (see Fig. 1). To describe such a situation,
I set up a model Hamiltonian (now called the “Hubbard” Hamiltonian).
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possible for antiferromagnetism, where the requisite orbital is empty. From
simple perturbation theory, using this idea,

where b represents the tendency of electrons to hop from site to site and form
a band. (The provenance of (2) is made obvious in Fig. 2.) In fact, I showed
later in detail (2) how to explain the known empirical rules describing such
interactions, and how to estimate parameters b and U from empirical data.

The implications for magnetism in metals - as opposed to insulators - of
this on-site Coulomb interaction U were first suggested by Van Vleck and
elaborated in Hurwitz’ thesis (3) during the war, and later in a seminal paper
which. I heard in 1951, published in 1953 (4). Also, very influential for me
was a small conference on magnetism in metals convened at Brasenose College,
Oxford, September 1959, by the Oxford-Harwell group, where I presented
some very qualitative ideas on how magnetism in the iron group might come
about. More important was my first exposure to Friedel’s and Blandin’s
ideas on resonant or virtual states (5, 6) at that conference. The essence of
Friedel’s ideas were 1) that impurities in metals were often best described not
by atomic orbitals but by scattering phase shifts for the band electrons, which
would in many cases be of resonant form; 2) that spins in the case of magnetic
impurities might be described by spin-dependent scattering phase shifts.

Matthias and Suhl, at Bell, were at that time much involved in experiments
and theory on the effect of magnetic scatterers on superconductivity (7). For
many rare earth atoms, the decrease in Tc due to adding magnetic impurities
is clear and very steep; (see Fig. 3a), and even steeper for most transition metal
impurities. For instance, Fe at the 10-5 level completely wipes out super-
conductivity in MO . But in many other cases, e.g., Fe in Ti, a nominally
magnetic atom had no effect, or raised Tc (as in Fig. 3b). A systematic study
of the occurrence of moments was carried out by Clogston et al  (8). As yet, no
real thought (except see Ref. (6)) had been given to what a magnetic moment
in a metal meant: the extensive investigations of Owen et al (9) and of Zim-
mermann (10), for instance, on Mn in Cu, and the Yosida calculation (11),
essentially postulated a local atomic spin given by God and called S, con-
nected to the free electrons by an empirical exchange integral J; precisely
what we now call the “Kondo Hamiltonian”:

is the local spin density of free electrons at the impurity.
The “Anderson model” (12) is the simplest one which provides an electronic

mechanism for the existence of such a moment. We insert the vital on-site
exchange term U, and we characterize the impurity atom by an additional
orbital ~)d,  with occupancy ndo and creation operator C+&, over and above
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PERCENT TERBIUM

Superconducting transition temperatures of iron or
ruthenium solid solutions in titanium.

Fig. 3. Effect of magnetic impurities on Tc of a superconductor (a); when nonmagnetic T c

goes up (b).



where in addition to free electrons and the magnetic term U, we have a
d -to-k  tunneling term Vdk representing tunneling through the centrifugal
barrier which converts the local orbital vd into one of Friedel’s resonances.
The resonance would have a width

d RESONANCE

r k

Fig. 4. d-Resonance due to tunneling through the centrifugal barrier.

A simple Hartree-Fock solution of this Hamiltonian showed that if Ed

is somewhat below E F, and if A/U < Z, the resonance will split as shown in
Fig. 5 (from the original paper). One has two resonances; one for each sign
of spin, a mostly occupied one below the Fermi level and a mostly empty one
above. This leads to a pair of equivalent magnetically polarized solutions,
one for each direction of spin. In these solutions, the local state qd is mixed
into scattered free-electron states: there are no local bound electronic states,
but there is a local moment. Again, in Hartree-Fock theory, the magnetic
region is shown in Fig. 6. The parameters could be estimated from chemical
data or from first principles, and it was very reasonable that Mn or Fe in
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polyelectronic metals should be non-magnetic as was observed, but magnetic
in, for instance, Cu.

Fig. 5. Spin-split

Fig. 6. Magnetic region of parameter space in the “Anderson Model”.

This seems and is a delightfully simple explanation of a simple effect. The
mathematics is shamelessly elaborated (or simplified) from nuclear physics
(Friedel’s improvements on Wigner’s theory of resonances) and similar things
occur in nuclear physics called “analog resonances”. Nonetheless, it has led
to an extraordinary and still active ramification of interesting physics.

Before discussing some of these branchings, let me say a bit about the
model’s simplicity, which is to an extent more apparent than real. The art of
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model-building is the exclusion of real but irrelevant parts of the problem, and
entails hazards for the builder and the reader. The builder may leave out
something genuinely relevant; the reader, armed with too sophisticated an
experimental probe or too accurate a computation, may take literally a sche-
matized model whose main aim is to be a demonstration of possibility. In this
case, I have left out (1) the crystal structure and in fact the atomic nature of
the background metal, which is mostly irrelevant indeed. (2) The degeneracy
of the d  level, which leads to some important physics explored in an Appendix
of the paper and later and much better by Caroli and Blandin (14). In the
Appendix I showed that if the resonance was sufficiently broad compared to
other internal interactions of the electrons in the d orbitals, the different d 
orbitals would be equally occupied as is usually observed for transition metal
impurities; in the opposite case the orbital degrees of freedom will be “un-
quenched”, as is almost always the case for rare earth atoms. (3) Left out are
all correlation effects except U; this relies on the basic “Fermi liquid” idea
that metallic electrons behave as if free, but detaches all parameters from
their values calculated naively: they are renormalized, not “bare” parameters.
This is the biggest trap for the unwary, and relies heavily on certain funda-
mental ideas of Friedel on scattering phase shifts and Landau on Fermi
liquids. I have also left out a number of real possibilities some of which we
will soon explore.

One of my strongest stylistic prejudices in science is that many of the facts
Nature confronts us with are so implausible given the simplicities of non-
relativistic quantum mechanics and statistical mechanics, that the mere
demonstration of a reasonable mechanism leaves no doubt of the correct
explanation. This is so especially if it also correctly predicts unexpected facts
such as the correlation of the existence of moment with low density of states,
the quenching of orbital moment for all d -level impurities as just described,
and the reversed free-electron exchange polarization which we shall soon
discuss. Very often such, a simplified model throws more light on the real
workings of nature than any number of “ab initio” calculations of individual
situations, which even where correct often contain so much detail as to conceal
rather than reveal reality. It can be a disadvantage rather than an advantage
to be able to compute or to measure too accurately, since often what one
measures or computes is irrelevant in terms of mechanism. After all, the perfect
computation simply reproduces Nature, does not explain her.

To return to the question of further developments from the model : I should
like to have had space to lead you along several of them. Unfortunately, I shall
not, and instead, I shall show you a Table of the main lines, and then follow
one far enough to show you an equation and a picture from the recent literature.

The one of these lines I would like to take time to follow out a bit is the
“model” aspect I. This started as a very physical question: what is the sign
and magnitude of the spin-free electron interaction? Already in ‘59 before 
the model appeared, I made at the Oxford Discussion a notorious bet of one
pound with  (now Sir) Walter Marshall that the free-electron polarization
caused by the spins in metals would be negative, for much the same reason as in
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Table 1 : Ramifications of the Anderson Model

I. AM as an exact field-theoretic model-see text:
a) AM = Kondo; Anderson, Clogston, Wolff, Schrieffer
b) Fundamental difficulties of both: Alexander, Schrieffer, Kondo, Suhl, Nagaoka,

Abrikosov
c) Solution of Kondo: PWA, Yuval, Hamann, Yosida, Wilson, Nozieres, etc.
d) Solution of AM: Hamann, Wilson, Krishna-Murthy, Wilkins, Haldane, Yoshida,

etc.

II. “Microcosmic” view of magnetism in metals; interacting AM’s and rules for alloy
exchange interactions, Alexander, PWA (15), Moriya (16)

III. Applications to Other Systems
a) Adatoms and molecules on surfaces, Grimley (17), Newns (18), etc.
b) Magnetic impurities in semiconductors, Haldane (19)
c) With screening+phonons, - U: mixed valence, surface centers, etc., Haldane (20)

The sky seems to be the limit.

superexchange: the occupied spin state below the Fermi level is repulsive, that
above is attractive because it can be occupied by the free electrons of the same
spin. Clogston and I published this for the Anderson model (21). This was
formalized by Peter Wolff, and published later with. Schrieffer (22), into a
perturbative equivalence of “Kondo” and “Anderson” models with the
exchange integral J of (3) being

Soon, however, it came to be realized that neither Kondo nor Anderson
models behaved reasonably at low temperatures (Kondo (23), Suhl (24),
Schrieffer (25), etc.), but exhibited nasty divergences at low temperatures
which seemed to signal disappearance of the local moment. The best physical
description of what happens (for a more extensive review for nonspecialists
perhaps my series of papers in Comments on Solid State Physics will suffice)
is that at high temperatures or on high energy (short time) scales, the Hartree-
Fock theory given above is correct, and there is a free spin. But as the energy
scale is lowered, the effective antiferromagnetic coupling between this spin
and the free-electron gas “bootstraps” itself up to a very large value, eventually
becoming strong enough to bind an antiparallel electron to it and become
non-magnetic. This is a very precise analog of the process of continuous
“confinement” of the color degrees of freedom of modern quark theories (26)
and is a delightful example of the continuing flow of ideas and techniques 
back and forth between many-body physics and quantum field theory.

In the past few years extensive investigations via renormalization group 
theory (which, in a nearly modern form, was first applied to this problem (27))
have led to the essential solution of this “Kondo problem”. A very succinct
way of describing that solution is the computation of the scaling of the suscep-
tibility as a function of temperature by Wilson (28) (Fig. 7). For comparison,
and to show the remarkable precision of the Schrieffer-Wolff transformation,
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Fig. 7. Susceptibility of the Kondo Model as calculated by Wilson.

Fig. 8. Susceptibility of the “Anderson Model” showing equivalence to Kondo.
(from Krishna-Murthy et al (29))

we give as the last figure of this subject Krishna-Murthys’ corresponding cal-
culation (29) for the Anderson model (Fig. 8) and one equation: Haldane’s
precise equivalencing of the parameters of the two models, from his thesis (20) :

which may be used to find the properties of one model from the other: e.g.,

I am indebted to a London Times article about Idi Amin for learning that
in Swahili “Kondoism” means “robbery with violence.” This is not a bad
description of this mathematical wilderness of models; H. Suhl has been heard
to say that no Hamiltonian so incredibly simple has ever previously done such
violence to the literature and to national science budgets.
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II. The Origins of Localization Theory
In early 1956, a new theoretical department was organized at the Bell

Laboratories, primarily by P. A. Wolff, C. Herring and myself. Our charter
was unusual in an industrial laboratory at the time: we were to operate in an
academic mode, with postdoctoral fellows, informal and democratic leader-
ship, and with an active visitor program, and that first summer we were
fortunate in having a large group of visitors of whom two of those germane to
this story were David Pines and Elihu Abrahams.*

The three of us took as our subject magnetic relaxation effects in the beautiful
series of paramagnetic resonance experiments on donors in Si begun by Bob
Fletcher and then being carried on by George Feher. Feher was studying
(primarily) paramagnetic resonance at liquid He temperatures of the system
of donor impurities (e.g., P, As, etc.) in very pure Si, in the concentration
range 1 015-10 18 impurities/cc encompassing the point of “impurity band”
formation around 6 x 1 017. At such temperatures most of the donors were
neutral (except those emptied by compensating “acceptor” impurities such
as B, Al or Ga), having four valences occupied by bonds, leaving a hydrogenic
orbital for the last electron which, because of dielectric screening and effective
mass, has an effective Bohr radius of order 20 Å (Fig. 9). The free spin of

Fig. 9. Donor wave functions in Si and Si29 nuclei: schematic.

* It may be of interest to note that theorists permanently or temporarily employed at Bell
Labs that summer were at least the following: a) ( permanent or semipermanent) P. W.
Anderson, C. Herring, M. Lax, H. W. Lewis, G. H. Wannier, P. A. Wolff, J. C. Phillips;
b) (temporary) E. Abrahams, K. Huang, J. M. Luttinger, W. Kohn, D. Pines, J. R. Schrief-
fer, P. Nozieres; c) (permanent but not in theory group) : L. R. Walker. H. Suhl, W. Shock-
ley.
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Fig. 10. a) Hyperfine structures of donor EPR at increasing donor (P) concentrations
the Mott-Anderson metal-insulator transition. b) Example of well-developed cluster lines.
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this extra donor orbital has a hyperfine interaction with the donor nucleus
(31P or As, for instance) leading to the clean hfs (30) shown in Fig. 10. In addi-
tion, isotopic substitution proved that most of the residual breadth of the lines is
also caused by hfs interactions, of the very extended electronic orbital with the
random atmosphere of ~ 5 % of Si29 nuclei in natural Si, and for reasonably
low donor densities of ~ 1016/cc the actual spin-spin and spin-lattice relaxation
times were many seconds. That is, the lines were “inhomogeneously broad-
ened”, so that many very detailed experimental techniques were available.
Feher and Fletcher (31) had already probed what we would now call the
Mott-Anderson transition in these materials (Fig. 10a) . As the concentration
was raised, first lines with fractional hfs appeared, signifying clusters of 2, 3,
4, or more spins in which the exchange integrals between donors overweighed
the hf splitting and the electron spins saw fractionally each of the donor
nuclei in the cluster. (A good example is shown in Fig. 10b.) Finally, at
~ 6 x 1017, came a sudden transition to a homogeneously broadened free-
electron line: the electrons went into an “impurity band” at that point.
Pines, Bardeen and Slichter (33) had d eveloped a theory of spin-lattice re-
laxation for donors, and it was our naive expectation that we would soon learn
how to apply this to Feher’s results. In fact, no theoretical discussion of the
relaxation phenomena observed by Feher was ever forthcoming, only a de-
scription of the experiments (34). What the three of us soon realized was that
we were confronted with a most complex situation little of which we under-
stood. In particular, we could not understand at all the mere fact of the
extremely sharp and well-defined “spin-packets” evinced by such experiments
as “hole digging” and later the beautiful “ENDOR” effect (32, 34). (In the
ENDOR experiment Feher would select a spin packet by saturating the line
at a specific frequency (“digging a hole”, Fig. 1 la) and monitor the nmr
frequencies of 29Si nuclei in contact with packet spins by exciting with the
appropriate radio frequency and watching the desaturation of the packet
(Fig. 1 lb). In this figure, the many seconds recovery time after passing the
ENDOR line is actually an underestimate of the packet T2 because the system
is driven.) Thus every individual P electron had its own frequency and kept
it for seconds or minutes at a time.

We assumed from the start the basic ideas of Mott with regard to actual
electron motion: that since there were few compensating acceptors, Coulomb
repulsion kept most of the donors singly-occupied leaving us with the para-
magnetic spin system we observed. W. Kohn seems to have suggested that
even the empty donors would be pinned down by staying close to their com-
pensating negatively charged acceptors because of Coulomb attraction (see
Fig. 12). Thus there was little actual electron motion, and we noticed only some
speeding up of the relaxation times as we approached what now would be
called the “Mott-Anderson” transition. Stretching our gullibility a bit, we
could believe that nothing spectacular was necessarily required to prevent
mobility of the actual charged electron excitations. (It was, however, at this
time that I suggested to Geballe the study of dielectric relaxation in these
materials to probe this motion, which led to the discovery of the now well-
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Fig. 12. Hypothetical binding of charged donors to acceptors.

known Pollak-Geballe “ w”~~” conductivity (34). I felt that the absence of
conduction in the impurity band was also a serious question, in this as in many
other systems.)

No arguments using Coulomb interaction saved us from a second dilemma:
the absence of spin diffusion. Bloembergen, in 1949 (36), had proposed the
idea of spin diffusion in nuclear spin systems, which has since had much
experimental verification. His idea was that the dipolar interactions caused
mutual precessions which, in the high temperature paramagnetic state of a
spin system, could by diffusion equilibrate the spin temperature in space,
thereby giving a means - for example - for nuclear spins to relax by diffusing
to the neighborhood of an electronic spin impurity. To calculate the process
he used a simple estimate from the Golden Rule plus random walk theory.

Portis (37), in 1953, introduced the idea of random “inhomogeneous broad-
ening” where complete equilibration within a spectral line is impeded, and
instead one speaks of “spin packets” of spins having a definite resonance
frequency within the line (Fig. 13). (Such packets are spatially random, of

Fig. 13. “Spin packets” and spectral diffusion.
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course; in macroscopically inhomogeneous systems the same phenomena had
been seen much earlier.) Portis estimated that if the interaction of neighboring
spins was Jii, the lifetime of a spin packet (38) should be of order

W being the width of the line and < the number of neighbors: this is app-
arently obvious by the Golden Rule. But when Elihu Abrahams estimated 3~
for our system, he found that according to (8), τ should have varied from
.1 to 10-6 s, whereas Feher’s spin packets stayed saturated for 10-100 s in a
typical ENDOR experiment. His estimates were checked by the “cluster”
phenomenon of Fig. 10.

I find in my notes a reference on 6/20/56 to a discussion with Pines where I
suggested an “All or Nothing” theorem to explain this. Later, on 10/31/56,
comes an optimistically claimed “proof” of “Anderson’s Theorem”, much
like an unsophisticated version of my final paper which even so is hardly a
“proof” ; such. does not yet really exist. I also seem to have spoken to an un-
interested audience at the Seattle International Theoretical Physics Sym-
posium. But the actual work was not completed until shortly before I talked
about it to much the same group of residents and visitors on July 10th. and
17th, 1957. By that time, I had clearly been a nuisance to everyone with
“my” theorem: Peter Wolff had given me a short course in perturbation theory,
Conyers Herring had found useful preprints from Broadbent and Hammersley
on the new subject of percolation theory, Larry Walker had made a suggestion
and Gregory Wannier posed a vital question, etc. But my recollection is that,
on the whole, the attitude was one of humoring me.

Let me now give you the basics of the  argument I then presented (39) but
in much more modern terminology (the mathematics is the same, essentially).
I don’t think this is the only or final way to do it; a discussion which is more
useful in many ways, for instance, can be based on Mott’s idea of minimum
metallic conductivity as used by Thouless and co-workers and as he will
touch upon; but I think this way brings out the essential nature of this sur-
prising nonergodic behavior most clearly. I apologize for this brief excursion
into mathematics, but please be assured that I include the least amount
possible.

The first problem was to create a model which contained only essentials.
This was simple enough: a linearized, random “tight-binding” model of
non-interacting particles:

in which the “hopping” integrals Vii were taken to be nonrandom functions
of rii (the sites i can sit on a lattice if we like) but E i was chosen from a random
probability distribution of width W (Fig. 14). The objects ci could be harmonic
oscillator (phonon) coodinates, electron operators, or spinors for which
Vii N 3ii and we neglect the 3&Sf  interactions of the spin flips. The essential
thing is that (9) leads to the linear equation of motion
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Fig. 14. Model for diffusion in a random lattice
a) sites and hopping integrals
b) probability distribution of Ei

(10)

If W is zero and all E i the same (say 0), (10) describes a band of Bloch states
of width about ,7 vji. For W 4 Vi) = V, the theories of transport recently
developed by Van Hove and Luttinger (40) clearly would describe resistive
impurity scattering of free waves (say, electrons, for simplicity). If, on the
other hand, W 9 V, that would describe our system of local hf fields large
compared to 3i3; or of random Coulomb and strain energies large compared
to the hopping integrals for the electrons from donor to donor.

What is clearly called for is to use W as a perturbation in the one case,
and Vi5 in the other; but what is not so obvious is that the behavior of per-
turbation theory is absolutely different in the two cases. For definiteness, let
us talk in terms of the “resolvent” or “Greenian” operator which describes
all the exact wavefunctions pa and their energies E,:

where the @ct and E a are the exact eigenfunctions of the Hamiltonian (9).
In the conventional, “transport” case, we start our perturbation theory with
plane-wave-like states

with energy



392 Physics 1977

which we assume are only weakly perturbed by the scattering caused by
randomly fluctuating E i’s. The E k’s are a continuum in the limit of a large
system and we take advantage of this to rearrange perturbation theory and get

where 1, the “self-energy”, is itself a perturbation series (Fig. 15a)

Fig. 15. a) Self-energy diagrams in conventional “propagator” theory.
b) Self-energy diagrams in “locator” theory.

which, since Ek is a continuum, has a finite imaginary part as E approaches
the real axis

( 1 4 )

Note that Vkk' in this case comes from the width “W” not V ij.)
This equation means that Ek has a finite width. in energy, and ImG, the

density of states, is a finite, continuous function of E (Fig. 16).
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Fig. 16. a) Im Gii in extended case
b) Im Gii in localized case

1
of order =-) forming in the limit .,V

\I.?^
+ 0 a true continuum of states of every

energy at site i. Of course, there are sum rules stating that every state is
somewhere and that no states get lost:

and these are satisfied by pjn(;)  N (~~)~I, where .I’ is the  total number both
of a’s and i’s.

My contribution was just to show that this is not the only possible case,
other than just an empty band of energies, or a set of discrete states as one
may have near a single attractive potential like a hydrogen atom. What I
showed is that one may have a  continuum in energy but not in space. This is
immediately made plausible just by doing perturbation theory in the opposite
order.

In this case one takes E i as the big term, and the starting eigenfunctions
and eigen-energies are just

(18)

and V ij is the perturbation. In this case, (which Larry Walker suggested I
call “cisport”) we use a “locator” instead of a “propagator” series, for the
“locator” G ii not the “propagator” Gkk:

where now the self-energy c is a superficially similar series to (13) (Fig. 15b)
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(20)

If at this point we make one tiny mistake, we immediately arrive back at
Portis’ answer (8) : namely if we average  in any way, we get

(21)

But there is a very important fundamental truth about random systems we
must always keep in mind : no real atom is an average atom, nor is an experiment ever
done on an ensemble of samples . What we really need to know is the probability
distribution of ImE,  not its average, because it’s only each specific instance we
are interested in. I would like to emphasize that this is the important, and
deeply new, step taken here: the willingness to deal with distributions, not
averages. Most of the recent progress in the fundamental physics of amorphous
materials involves this same kind of step, which implies that a random system
is to be treated not as just a dirty regular one, but in a fundamentally different
way.

Having taken this point of view, it is sufficient to study only the first term
of (20), it turns out. Let us first pick a finite s, and then take the limit as s + o.
With a finite s,

cThe condition that E j appear as a peak of Im - is th.at Ej be within s of E,
S

and that V ij > s. To assess the probability that V ij is large enough, use the
physically realistic assumption of exponential wavefunctions:

In the energy interval of size s, there will be ns/ W energies E j per unit volume
(,V is the site density per unit volume), while V > s implies

and the probability that both V > s and E - Ej < s i s

It is easy to formalize this: one may show that the probability distribution of
ImC is essentially

(22)
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which indeed has a divergent average as it should, but is finite nonetheless,
so that Imxccs  and there is not a finite cut at the real axis.

When we stop and think about what this means, it turns out to be very
simple. It is just that we satisfy the sum rules (17) not by each pa(i) being
infinitesimal, but by a discrete series of finite values: the biggest plh is of order
1, the next of order l/2, etc., etc., (see Fig. 16b). Thus, ImG ii is a sum of a
discrete infinite series of &functions with convergent coefficients. This is the
localized case.

That is more than enough mathematics, and is all that we will need. The
rest boils down simply to the question of when this lowest-order treatment is
justified, and how it breaks down.

The bulk of the original paper was concerned with how to deal with the
higher terms of the series and show that they don’t change things qualitatively :
what they do, actually, is just to renormalize Vij and the Ej’s so that even if Vij

is short-range initially, it becomes effectively exponential; and, of course,
the V ij’s broaden the spectrum. If this is the case, one then realizes that the
extended case can only occur because of a breakdown of perturbation theory.
This comes about as the higher terms of perturbation theory “renormalize”
V(Rj) and stretch it out to longer and longer range, so that the exponentially
localized function become less so and finally one reaches a “mobility edge”
or “Anderson transition”.

Here we begin to tie in to some of the ideas which Professor Mott will
describe. First, it is evident that the self-energy series is a function of E-i.e.,
of where we are on the real energy axis - so it will cease to converge first at
one particular energy E, the “mobility edge.” For a given model, it is reason-
able - in fact usual - to have the localized case for some energies, the extended
one for others, separated by a “mobility edge”. The significance of this fact
was realized by Mott.

Fig. 17. “Cayley Tree” on which localization theory is exact.
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Fig. 18. Computer demonstration of localization (courtesy of Yoshino and Okazaki).
a) W/V = 5.5
b) W/V = 8.0

The actual calculation of this divergence or “Anderson transition” was
carried out by me using conservative approximations in the original paper,
but it was only much later realized (41) that that calculation was exact on a
“Cayley tree” or Bethe Lattice (Fig. 17). Much earlier, Borland (42) and Mott
and Twose (43) had shown that localization always occurs in one dimension
(also a Cayley tree case, with K = 1). Since it is easy to convince oneself that
the Cayley tree is a lattice of infinite dimensionality d (though finite neighbor
number) it is likely that delocalization first occurs at some lower critical
dimensionality d c, which we now suspect to be 2, from Thouless’ scaling
theory (44). This dimensionality argument (or equivalent ones of Thouless)
first put to rest my earliest worry that my diagram approximations were
inexact : in fact, they under estimate localization, rather than otherwise. A

second reason why I felt discouraged in the early days was that I couldn’t
fathom how to reinsert interactions, and was afraid they, too, would de-
localize. The realization that, of course, the Mott insulator localizes without
randomness, because of interactions, was my liberation on this: one can see
easily that the Mott and Anderson effects supplement, not destroy, each other,
as I noted in some remarks on the “Fermi Glass” (45) which more or less
marked my re-entry into this problem. The present excitement of the field
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for me is that I feel a theory of localization with interactions is beginning to
appear, in work within my group as well as what Professor Mott will describe.
It is remarkable that in almost all cases interactions play a vital role, yet many
results are not changed too seriously by them.

I will close, then, and leave the story to be completed by Professor Mott.
I would like, however, to add two things: first, a set of figures of a beautiful
computer simulation by Yoshino and Okazaki (46), which should convince
the most skeptical that localization does occur. The change in W between
these two figures is a factor 1.5, which changed the amplitudes of a typical
wave function as you see, from extended to extraordinarily well localized.
(see Fig. 18).

Finally, you will have noted that we have gone to extraordinary lengths
just to make our magnetic moments - in the one case - or our electrons - in
the other - stay in one place. This is a situation which was foreshadowed
in the works of an eminent 19th century mathematician named Dodson, as
shown in the last figure (Fig. 19). “Now here, you see, it takes all the running
you can do, to keep in the same place.”

Fig. 19. Efforts to avoid localization (Dodson).
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