
Abstract

This Thesis concerns two subjects: the dynamics of ripples beneath surface
waves and shell models of turbulence.

For the study of ripples, a computational model is developed (chapter
2). The model consist of a ow model, a sediment transport model and a
morphological model. Using this model as the main tool, the dynamics of the
ripples are studied. First the formation of ripples on a at bed is described
(chapter 3). Here a granular model for the formation of rolling grain ripples
is developed. The model shows that the spacing between the rolling grain
ripples are proportional to

p
� � �cd where � is the Shields parameter, �c is the

critical Shields parameter and d is the grain diameter. In the chapters 4 and
5 the ow and the sediment transport are examined. Focus is on the size and
the strength the separation bubble. The sediment transport can be classi�ed
into two regimes: one where the sediment transport is dominated by near-bed
sediment transport when the settling velocity is large and a regime where the
sediment transport is dominated by advected suspension for small settling
velocities. Another important �nding is that the ow and sediment transport
over �xed ripples is very close to that over moving ripples. The dynamics
of the ripples are explored in chapter 6 using morphological calculation. A
stability analysis of the fully developed ripple pro�les is performed and the
minimal wave length of the ripples is calculated. A simple model, based on
the ripples represented as particles, is developed to illustrated the dynamics
of the ripples.

Two topics in shell models of turbulence are treated in chapter 8. The
�rst is the continuous and zero-spacing limits of the GOY model. The model
was found to be dominated by pulse solutions, with a behaviour similar to
that of the KdV-equation. Finally a minimal shell model for the advection of
a passive scalar by a Gaussian time correlated velocity �eld is studied. The
anomalous scaling properties of the white noise limit are studied analytically.
The e�ect of the time correlations are investigated using perturbation theory
around the white noise limit and non-perturbatively by numerical integration.
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Abstract in danish

Denne Thesis omhandler to emner: dynamikken af riller under overadeb�l-
ger og skal-modeller for turbulens.
For at kunne studere riller er en numerisk model blevet udviklet (kapitel
2). Modellen best�ar af en str�mningsmodel, en sedimenttransportmodel og
en en morfologisk model. Ved at bruge denne model som v�rkt�j studeres
dynamikken af rillerne. F�rst bliver dannelsen af rillerne fra en ad bund
beskrevet (kapitel 3). Her udvikles en granular model som beskriver dan-
nelsen af rullekornsriller. Denne model viser at afstanden mellem rillerne er
proportional med

p
� � �cd hvor � er Shields parameteren, �c er den kritiske

Shields parameter og d er korndiameteren. I kapitlerne 4 og 5 bliver str�mnin-
gen og sedimenttransporten unders�gt. Fokus er p�a st�rrelsen og styrken af
seperationsboblen. Sedimenttransporten kan klassi�ceres i to regimer: et
hvor sedimenttransporten er domineret af transport t�t p�a bunden for store
ad-hastigheder, og et hvor sedimenttransporten er domineret af advekteret
opslemmet transport for sm�a fald-hastigheder. Et andet vigtigt resultat er, at
str�mningen og sedimenttransporten over faste og bev�gelige riller er stort
set ens. Dynamikken af riller er unders�gt i kapitel 6 v.h.a. morfologiske
beregninger. En stabilitetsanalyse af de fuldt udviklende riller bliver udf�rt,
og den minimale b�lgel�ngde beregnet. En simpel model, baseret p�a rillerne
repr�senteret som partikler, bliver udviklet for at illustrere dynamikken af
rillerne.
To emner i skalmodeller af turbulens er behandlet i kapitel 8. Den f�rste er
kontinuums eller nul-afstands-gr�nsen for GOY modellen. Det blev fundet at
modellen er domineret af puls-l�sninger, med en opf�rsel der svarer til KdV-
ligningen. Endelig bliver en minimal skal-model for advektionen af en passiv
skaler af et Gaussisk tids-korrelleret hastighedsfelt studeret. Den anormale
skalering af gr�nsen med hvid st�j er studeret analytisk. E�ekten af tid-
korrelationen er unders�gt v.h.a. perturbationsteori omkring gr�nsen for
hvid st�j og udover gr�nsen hvor perturbationsteori g�lder v.h.a. numerisk
integration.
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List of symbols

a The amplitude of the oscillatory motion in a wave.
ag The amplitude of the oscillatory motion of a single grain.
� Wavenumber of the ripple.
�s The length of the shadow zone divided by the height.
� The factor for a linear gravity correction in the bed load.
 The slope of the bed.
C(t) Growth of perturbation.
c Time averaged growth rate of a perturbation.
c(x; y; t) The concentration of suspended sediment.
cb Bed boundary condition for suspended sediment.
CD Drag coe�cient.
d The grain diameter.

� The viscous boundary layer thickness: � =
p
2� 0=!0.

�xcrest The distance between grid points near the crest.
�m The amount of mass transfered over the trough between two

ripples.
� The height of a perturbation on the bed (small).
�d The dissipation of the wave due to the presence of ripples.
fe The dissipation factor.
few The wave-only dissipation.
fwc The wave plus current friction factor.
g The gravitational acceleration.
h The height of the ripple measured from trough to crest.
h(x; t) The height of the bed.
� von K�arm�an's constant.
kN The Nikuradse roughness.
kwc The Nikuradse roughness of a wave plus current ow.
L The length of the computational domain.
� The length of the ripple.
�equ The equilibrium wave length.
�f Average initial distance between the centers of the grains in

the simple model of rolling grain ripples.
�m The marginal wave length.
�max The maximum wave length of a ripple.
�sep The maximum extent of the separation bubble.
M The number of grid points in the vertical direction.
�D The dynamics friction.
�S The static friction.
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n The porosity of the bed.
n The number of grain per area in motion as bed load.
N The number of grid points in the horizontal direction.
� The kinematic viscosity.
! Angular frequency. In the k-! model ! is the dissipation of

turbulent kinetic energy.
 The mobility number.
� The angle of repose for sand.
�b Non dimensional bed load.
�s Non dimensional suspended load.
�t Non dimensional total load.
qb The mass ux of sand pr. width due to bed load.
� The density of water.
�s The density of the sediment.
ReD Reynolds number using the depth: ReD = UmD=�:
Red Reynolds number using the grain diameter: Red = Umd=�:
Re� Reynolds number using the viscous boundary layer thickness:

Re� = Um�=�.
s The relative density of sediment; s = �s=�.
�b Shear stress on the bed.
� The Shields parameter.
�0 The maximum Shields parameter on a at bed.
�c The critical Shields parameter for initiation of grain motion.
�c The critical Shields parameter corrected for a sloping bed.
Ub The velocity of a grain.
Uc The depth-averaged steady current component of the horizon-

tal velocity.
Um The amplitude of the velocity.

Uf The friction velocity, Uf =
p
�=�.

U 0
f The maximum friction velocity on a at bed.

V The vertical velocity.
ws The settling velocity.
�x The distance between two rolling grain ripples.
�xcrest The grid spacing near the crest of the ripple.
y Height above the bed.
y0 Height above the bed where the velocity used for the deter-

mination of the bed load is taken.
y+ Non-dimensional distance from the bed; y+ = yUf=�.
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Notation

h ix Spatial average over one ripple.
h it Time average over one wave period.
h i1=2 Time average over one half wave period.
0 Maximum value on a at bed.
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Chapter 1

Introduction

In Nature a free surface of sand is mainly found in three di�erent environ-
ments: in deserts, in rivers and in the sea, particularly the coastal zone. The
sand surface is rarely at but is covered with patterns created by the motion
of the surrounding uid: air or water. A at surface only exists either where
there is not enough motion in the surrounding uid to disturb the sand, or
if the motion is so strong that the boundary between the uid and the sand
is a thick slurry of moving mixture of sand and water. The encyclop�dia of
the patterns in sand describes a large variety of patterns and covers length
and time scales from millimetres and seconds { rolling grain ripples in the
sea { to thousands of kilometres and years for the draas in the desert.

In the desert one �nds small ripples, believed to be created by the saltation
of single grains (Anderson, 1990; Hoyle and Woods, 1997; Terzidis et al.,
1998; Nishimori and Ouchi, 1993; Csah�ok et al., 1998). These ripples usually
exist on top of larger structures: the dunes. The family of dunes contain
several sub-branches, e.g., barchan dunes, created when the sand is eroded
down to the solid bed and transverse dunes created when there is plenty of
sand. These two kinds of dunes are aligned with the crest perpendicular to
the dominant wind direction. When the wind is alternating between two
predominant directions, longitudinal dunes with the crest aligned parallel to
the wind is created. When the wind is alternating between more than two
direction star dunes are created (see the attached article no. I: (Nishimori
et al., 1998). The largest and oldest patterns in the desert are the draas,
which are believed to be relict structures, created by rolls in the planetary
boundary layer.

In rivers the ripples are again discovered. Here, however, there is no
saltation of the grains, and the origin of the ripples is controversial (see e.g.
Raudkivi (1997)). Another di�erence with the ripples formed by the wind
is that the steady state pattern of ripples in water is very two dimensional,
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while the ripples in the desert form a nearly one dimensional pattern with
few defects. Dunes formed on a river bed comes in two varieties: ordinary
dunes, moving in the same direction as the current, and anti dunes which
are moving against the current (for a review of dunes in rivers see Freds�e
(1996)).

The coastal zone di�ers from the deserts and the rivers in one important
aspect, namely that the predominant ow is created by the waves and only
secondarily by a current superposed on top of the waves. Patterns created
by waves are the rolling grain ripples and the vortex ripples. Due to a
combination of the long-shore current and the oscillatory action of the waves,
yet another pattern can be observed, namely the mega ripples (Gallagher
et al., 1998). Finally the oscillatory motion of the tidal wave creates large
structures known as sand waves (Hulcher, 1996).

Even though many similarities between all these features can be recog-
nised, they are generally created by di�erent mechanisms. It is therefore not
thought that all of these features can be described by one general theory.
For the major part of them, the ow of the air or water around them is very
important as it determines the transport of sand.

What makes these patterns particularly di�cult to describe mathemat-
ically is the granular nature of the sand. One of the manifestations of this
is that once a pattern has been made, it does not disappear even when the
wind or the current that generated the pattern vanishes. This illustrates
the strong sub-critical nature of the patterns, a property which makes them
di�cult to treat with perturbative methods such as amplitude equations.

This Thesis deals with the ripples that are generated by the waves in the
coastal zone. Both the rolling grain ripples and the larger vortex ripples will
be studied.

1.1 Ripples

The subject of ripples generated by an oscillatory ow is quite rich. As
indicated above there are at least two distinct types of ripples. Secondly the
ripples have a complex phase diagram with di�erent equilibrium shapes and
sizes, and in some areas they have many defects and surprising interactions.

The most important type of ripples is the vortex ripple (�gure 1.1), la-
belled so by Bagnold (1946). The vortex ripple has also been referred to
as the orbital ripple (Wiberg and Harris, 1994) reecting the fact that the
length of the ripple is a function of the orbital amplitude of the wave motion.
The vortex ripples are triangular in shape, with the slope of the sides being
close to the angle of repose. The ow around the ripples is dominated by
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Figure 1.1: Two snapshots of a vortex ripple. In the left picture the ow has just
reversed, and a cloud of sediment is thrown over the crest. In the right picture
a strong separation bubble is seen in the left side of the ripple, carrying a lot of
sediment

the vortices created by the crest in the lee side of the ripples. The sediment
transport is dominated by avalanches of sand rolling down on the sides of
the ripples. The vortex ripples are the dominant pattern in the coastal zone
where they make signi�cant contributions to the roughness of the bed and
the dissipation of the waves (section 4.4). They induce a sediment transport
which is much bigger than there would have been if the bed was at (chapter
5). This is especially interesting for the case where waves are superposed by
a current (wave plus current ows), where the net sediment transport can
even be opposing the main current (section 5.2). An important and not well
understood property of the vortex ripples is their equilibrium wave length;
this will be explored in chapter 6.

The study of the vortex ripples forms the core of this Thesis. To this end
an advanced computational model for the ow and sediment transport has
been employed (chapter 2), which is able to describe the two-dimensional ow
over a one-dimensional train of ripples in great detail. The idea behind using
the advanced model is to construct a numerical laboratory where the ripples
can be studied under \clean" conditions. This means that a very simple set
up has been used: the ow over the ripples is only sinusoidal. Consequently
many of the e�ects related to real waves are not resolved, i.e., orbital motion,
streaming in the boundary layer, and asymmetric oscillatory motion. All
these e�ects might be relevant, especially for the sediment transport, but
since the ideal case described above is far from being well understood, it was
felt that to understand the inuence of these more complicated e�ects, a
thorough understanding of the ideal case was required to form a solid base.
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Figure 1.2: An example of a two-dimensional pattern of vortex ripples taken from
an experiment at the NBI, at two times. Defects in the pattern are seen in the
top left corner and in the right side. The bright line in the bottom of the picture
is due to a laser beam used to extract a ripple pro�le.

A major goal has been to distill the knowledge obtained from the study of the
model into a simple model illustrating the dynamics of the ripples (section
6.5).

The dynamics of a two-dimensional bed �lled with vortex ripples can
show some very interesting pattern dynamics (see for example �gure 1.2).
Unfortunately it has not been possible to cover these aspects of the vortex
ripples in the present work, which focuses only on one-dimensional ripples.

Of more academic interest is the other ripple state, the rolling grain ripple,
�rst described by Bagnold in 1946. This kind of ripple is formed on a at bed
and consists of small triangular heaps, spaced by a stretch of at bed, much
longer than the height of the triangular heap. The heaps are ordered in nice
straight bands, thus forming a basically one-dimensional pattern. Although
the rolling grain ripples also form a vortex in the lee side, this vortex is not
dominant in the wave length selection as is the case for the vortex ripples. A
theory based on the motion and amalgamation of single grains into the ripples
is developed in section 3.2. The classical theory on the creation of rolling
grain ripples by Blondeaux and co-workers (Blondeaux, 1990; Vittori and
Blondeaux, 1990; Vittori and Blondeaux, 1991; Foti and Blondeux, 1995b;
Foti and Blondeux, 1995a; Blondeaux et al., 1996) is presented and discussed
in section 3.3.
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Figure 1.3: The dimensional quantities appearing in the ripple problem.

1.2 Dimensional analysis

Ever since Rayleigh in 1915 1, scolded his colleagues for wasting their time
on trivialities it has been known that a good starting point for the study of
a physical system is a dimensional analysis:

\It happens not infrequently that results in form of \laws" are
put forward on the basis of elaborate experiments, which might
have been predicted a priori after of few minutes of considera-
tion".

With \a few minutes of consideration" he refers to the dimensional analy-
sis, which he called \The principle of similitude". The problem of ripples
involves a signi�cant number of dimensional quantities, which can be com-
bined in many ways, some meaningful, some not. The present choice is not
invented out of thin air, but represents the combined e�orts of many re-
searchers through half a century of work on sediment transport and ripples.

Considering the ow over ripples, the following dimensional quantities are
involved (�gure 1.3):

1See also the ongoing discussion in the same volume of Nature for several letters re-

garding this article and replys by Rayleigh.
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� { the length of the ripples.
h { the height of the ripples.
Um { the amplitude of the oscillatory ow.
T { the period of the oscillatory ow.
D { the depth of the ow.
kN { the Nikuradse roughness of the bed.
� { the kinematic viscosity of the uid.
Uc { the current strength in a wave plus current ow.

With eight dimensional quantities and only two fundamental dimensions,
time and space (the density has been excluded by using the kinematic vis-
cosity instead of the dynamical viscosity), it is possible to form six non-
dimensional quantities. The oscillatory ow sets the most important length
scale, namely the amplitude of the motion of the uid:

a =
UmT

2�
: (1.1)

The ripples can then be described by two parameters: �=a and the steepness
h=�. For wave-only ow there are three parameters describing the ow,
the Reynolds number Rea = aUm=�, the depth D=a, and the roughness
kN=a. For a fully developed turbulent ow the Reynolds number becomes
unimportant. As the drag on the bed is mainly carried by the ripples and not
by the individual grains, the roughness of the bed is also of minor importance
(as long as kN � h). The situations investigated involves depths much larger
than the boundary layer created by the ripples, suggesting that the depth
becomes unimportant as well. It turns out that the most relevant parameters
are the length and the steepness of the ripples, i.e., �=a and h=�. If a current
is added, the parameter Uc=Um relating the current strength and the wave
strength comes into play together with the depth D=a.

Adding sediment transport to the problemmakes the dimensional analysis
much more complicated. Three new parameters are added to the problem:

d { the grain diameter.
g { the gravitational acceleration.
�s { the density of the sediment.

which implies that three new non-dimensional quantities are created. The
relative density is the ratio between the sediment and the water s = �s=�.
For quartz sand (and glass spheres) s ' 2:65. This quantity is kept constant
in the present work. There are many possible ways to create the remaining
two quantities. The choice made here is to use the maximum value of the



1.2 Dimensional analysis 7

Shields parameter on a at bed:

�0 � � 0b
�g(s� 1)d

: (1.2)

�b is the shear stress on the bed and the prime denotes the maximum value
on a at bed during the wave period. This parameter will be discussed in
more detail in section 2.4.1, but for now it su�ces to regard it as a non-
dimensional shear stress. For laminar ow � 0b can be found exactly from the
Navier-Stokes equations as the solution of Stokes' second problem (Landau
and Lifshitz, 1959):

� 0b = Um

p
!� (1.3)

where ! is the angular frequency of the wave.
For turbulent conditions, the shear stress on a at bed can be found using

the constant friction factor of Jonsson (1976)

� 0b =
1

2
�fwU

2
m; (1.4)

with a relation for the wave friction factor fw:

fw = 0:04

�
a

kN

��0:25

;
a

kN
> 50; (1.5)

which is a �t to the numerical solution of the integrated momentum equation
for the wave boundary layer (Freds�e and Deigaard, 1992). The �nal param-
eter is the settling velocity, made non-dimensional with the ow velocity:
ws=Um. The reciprocal of this quantity is a measure of how far a grain can
be transported by the ow. The settling velocity can be found from:

ws =

s
4(s� 1)gd

3CD
: (1.6)

For a sphere the drag coe�cient CD is given by the Stokes formula:

CD =
24

Re
; (1.7)

where Re = wsd=�. For natural sand the drag is given by the empirical
relation (Freds�e and Deigaard, 1992):

CD = 1:4 +
36

Re
: (1.8)

The complete set of non-dimensional parameters reads:
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�

a
;
h

�
; �0 and

ws

Um

being of major importance and

kN
a
;
D

a
; Rea and s

being of minor importance, supplemented by

Uc

Um
and

D

a

for wave plus current situations.



Chapter 2

The computational model

The model which has been developed for the numerical calculations is a quite
complex system. The model is split into three modules: the ow module (sec-
tion 2.1), the sediment transport module (section 2.4) and the morphological
module (section 2.5). In this chapter the equations used in the model are
described together with a brief overview of the underlying numerical solver
(section 2.3). Particular attention is paid to the derivation of the equations
for the transport of sand.

The equations in boxes, are the ones which are actually used and solved
by the model.

2.1 The ow module

The turbulent ow around ripples is resolved based on a turbulent closure
of the Reynolds-averaged Navier-Stokes (RNS) equations, which are derived
from the Navier-Stokes equations (here written in tensorial notation):

@ui
@t

+ uj
@ui
@xj

= �1

�

@p

@xi
+ 2�

@sij
@xj

(2.1)

@ui
@xi

= 0 (2.2)

ui is the velocity, p is the pressure, � the density and � the kinematic viscosity.
The strain-rate tensor is de�ned as

sij =
1

2

�
@ui
@xj

+
@uj
@xi

�
: (2.3)

The Reynolds-averaging is e�ected by splitting the velocity into mean and
uctuation parts, Ui and u

0
i respectively. These are inserted in (2.2) and (2.2)
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and the equations are averaged, resulting in the RNS equations:

@Ui

@t
+ Uj

@Ui

@xj
= �1

�

@P

@xi
+

@

@xj

�
2�
@Sij
@xj

� u0ju
0
i

�
:

@Ui

@xi
= 0

(2.4)

Apart from the replacement of instantaneous variables by mean values the
only di�erence between (2.2) and (2.4) is the appearance of the correlation
�ij = �u0ju0i; the Reynolds stress tensor. The trace of �ij is called the turbu-

lent kinetic energy, k = �1
2
�ii.

The equations are closed using the eddy viscosity concept. By analogy
with the molecular viscosity, the Reynolds stress tensor is modelled as:

�ij = �T
@Sij
@xj

� 2

3
k�ij: (2.5)

The second term on the right hand side is needed to obtain the proper trace
of �ij. �T is referred to as the turbulent viscosity or the eddy viscosity.
The e�ect of the eddies, which are averaged out by the Reynolds-averaging,
is therefore modelled as a di�usion process with a time- and space-varying
di�usivity.

2.1.1 Turbulent closure using the k-! model

To calculate the eddy viscosity as a function of time and space, a turbu-
lence model will have to be applied. The simplest model is to set �T to a
constant or using a �xed variation in the vertical. This can be done with
some success on a at bed, but for the more complicated ow around ripples
a more elaborate model need to be applied. Numerous models exist (for a
review see Wilcox (1993b)), but the most commonly used are the so-called
two-equations models, with the k-� model being particularly popular. Al-
though the turbulence models are sometimes presented as being more or less
derived from the RNS equations (2.4), it is more correct to say that they are
very advanced semi-empirical models, loosely based upon the RNS equations,
physical reasoning, and dimensional arguments.

In the present work the k-� model have been abandoned, mainly for two
reasons: 1) the boundary conditions on a rough bed in an unsteady ow,
are not very satisfactory, and 2) it is known to perform badly in areas with
strong adverse pressure gradients, which is exactly the case for areas with, or
close to, separation (Bradshaw, Launder, and Lumley, 1996; Wilcox, 1993a).
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The k-! model of Wilcox (Wilcox, 1988; Wilcox, 1993b) does not share these
de�ciencies and has therefore been employed with success.

On dimensional grounds, the eddy-viscosity is given as:

�T = �
k

!
; (2.6)

where � is a model constant. The quantities k and ! are determined from
the model equations (Wilcox, 1993b):

@k

@t
+ Uj

@k

@xj
=

@

@xj

�
(� + ���t)

@k

@xj

�
� uiuj

@Ui

@xj
� ��k!

@!

@t
+ Uj

@!

@xj
=

@

@xj

�
(� + ��t)

@!

@xj

�
+ 

!

k

�
�uiuj @Ui

@xj

�
� �!2

(2.7)
where the closure coe�cients are given as:

� = 1;  = 5=9; �� = 9=100;

� = 3=40; � = 1=2; �� = 1=2:

The k-! model is very similar to the k-� model, in that it has a transport
equation for the turbulent kinetic energy. But where the k-� -model operate
with a second equation for the dissipation of turbulent kinetic energy �,
the k-! model operate with an equation for the quantity !. Usually, ! is
characterised as the speci�c dissipation rate, because it is de�ned as being
proportional to �=k. As the dimension of ! is one over time, it can just
as well be interpreted as a frequency of the turbulent uctuations. Sa�man
(1970) derived a two-equation model for the square of !, and he characterises
! as a vorticity of the energy-containing eddies. It should be stressed that
! does not necessarily have any direct physical signi�cance; it is just some
�eld variable introduced by analogy to the vorticity in order to calculate the
mean velocity and eddy viscosity.

The relation between � used in the k-� model and ! is given as:

� = ��k!: (2.8)

The model equations (2.7) have the form of transport equations for k and
!. The left hand side of the k and ! equations speci�es the rate of change and
advection. On the right hand side, the �rst term is the viscous and turbulent
di�usion. The second term is the production of turbulent kinetic energy and
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speci�c di�usion. The last term speci�es the dissipation of turbulence and
dissipation of the dissipation ! (!)

To describe the roughness of a wall the Nikuradse-roughness is commonly
applied. For a steady ow that follows the law of the wall (e.g., (Landau and
Lifshitz, 1959)):

U(y)

Uf
=

1

�
ln

�
y

y0

�
; (2.9)

the constant y0 was determined by Nikuradse to be y0 = kN=30 for a rough
bed, where kN was the grain diameter of the sand paper used as roughness.
For a sand bottom with loose sand the roughness is enhanced and it is usually
set to kN = 2:5d50, where d50 is the median of the sediment distribution
(Freds�e and Deigaard, 1992). The boundary conditions for rough walls can
be modelled in three ways (Patel and Yoon, 1995):

1. As wall functions where the value of u, v, k and ! is speci�ed some
distance from the wall, under the assumption that the law of the wall
is valid.

2. The second approach is to include a drag term in the momentum equa-
tions to account for the presence of the roughness elements.

3. The third approach is the one followed in the present model, which is
to modify the smooth-wall boundary conditions to �t with a known,
empirical, solution for rough walls (2.9).

Wilcox has shown that the boundary conditions at the wall reduce to k = 0,
no-slip for the velocities and a speci�cation of ! on the wall (Wilcox, 1993b).
To specify ! he uses the Anzats:

! = U2
fSR=�; (2.10)

where Uf is the friction velocity de�ned as Uf �
p
�wall=�. The whole system

is now closed except for the speci�cation of the constant SR, which is used
to �t the solution to the law of the wall:

u+ =
1

�
ln y+ +B; (2.11)

where u+ = U=Uf and y+ = yUf=�. By generating solutions for di�erent
values of SR and comparing with (2.11), a correlation for B is obtained as:

B = 8:4 +
1

�
ln
SR
100

; as SR ! 0: (2.12)
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Now using the Nikuradse determination of B as:

B = 8:5 +
1

�
ln

1

k+N
; k+N = UfkN=�; (2.13)

the correlation for SR as a function of k+N can be determined as:

SR = 100=k+N ; k+N � 1; (2.14)

and thus the system is closed. For small roughness heights, Wilcox claims
that the correlation is:

SR � (1=k+N)
2: (2.15)

Putting these two correlations together gives:

SR =

�
(50=k+N)

2; k+N < 25

100=k+N ; k+N � 25
(2.16)

Patel and Yoon (1995) shows, that the last relation is valid for a at wall up
to k+N � 4000. For sake of completeness it should be mentioned that, when
performing calculations on a smooth wall, the rough-wall approximation is
often used for numerical reasons with a value of k+N = 5.

For the velocity components, no-slip conditions are used. This means that
there actually exists a viscous boundary layer in the calculations, which again
means that the molecular viscosity has to be retained in the equations for k
and !. This is usually not the case in a turbulence model, that operates with
wall functions and therefore avoids integrating through the viscous sub-layer.
The use of wall-functions is only theoretically justi�ed in an equilibrium
boundary layer. Since a major part of the ows treated with the present
model involves separation or strong adverse pressure gradients, the use of
wall functions is therefore questionable. However, the inclusion of a viscous
sub-layer does not necessarily seem the right thing to do either, because the
existence of such a layer is usually tied to the concept of a smooth wall. On
a rough wall, the size of the individual roughness elements is larger than the
size of the viscous sub-layer, and thus the existence of a viscous sub-layer
is doubtful. Rather, the friction should be viewed as pressure drag and not
as viscous drag. Consequently, the viscous sub-layer generated by the k-!
model is not really \physical", but just a convenient way to perform the
parameterisation of the roughness through the parameter SR.

There is one problem with the k-! model, though. The results seem
to be sensitive to the value of the free stream boundary condition used for
! (Menter, 1993; Wilcox, 1993b). In the problems treated in this Thesis,
the boundary condition on the top is a symmetry condition, which makes a
speci�cation of the free-stream value of ! superuous.
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Figure 2.1: Comparison of k-� model (dashed line) and k-! model (full line) for
a rough wall, kN=D = 0:001. The dissipation � in the k-! model is calculated
from (2.8).

Testing the model on a at rough bed

The �rst test to make is the boundary layer on a at wall. Here the model
is expected to give the law of the wall with high accuracy.

Figure 2.1 shows a comparison between the k-! and the k-� models for
a run over a rough wall with kN=D = 0:001. There seems to be a good
correspondence between the two models, which is to be expected. The k-!
model produces a viscous sub-layer, whereas the k-� model relies on wall
functions. The dotted line in the upper left �gure is drawn at y = kN=30,
which is the level of the theoretical wall, where the horizontal velocity is
supposed to vanish if the logarithmic region is extrapolated down.

To check if the solution is independent of the value of ReD, four runs
was made with ReD between 5 � 104 and 5 � 106, for kN=D = 0:005 (table
2.1). The resultant velocity pro�les are seen in �gure 2.2. It is seen how
the largest viscous sub-layer is found for the lower ReD. In table 2.1 the
resultant friction-velocity is seen, and the only calculation which di�ers from
the others is the one for the lower ReD. When calculating k+N , it is also
seen that the wall in this calculation is to be considered as being in the
transition-to-roughness regime.
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Table 2.1: The parameters used for the runs with di�erent ReD. The last column
corresponds to the ratio between the height of the smooth-wall viscous boundary
layer to the roughness.

ReD Uf k+N
5 � 104 0.047 12
5 � 105 0.052 130
1 � 106 0.052 260
5 � 106 0.052 1300
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Figure 2.2: Velocity pro�les for four runs on a wall with kN=D = 0:005, and
Reynolds number ranging from 5 � 104 (upper, solid line) to 5 � 106 (lower,
dotted line).

Testing in a oscillatory boundary layer

The classical turbulence models, like the k-� and k-! models, are developed
for ows where the turbulence is supposed to be in local equilibrium. It is
therefore not obvious that they will perform well in non-equilibrium situa-
tions. A simple non-equilibrium situation, which is essential for the present
study, is the turbulent oscillatory boundary layer over a at bed.

The test was made with a period T = 9:72 s, a = 3:1 m, ReD = 4:0� 105

and the Nikuradse roughness kN = 0:84� 10�3 m. These parameters corre-
spond to run no. 13 in the experimental work of Jensen (1989).
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Figure 2.3: Comparison between friction-velocity obtained by k-! and by the
measurements of B.L. Jensen, run 13 (Jensen, 1989).

In �gure 2.3 a comparison is seen between the friction-velocity obtained
by the run, and a few of the measured points. A quite good agreement is
achieved.

2.2 The boundary conditions

The set of equations to be solved is the RNS equations (2.4) for the horizon-
tal and vertical velocities U and V and the pressure P . The turbulence is
resolved by the equations for k and ! (2.7).

On the sides of the domain periodic conditions are used, so that the
calculation is in e�ect made on a in�nite train of ripples (�gure 2.4). At the
top symmetry conditions is used, i.e.

@

@y
= 0 and V = 0 at y = D: (2.17)

The boundary conditions on the bed is U = V = k = 0 and ! given by (2.10)
and (2.16)
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λ

h

D

Symmetry condition

Figure 2.4: The computational domain with boundary conditions and important
quantities.

2.3 The numerical solver

The governing equations are discretized using the Finite Volume method,
for details see Patankar (1980) or Versteeg and Malalasekera (1995). The
equations are written in general curvilinear coordinates to allow the grid to
�t smoothly to the boundaries (see Tjerry (1995) for details).

The main di�culty solving the Navier-Stokes equations in the incom-
pressible case is that speci�c measures have to be taken to �nd the pressure,
as there is no explicit equation for the pressure. To �nd the pressure the
PISO algorithm (Patankar, 1980) is used.

It was found that high order discretization in space was needed to avoid
numerical di�usion. The discretization is the so-called ISNAS scheme of
Zijlema (1996), which is third order accurate in space and monotonicity pre-
serving.

The discretization in time is implicit, except the advective terms which
are semi-implicit.

The grid is made using a hyperbolic grid generator, with a concentration
of points near the bed. In the morphological calculations a simple trans�nite
interpolation has been used to create a grid.

To drive the waves and the current through the domain an extra force
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Figure 2.5: An example of the convergence of the ow over a ripple using pid-
control. The ow is converging towards a ux of 1:0 during 100 periods.

term is added to the equations. This term is oscillating for the wave, and
a constant for the current. The current part deserves some extra attention.
Usually a speci�c average current is wanted, but the force which is needed
to drive that current is unknown. The process of iteration to �nd the correct
current is accomplished using pid-control.

PID control

The basic idea is that three parameters are available when the ux q is
searched for: The di�erence between the calculated and the wanted ux,
P = q0 � q ('P' is for proportional), the integrated value of the ux I =R t
0
(q0 � q) dt ('I' is for integral) and the gradient of the ux D = @q0=@t ('D'

for derivative). In steady current t is the time and q0 is the ux, in waves
t is the number of periods and q0 is the ux averaged over one period. All
three parameters P , I and D, have to vanish when the solution is converged.
Thus the change in the slope s can be found as:

s = ��
�
�P (q

0 � q) + �D
@q0

@t
+ �I

Z t

0

q0 � q dt

�
; (2.18)

where � is the general relaxation factor and �P , �D and �I are relaxation
factors for P, D and I, respectively. This is as simple as it looks and very easy
to implement. An example of a ow over a ripple converged using pid-control
is seen in �gure 2.5.

The rôle of each of the relaxation factors is as follows:
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Relaxation parameter Rise time Overshoot Settling time

�P Decreases Increases No change
�D No change Decreases Decreases
�I Decreases Increases Increases

The table can be used to tune the relaxation factors. If there is a too large
overshoot, then �D should be increased and so on. These are just general
guidelines; if for example �D is too large, the system will become unstable.

The values of the relaxation parameters used in the following are:

� = 0:1 �P = 1:0 �D = 3:0 �I = 0:05

For some cases the settling time can be decreased if the I-control is completely
disabled and �D is made somewhat larger.

2.4 Modelling the sediment transport

The transport of sediment is usually split into two partitions: bed load and
suspended load.

The bed load is a thin layer of sand rolling and sliding on the surface of
the bed. In water the density of the sand and the water is of the same order
of magnitude, and thus the process of saltation is not present, as it is in air
where the sand is much heavier than the air. The bed load is therefore in
constant contact with the bed and is a function of the local shear stress and
the local slope only. In the model the bed load is described as a volume ux
of sediment.

Due to turbulent uctuations the sediment is lifted out of the bed load
layer and into suspension. Here the sediment is advected by the ow, di�used
due to turbulent \di�usion" and is drifting towards the bed due to gravity.
The suspension is described as a �eld variable c which is the concentration
of sediment. This is modelled by a transport-di�usion equation:

Dc

Dt
= ws

@c

@y
+r(�src); (2.19)

where ws is the settling velocity and �s is the di�usivity of the suspended
sediment, which is usually assumed to be equal to �T . This formulation has
to be supplied with a boundary condition at the bed, which will be derived
in together with the bed load.

The most important quantity determining the sediment transport is the
local shear stress on the bed, �b. If a single grain is considered the shear
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stress acts as a destabilising force on the grain due to both lift and drag:

Fdestab � d2�b: (2.20)

Counter to the destabilising force of the shear stress is the stabilising force
due to gravity:

Fstab / �g(s� 1)d3: (2.21)

Forming the ratio between the destabilising and the stabilising forces gives a
non-dimensional shear stress, the Shields parameter:

� � �b
�g(s� 1)d

� Fdestab
Fstab

(2.22)

which will be encountered numerous times throughout this Thesis.
The Shields parameter directly determines the bed load and is indirectly

responsible for the amount of the suspension through the boundary condition
at the bed.

In the following the relations for the bed load and the bed boundary
condition for suspended transport will be derived through a mixture of fun-
damental principles, physical reasoning, and empirical relations.

2.4.1 The bed load

The ux of sediment qb is the volume transported per time and per width
through a cross section in the bed. The ux can be found if the velocity of
a single grain in the bed load layer is known together with the number of
grains in motion.

The velocity of a single grain is found by considering the driving and
stabilising forces on a single grain in motion (�gure 2.6). The main driving
force is the drag on the grain, which is modelled using the Morison equation
(i.e. Sarpkaya and Isaacson (1981)):

FD =
1

2
�CD

�

4
d2jUrjUr; (2.23)

� is the density of water, CD is the drag-coe�cient, and Ur is the relative
velocity of the water a�ecting the grains. The relative velocity is Ur =
U jy=d � Ub, where Ub is the velocity of the grain. For convenience later on
U jy=d is written as U jy=d = �Uf . Assuming a logarithmic velocity pro�le
close to the bed (2.9) � ' 10. The numerical sign around Ur is important in
order to keep the right sign of the drag-force.
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Figure 2.6: The forces acting on a single grain on a sloping bed

The other component of the driving force arises from the gravity, and has
the form:

Fg = �W sin ; (2.24)

where W is the gravitational force: W = �g(s� 1)d3�=6. In the example in
�gure 2.6 this force actually acts as a retarding force.

The stabilising force is the friction created by the component of the grav-
ity normal to the bed:

Fs = ��DW j cos j�; (2.25)

where �D is the dynamic friction coe�cient, and � is the sign of the direction
of the bed load.

It is now possible to make a balance of forces:

FD + Fg + Fs = 0; (2.26)

and the velocity of the grains can be expressed as:

Ub = �Uf � s�
p
�c
p
� cos  + sin =�D

p
(s� 1)gd; (2.27)

where �c is the critical Shields parameter for a at bed:

�c =
4�D

3CD�2
: (2.28)

From measurements (the so-called Shields diagram, see e.g. (Freds�e and
Deigaard, 1992)) it is found for Re = Ufd=� > 5 that �c is independent on
Re and �c � 0:05. If the velocity of the grains is set to zero, the criterion for
the threshold of motion on an arbitrarily sloping bed can be found:

�c = �c

�
� cos  +

sin 

�D

�
; (2.29)
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where �c is de�ned similar to the the de�nition of � in equation 2.22. Sub-
stitution of �c into equation 2.27 gives:

Ub

Uf
= �

 
1�

s�����c�
����
!
: (2.30)

Now that the velocity of the grains is calculated, it still remains to deter-
mine the number of grains per area n in the bed load layer, before the bed
load can be calculated.

The force balance on a small volume of the bed load layer is written as:

�b = �g + �c: (2.31)

The interpretation of the terms is as follows: The parameter �b is the shear
stress on the top of the bed load layer. It is assumed that this is equal to
the shear stress on a �xed at bed. �G is the stress arising from the inter-
granular collisions, giving rise to \grain-stresses" (Kovacs and Parker, 1994;
Freds�e and Deigaard, 1992). This is modelled as: �G = nW�D. Finally, the
parameter �B is assumed to be equal to the critical shear stress on the bottom
�c. It is thus assumed that the inter-granular stress absorbs all the stress,
except the critical stress. This is called the \Bagnold hypothesis" (Kovacs
and Parker, 1994). Making equation 2.31 non-dimensional by dividing with
�(s� 1)gd the number of grains in motion is found as:

n =
6

�d2�D
(� � �c); (2.32)

where �c is de�ned in (2.29). If � < �c, then no grains are in motion and
n = 0.

Now, �nally, the bed load can be calculated. The bed load, qb is de-
�ned as the ux of sand per width and is made non-dimensional as �b =
qb=
p
(s� 1)gd3. This then gives:

�b(�; ) = n
�

6
d3Ub

p
(s� 1)gd3 (2.33)

=
�

�D
(� � �c)(

p
j�j �

q
j�cj): (2.34)

Again this is only valid for � > �c. In the at-bed limit this equation is very
similar to the classical empirical relation by Meyer-Peter and M�uller from
1948 :

�b(�) = 8(� � �c)
1:5: (2.35)
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Freds�e proposed to add a simple linear gravity correction to the Meyer-Peter
formula, valid for small  (Freds�e, 1974):

�b(�; ) = 8(� � �c � �
@h

@x
)1:5 (2.36)

with � ' 0:1. Only very few measurements exist of the bed load on a sloping
bed. In a recent study Damgaard, Whitehouse, and Soulsby (1996) suggested
that the Meyer-Peter formula should be corrected with the empirical factor
fslope:

fslope = 1 + 0:8

�
�c
�

�0:2�
1� �c

�c

�1:5+�=�c

; (2.37)

such that

�b(�; ) = 8fslope(� � �c � 0:1
@h

@x
)1:5: (2.38)

This formula fslope is not the most elegant �t, i.e., it is not well de�ned for
all positive slopes.

2.4.2 Corrections to the bed load and the bed BC for

suspended transport

Engelund and Freds�e have elaborated on the bed load transport derivation
presented in the previous section, and proposed some empirical corrections
for high Shields parameters (Engelund and Freds�e, 1976). This also leads
to a derivation of a bed boundary condition for the suspended transport
(Freds�e and Deigaard, 1992).

First of all it was found that the velocity of the grains �tted the measure-
ment better if the expression:

Ub

Uf
= �

 
1� 0:7

s�����c�
����
!

(2.39)

was used instead of equ. (2.27). This is a very small correction to the bed
load.

A more important correction is to extend the formula to high shear stress
rates, where it is well known that the Meyer-Peter formula overestimates the
bed load. The argument goes that there can only be one layer of grains in
motion in the bed load layer. Further layers of grains belong to the suspended
load. This sets an upper limit on n such that n � d�2. This can be realized
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adopting the expression:

n =
1

d2

"
1 +

� �
6
�d

�0 � �c

�4
#�0:25

: (2.40)

This means that there will be an excess stress in equ. (2.31) which will
be attributed to stresses in the upper part of the moving layer; suspended
transport. The stress in a thick slurry of sediment and water was measured
by Bagnold (1954) to be:

�G = 0:013�s(�fd)
2

�
@u

@z

�2

; (2.41)

where d=�f is the mean free path of the particles, which is related to the
concentration of sediment as:

c = c0

�
1 +

1

�f

��3

; c0 = 0:65: (2.42)

A crude approximation is to assume that the velocity gradient in the lower
layer is logarithmic and una�ected by the presence of the sediment, so that
it follows the law of the wall, which in di�erential form reads:

@U

@y
=
Uf

�y
; (2.43)

which is inserted in (2.41).
The balance in the bed load layer now reads:

�b = �g + �G + �c: (2.44)

Inserting the stresses and dividing by �g(s � 1)d the mean free path of the
sediment can be found to be:

�2f =
�2y2

0:013�sd2�

�
� � �c � n

�

6
d2�D

�
: (2.45)

The bed boundary condition for the suspended sediment is usually taken at
y = 2d leading to:

�2f jy=2d =
4�2

0:013�s�

�
� � �c � n

�

6
d2�D

�
: (2.46)
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Figure 2.7: The bed load as calculated by di�erent formulas on a level bed. The
parameters used are: � = 6:5 and �D = 0:65.

Using equ. (2.40) to �nd n and equ. (2.42] to �nd the concentration from
equ. (2.46), a boundary condition for the suspended sediment can be found
as:

cb(�; )jy=2d: (2.47)

The bed load is again found as before equ. (2.34), but now using the corrected
expression for Ub equ .(2.39) and n equ .(2.40).

The di�erent bed load formulas are compared in �gure 2.7 for a level bed.
For small and medium shear stress rates the formulas give almost identical
results, but for higher shear stress rates (� > 0:4) the correction in the
Engelund-Freds�e formula sets in and limits the bed load.

The di�erent formulas are also quite similar when the bed load at di�erent
bed slopes are compared (�gure 2.8). For low shear stresses the formula
derived in (2.34) �ts the empirical fslope correction best, while for high shear
stress rates the Engelund Freds�e formula �ts better. The empirical fslope-
formula has a strong correction close to the angle of repose, showing that
small avalanches are already setting in. This shows that the dynamic angle
of repose is smaller than the static angle of repose for ow down slope.

2.4.3 The �nal sediment transport model

Now a complete formulation of the bed load and the suspended load can be
constructed.

The bed load is described using the Engelund-Freds�e formulation equ
. (2.34), (2.39) and (2.40). The sloping bed is taken into account through
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Figure 2.8: The bed load calculated for di�erent slopes and at small shear stress
(left) and high shear stress (right). The bed load have been divided with the bed
load at a at bed to make a facilitate an easier comparison of the slope e�ect
alone.

the critical shear stress equ. (2.29), with a strong down-slope ux if the bed
slope is larger than the angle of repose.

The suspended sediment is described using the transport equation (2.19),
supplied by the bed boundary condition equ. (2.40), (2.42) and (2.46).

This formulation has the advantage of being a consistent description of
both the bed load and the bed boundary condition for the suspended sedi-
ment.

The most important shortcoming of the model is that the bed load and the
bed boundary condition are functions of the average shear stress only. The
turbulent uctuations, represented by k, are ignored. This is especially bad
for the bed boundary condition for suspended sediment. An example where
this boundary condition fails is at a reattachment point. Here the average
shear stress is zero, but there is a lot of motion giving rise to large values of
k. In an experimental situation (i.e. the reattachment point behind a dune)
large clouds of sediment are thrown into suspension exactly here. One way to
take this into account would be to derive a bed boundary condition involving
not only the shear stress but also the turbulent kinetic energy.

Although far from perfect the present sediment transport formulation cap-
tures the most important aspects of the sediment transport. The de�ciencies
it has are not believed to bar an understanding of the basic mechanisms
behind the dynamics of ripples.
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2.5 Morphological calculations

When the ow and the sediment transport have been calculated it is, at least
in principle, simple to make a morphological calculation where the bed pro�le
is continuously changed. The change in the bed pro�le can be found using
the continuity equation for the sediment

@h(x; t)

@t
= � 1

1� n

@qt(x; t)

@x
; (2.48)

where n (= 0:4) is the porosity of the bed and qt is the total sediment ux
through a cross-section

qt(x; t) = qb(x; t) +

Z D

h(x;t)

qs(x; y; t)dy: (2.49)

The continuity equation is discretized using the quick scheme of Leonard
(1979) which is third order accurate in space. To avoid numerical instabilities
the sediment transport is smoothed using an ordinary running average. In
principle the bed can be updated every time step using the continuity equa-
tion, but in practice this requires that acceleration terms due to the moving
grid are incorporated in the governing equations (e.g. Mayer, Garapon, and
S�rensen (1998)). Instead a more pragmatic approach has been adopted
{ the bed is only updated every tenth time step. This way the solver is
\kicked" every time the bed and the grid are updated, but after ten time
steps it has recovered completely. Usually 3000 time steps per period have
been employed for morphological calculations.

One major, and basically unresolved, problem with the morphological
calculations is the appearance of instabilities manifested as small steady-
current ripples with a wave-length of 5{10 grid points. These might be caused
by numerical instabilities, but these often manifest themselves as oscillations
with a wave-length of only two grid points. The small ripples might also be
semi-physical, that is, they are solutions to the quite complicated ow- and
sediment model. As these ripples are not present in Nature, they represent
a shortcoming of the model.

The morphological calculations of ripples are very fortunate in so that
they are dominated by avalanches down the sides of the ripples which sweep
out the small ripples. Thus no special measures are taken to dampen these
small ripples.

In the morphological calculation the angle of repose will often be encoun-
tered, so the bed load formula need to be able to handle this situation. A
very pragmatic solution has been employed: when the angle of the bed slope
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is equal to or larger than the angle of repose, a strong bed load ux is made
down-slope, regardless of the shear stress.

2.6 Grid independence of the solutions

One of the more boring aspects of numerical work is the need to test whether
the results are insensitive to the grid spacing used. Nevertheless it has to
been done. This and other numerical aspects are the topic of this section.
The not-so-technically-interested reader is encouraged to skip this section.

2.6.1 Grid sensitivity of the ow

All the tests have been made around a \standard test case". The Reynolds
number is Rea = 3 � 105, which ensures that even a at bed has a fully turbu-
lent developed rough boundary layer. The length of the ripple is �=a = 1:2,
and the steepness is h=� = 0:20, both are around the expected equilibrium
shape.

There are several parameters that a�ect the quality of the grid. The
most notable is the number of points in the x and y directions, N and M
correspondingly. It was found that the ow was quite sensitive to the density
of points just around the crest, so a stretched grid was used, concentrating the
points around the crest. The important parameter is then �xcrest=a and not
N , where �xcrest is the grid spacing at the crest. In the vertical direction
another important point is how close the points are spaced near the bed.
With the k-! model it is necessary that the viscous sub-layer is resolved,
and therefore some points are needed here. The important parameter is then
the distance from the bed to the �rst grid cell y+0 = y0Uf=�, which should
not be larger than 2 (Wilcox, 1993b). The friction velocity is not known
beforehand, so the value of Uf used is the one from a at bed, found using a
constant friction factor. Finally there is the depth of the ow. This is more
a physical than a numerical parameter, but a criterion for the simulations to
be independent on the depth is needed.

The four parameters to be examined are then: �xcrest=a, M , y+0 and
D=a.

In �gure 2.9 the friction velocity averaged over one half period are shown
for grids with di�erent values of �xcrest=a and N . There are not any major
di�erences, but it seems as if a grid with �xcrest=a < 0:012 results in some
minor instabilities near the crest. Thus �xcrest=a should be at maximum
0.012 and 40 points in the horizontal direction should be enough.
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Figure 2.9: The friction velocity averaged over one half period for di�erent grids.
The number of iterations per period are between 800 and 2000. y+0 = 0:80.
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Figure 2.10: The friction velocity averaged over one half period, for di�erent
values of y+0 and N . �xcrest=a = 0:012.

The inuence of changing the value of y+0 is mostly felt in areas where the
shear stress is large, i.e., on the \wind"-side of the crest (�gure 2.10). For
y+0 � 0:40 the solution seem independent on y+0 .

If the wave boundary layer created by the ripples is thin compared to
the depth of the ow, it is also expected that the ow over the ripples are
insensitive to the depth of the water above them. As one does not want to
waste grid points resolving the potential ow far above the ripples, one must
know how shallow a depth can be used without a�ecting the ow around
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Figure 2.11: The friction velocity averaged over one half period, for di�erent
values of the depth D=a. The grid is 60�40, y+0 = 0:40 and �xcrest=a = 0:012.

the ripples. In �gure 2.11 the ow is calculated while varying the depth. It
is seen that a small depth D=a < 1:0 clearly a�ects the ow with a strong
inhibition of the separation bubble.

A summation of the results from the tests with various grids is as follows:
The grid size should be 40 � 30, with the spacing at the crest �xcrest=a �
0:012 and y+0 � 0:40. For the simulation to be independent of the depth
D � 3:0a. A grid satisfying the above minimal requirements is shown in
�gure 2.12.

2.6.2 Grid sensitivity for suspended transport

In �gure 2.13 the transport of suspended sediment with three di�erent grid
sizes is shown. The settling velocity is ws=Um = 0:065 which is quite small,
resulting in large amounts of suspension. For all three grids the ow is the
same, as could be expected from the grid sensitivity tests in section 2.6. The
transport averaged over the whole period is much smaller than the transport
averaged over a half period. The period-average can be performed as the
average of the half-period averaged transport in the �rst and the second half
of the period. Thus the period average is the di�erence of two large numbers,
which have to converge to a small number. This is what is numerically called
a sti� problem, and it means that it is very hard to converge the period
averaged sediment transport, often around 50 periods are needed.

A sad fact is seen from the �gure, namely that grid convergence is not
completely achieved, even with grids with up to 100 vertical points. The
di�erence between the grid with 40 vertical points and the grid with 100
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Figure 2.12: A grid created using a hyperbolic grid generator above a rippled
bed with steepness h=� = 0:20. The grid satis�es the minimal requirements for
the ow to be independent on the grid.

vertical points is around 10 %. The cause of the problems with the suspended
transport is the very strong gradients in the suspended transport near the
bed. To resolve these gradients correctly an extremely �ne grid is needed.
The use of �ner grids takes up more computer time, both because of the
larger number of cells, but also because the time-step has to be reduced
when the grid size is reduced. This makes the use of a grid which resolves
the suspended transport correctly prohibitive in this model.

It is always annoying to have a result without complete grid insensitivity,
but in this case the uncertainty has to be weighted against the uncertainty
inherent in the modelling of the suspended sediment. As already pointed
out in section 2.4.2, there are already some weak points in the modelling of
the suspended sediment. It is reasonable to assume that these uncertainties
overshadow the grid problem. Still the modelling of the suspended transport
gives sensible results qualitatively.
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Figure 2.13: The transport of suspended sediment over ripples using di�er-
ent grids. On the top �gure is shown the period-averaged ux of sediment
(h�sit, lower lines) and the half-period-averaged ux of sediment (h�si1=2, upper
lines). The lower �gure shows the concentration of suspended sediment aver-
aged over one wave period, for two di�erent grids (�=a = 1:2; h=� = 0:2; �0 =
0:15; ws=Um = 0:065).



Chapter 3

Initiation of ripples

This chapter is devoted to the study the formation ripples from an initially
at bed. For the coastal engineer this problem is only of academic interest,
because a at bed is rarely found in Nature. For the understanding of the
ripples as a pattern-forming system the way the bifurcation from a at bed
to a rippled bed takes place is important. Three di�erent mechanisms for the
creation of ripples will be described. From a at bed the rolling grain ripples
appear as a transient phenomenon, which eventually grow into vortex ripples.
Two conceptually di�erent explanations of the creation of rolling grain ripples
from a at bed will be explored. The �rst model is based on the motion
and amalgamation of single grains (section 3.2). This model is essentially a
granular theory. The other mechanism is a theory where the selected wave
length is found from a linear stability analysis of the Stokes boundary layer
ow (section 3.3). This theory is then a uid dynamics theory. Finally vortex
ripples can be created via nucleation (section 3.4). This is where an initial
�nite perturbation on the at bed nucleates other ripples. An example of
the formation stage of ripples is seen in �gure 3.1.

3.1 The rolling grain ripples

The ripples �rst appearing on a at bed, when the Shields parameter is close
to the critical value, have been called rolling grain ripples by Bagnold (1946).
At this stage the grains which are pulled loose from the bed, start rolling back
and forth on the top of the at bed. After a while they collect together and
form small triangular ridges: rolling grain ripples. Viewed from above the
rolling grain ripples form long and very regular bands.

According to Bagnold (1946) the rolling grain ripples are stable if the
Shields parameter is less that two times the critical Shields parameter. If
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Rolling grain ripples

Vortex ripples

Figure 3.1: An example of a at bed with rolling grain ripples and vortex ripples
invading from the top.

the Shields parameter becomes larger than this, the lee vortex becomes so
strong that it is able to initiate grain motion in the space between two rip-
ples and thus scoop grains toward the crest of the ripples. In this case the
ripple growth set in and will continue until the equilibrium vortex ripples
are reached. However, stable rolling grain ripples have not been found in
the recent high-quality experiments of Scherer et al. (1999) and Stegner &
Wesfried (1998). It seems as if the rolling grain ripples are always developing
into vortex ripples, but the transient can be very long if the grain motion is
close to threshold. Probably Bagnold had problems with invasion of ripples
via nucleation from the boundaries, and this invasion happened faster than
the rolling grain ripple could evolve into vortex ripples on their own accord.

Some attempts have been made to estimate the length of the rolling
grain ripples. The most complete theory is due to Blondeaux, Vittori and
Foti ((Blondeaux, 1990; Vittori and Blondeaux, 1990; Vittori and Blondeaux,
1991; Foti and Blondeux, 1995b; Foti and Blondeux, 1995a; Blondeaux et al.,
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1996)). This is a linear stability analysis of the ow, coupled to the sediment
motion. Before presenting the linear stability analysis, a simple model based
on the motion of the individual grains is developed.

3.2 A simple granular model of rolling grain

ripples

In Bagnolds original classi�cation of the rolling grain ripples from 1946 , he
describes how they are created by grains moving back and forth over the bed:

Though initially distributed at random, the rolling grains be-
come organised as time goes on, and tend to come to rest in
parallel transverse zones. More grains reach these zones than
leave them, so there is a progressive congregation of grains in
them, and the zones soon become little wavy ridges a few grains
high, whose crests sway from lee side to lee side during successive
stroke reversals. Each lee side becomes a miniature scree at the
angle of repose. As the ridge grows it shelters from the water
action a wider and wider strip of at surface on its successive
lee sides; and when the sheltered area extends as far as the next
ridge no further grain movement can take place anywhere but on
the ridge itself. Hence, since the ridges can now collect no more
grains, they cease to grow, and the arrangement becomes stable.
The repetition distance is evidently the width of the ow shadow
of the ridge, and depends on its height.

This description of grains rolling back and forth, merging to create ridges,
and attracting nearby grains due to a shadow zone has been put into a simple
mathematical model.

3.2.1 Formulation of the model

The model consists of N particles rolling on top of a rough, solid surface.
Each particle has a position xi and an area. As the model is one-dimensional
the areas is referred to as the mass mi of the particle. As the particles merge,
they become small rolling-grain ripples with a height hi =

p
mi.

The ow moves back and forth above the bed and makes the particles
move on the bed. Behind each particle/ripple there is a shadow zone, due
to the creation of a separation bubble. The shadow zone is the area behind
the particle where the absolute value of the shear stress is smaller than it
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Figure 3.2: Each particle has a shadow zone extending a length �shi in the
upstream direction (left). Right: The function f is used to describe how a
particle is slowed down when it enters the shadow zone of another particle. �x
is the distance between two neighbouring ripples. The example shown here is a
a time in the wave period when the ow is from the left to the right.

would be on a at bed. The length of the shadow zone is therefore larger
than the length of the separation bubble. If the shadow zone is much smaller
than the amplitude of water motion, the ow in the lee side of the ripple
can be assumed to have su�cient time to become fully developed. The fully
developed ow is similar to that past a backward facing step in steady ow,
which has been extensively studied (see e.g. Tjerry (1995)). In that case the
separation bubble itself has approximately a length of six times the height
of the step, but the shadow zone will be longer than that. Approximately 16
step heights away from the step there is a maximum in the shear stress on
the bed, which sets the maximum extent of the shadow zone. As a �rst as-
sumption the shadow zone is assumed to have a length which is proportional
to the height of the particle: ls:i = �shi. If a particle enters the shadow zone
of another particle, it is slowed down according to the distance between the
particles. This means that the actual velocity of a grain is uif(�x) where
�x is the distance between the grain and the nearest neighbour downstream,
and f is the function determining the nature of the slowing of the motion of
the particle. A simple linear function is used, as shown in �gure 3.2. The
exact form of the function f is not crucial, the important parameter is the
extent of the shadow zone �s.

When two particles collide, they stick together, and form a new particle
with a mass which is the sum of the masses of the two colliding particles.
They now form a small ripple. The ripple moves more slowly back and
forth than a single particle, according the \one-over-height" law. This law
is well known in the study of dunes in the desert (Nishimori et al., 1998)
or sub-aqueous dunes (Freds�e, 1996; Freds�e and Deigaard, 1992), and can
be illustrated by a simple geometrical argument. Suppose there is a ux of
sand over the crest of a ripple or a dune qcrest (see �gure 3.3). To make the
ripple move a distance �x an amount of sand h�x sin(�) is needed (� being
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Figure 3.3: Geometrical illustration of the quantities involved in the derivation
of the one-over-h law.

the angle of repose). As the sediment ux is amount of sand per unit time,
the velocity of the ripple is uripple = qcrest=(h sin(�)) / 1=h. A single grain
has the velocity Ub, so the velocity of a particle with height hi becomes:
ui = Ubd=hi.

It is now possible to write the equations of motion for the particles as a
system of coupled ODEs:

_xi =
d

hi
U(t) f

�
xi � xi�1

�shi�1

U(t)

jU(t)j
�

| {z }
positive half period

f

�
xi � xi+1

�shi+1

U(t)

jU(t)j
�

| {z }
negative half period

; i = 1 : : : N (3.1)

where U(t) is an oscillating ow with amplitude Ub and period T .
When lengths are scaled by the diameter of the grains and time by the

period T , it is possible to identify the three relevant dimensionless parameters
of the model:

�s { The length of the shadow zone divided by the height.
ag=d { The amplitude of the motion of a single grain, divided

by the grain diameter.
�f=d { The initial distance between the grains; �f = L=N ,

where L is the length of the computational domain and
N is the total number of grains.

It can be argued that new grains will continuously be lifted from the bed
and added to the initial number of grains in motion. As the part of the
at bed between the ripples is covered by the shadow zones of the particles,
these stretches will be shielded from the full force of the ow, and only very
slowly will new grains be loosened here. This small addition of new grains
is what makes the rolling grains ripples eventually grow into vortex ripples.
This slow growth is very well illustrated by the measurements of Stegner &
Wesfried (1998).
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Figure 3.5: Zoom of the movement of the particle in the �rst two wave periods.
ag=d = 35, �f = 3:23 and �s = 10:0.

initial distance between the grains becomes:

�f
d

=
1p
nd

(3.5)

=

r
��D

6(�0 � �c)
: (3.6)

The last parameter, �s, is a bit harder to estimate. Following the analogy
to the ow over a backward facing step the length of the shadow zone must
be larger than the length of the separation bubble (6h) and smaller than the
point with maximum shear stress (16h). Thus 6 < �s < 16.

The length of the shadow zone can also be examined using numerical
simulations over a small triangular ripple. In �gure 3.4 the shear stress on
the bed is shown averaged over one half wave period. A strong separation
bubble is seen in the lee side of the ripple. For the two smallest ripples, the
length of the shadow zone is shorter than 20 ripple heights, and as the ripples
become larger, the shadow zone diminishes. For the large height it seems as
if the approximation �sh � a breaks down, and the shadow zone is then
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Figure 3.6: The development of the particles until steady state is reached (top).
A section of the bed at steady state is shown in the bottom �gure.

no longer just proportional to the height of the ripple, but is limited by the
amplitude of the uid motion.

3.2.2 Numerical and analytical solutions of the model

The runs in this section are based on a simple example with �0 = 0:1, a
grain diameter of d = 0:2 mm and a wave period of T = 2 sec. This gives:
ag=d = 35 and �f=d = 3:23. �s is set to 10. As initial condition all particles
have size and mass 1:0� 10 %, to add some initial perturbations. There are
several thousand particles initially.

In the �rst few periods a lot of grains is colliding and merging (�gure
3.5). As the ripples are formed and grow bigger the evolution slows down,
until a steady state is reached (�gure 3.6). There is clearly a well de�ned
average spacing between the ripples in the steady state, but there is scatter
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Figure 3.8: The average height of the rolling grain ripples at equilibrium. The
legend is the same as in �gure 3.7

of the spacing around the average value.

In �gures 3.7 and 3.8 the average lengths and heights of the ripples in
the steady state is shown with di�erent values of the parameters. Each run
is started from the initial disordered state.
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Figure 3.9: The equilibrium length between the rolling grain ripples, scaled using
equ. (3.9). The legend is the same as in �gure 3.7. The dotted line corresponds
to the results of equ. 3.9.

Changing ag=d does not produce any noticeable change in the wave length
or the height of the rolling grain ripples. The ripples do depend on the length
of the shadow zone �s=d. The longer the shadow zone, the larger the ripples.
This can be used to estimate the average equilibrium length between the
ripples. When the distance between two ripples is longer than the shadow
zone of the ripples, they are no longer able to interact. The criterion is:

�eq � 2�sheq; (3.7)

= �2
s

r
24

��D

p
�0 � �c (3.8)

where subscript eq denotes average value at equilibrium. The height at equi-
librium can be found by splitting the initial number of particles evenly onto
the equilibrium ripples. Then meq = �eq=�fd

2 and so heq=d =
p
�eq=�f ,

which gives a minimal equilibrium wave length:

�eq
d
� 2

�2
sd

�f
: (3.9)

This result is illustrated in �gure 3.9. It is seen that the length between the
ripples is around the value given in equ. (3.9). There still seem to be a weak
dependency on �f=d which is not accounted for in equ. (3.9). The fact that
the �nal wave length is reached when the ripples no longer interact shows
that the exact form of the interaction function f is not important.

3.2.3 Comparison with experiments

The only parameter which has not been accurately determined is �s. The
value of this parameter can be estimated by comparison with measurements.



3
.2
A
sim

p
le
g
ra
n
u
la
r
m
o
d
e
l
o
f
ro
llin

g
g
ra
in

rip
p
le
s

4
3

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0 50

100

150

200

250

300

350

400

θ

λ
eq

 /d

F
igure

3.10:
C
om

parison
b
etw

een
the

m
easured

w
ave

lengths
of

rolling
grain

ripples
(red

crosses),
results

from
the

m
o
del

(circles),
and

from
(3.9)

(full
lines).

T
he

blue
lines

and
circles

corresp
ond

to
�
s
=
10,

the
black

ones
to
�
s
=
13.

T
he

critical
S
hields

param
eter

is
0.04

and
�
D
=
0:65.

T
he

green
square

corresp
onds

to
the

result
from

the
linear

stability
analysis

in
as

m
ade

by
B
londeaux

(1990)

In
1976,

S
leath

m
ad
e
a
series

of
ex
p
erim

en
ts,

m
easu

rin
g
th
e
w
ave

len
gth

of
rollin

g
grain

rip
p
les

(S
leath

,
1976).

T
h
e
rip

p
les

w
ere

form
ed

on
a

at

tray
oscillatin

g
in

still
w
ater

u
sin

g
san

d
of

tw
o
d
i�
eren

t
grain

sizes:
0.4

m
m

an
d

1.14
m
m
.
T
h
e
sh
ear

stress
on

th
e

at

b
ed

for
th
e
ex
p
erim

en
ts
can

b
e
fou

n
d

u
sin

g
Jon

sson
s
friction

factor
(1976),

an
d
from

th
is
th
e
S
h
ield

s
p
aram

eter
can

b
e
fou

n
d
.
T
h
e
ran

ge
of

S
h
ield

s
p
aram

eters
w
as

from
th
e
critical

S
h
ield

s
p
aram

eter
to

�
0
=

0:42.
F
or

th
e
h
igh

S
h
ield

s
p
aram

eters
th
e
rollin

g
grain

rip
p
les

w
ere

very
u
n
stab

le,
an
d
th
ey

q
u
ick

ly
d
evelop

ed
in
to

vortex
rip

p
les.

T
h
e
m
easu

red
w
ave

len
gth

th
en

re
ects

th
e
len

gth
of
th
e
rollin

g
grain

rip
p
les

b
efore

th
ey

d
evelop

ed
in
to

vortex
rip

p
les.

In
�
gu
re

3.10
th
e
ex
p
erim

en
tal

resu
lts

are
com

p
ared

w
ith

eq
u
.
3.9

for
�
s
=
10

an
d
13.

T
h
e
resu

lts
u
sin

g
eq
u
.
(3.9)

are
sh
ow

n
w
ith

lin
es

togeth
er

w
ith

ru
n
s
from

th
e
fu
ll
m
o
d
el.

T
h
e
corresp

on
d
en
ce

b
etw

een
th
e
m
o
d
el
an
d

th
e
ex
p
erim

en
ts

is
q
u
ite

go
o
d
,
b
u
t
th
ere

are
som

e
d
iscrep

an
cies.

T
h
ere

are
a
few

p
oin

ts
w
ith

sm
all

w
avelen

gth
s
for

w
h
ich

th
e
m
o
d
el

d
o
es

n
ot

�
t
th
e

m
easu

rem
en
ts.

T
h
ese

m
easu

rem
en
ts

are
taken

very
n
ear

th
e
critical

S
h
ield

s
p
aram

eter,
w
h
ich

im
p
lies

som
e
ad
d
ition

al
com

p
lication

s.
T
h
e
grain

s
u
sed



44 Initiation of ripples

in the experiment are not of a uniform size; rather are they a part of a
distribution of grain sizes, and the grain size reported is then the median of
the distribution, d50. The Shields parameter is calculated using the median
of the distribution, but actually one could calculate a Shields parameter for
di�erent fractions of the distribution, thus creating a �10 a �50 etc.. When �50
is smaller than then the critical Shields parameter, �10 might still be higher
than the critical Shields parameter. This implies that grains with a diameter
smaller than d50 will be in motion, while the larger grains will stay in the
bed. As only d50 is used in the calculation of the equilibrium wave length,
the distance between the grains �f will be overestimated near the critical
Shields parameter, where the e�ect of the poly-dispersity is expected to be
strongest. An overestimation of �f will lead an under-prediction of the ripple
length, which is exactly what is seen in �gure 3.10

The weak assumption in the model is that the length of the shadow
zone is proportional to the height of the ripple. For very small ripples this
approximation is good, but as the ripples grow larger, the condition �sh� a
is no longer valid, and the length of the shadow zone will be shorter. The
result is that the wave length for large ripples is overestimated, which is also
apparent from �gure 3.10.

3.3 Linear stability analysis

In this section the linear stability analysis of the boundary layer created by
an oscillatory motion will be presented. The analytical results are compared
with the numerical solution of the Navier-Stokes equations, and a sensitivity
analysis of the model is performed.

In 1976 Sleath showed that the laminar ow over a at bed with a sinu-
soidal perturbation creates circulation cells on average (see �gure 3.12)(Sleath,
1976). This is quite easy to understand intuitively. When the ow is from
left to right, there will be a stronger ow near the bed on the left side of
the perturbation than on the lee side because of the converging ow. The
same will happen on the other side when the ow reverses. Averaging the
ow in the �rst and the second half of the wave period produces a net ow
towards the crest. Due to continuity, a reverse ow will have to be created
higher up, leading to the closed circulating cells. This net ow near the bed
leads to a net transport of sand towards the crest, giving a net growth of the
perturbation. The only stabilising factor is the gravity pulling downwards,
and it is this competition between the ow trying to destabilise the bed and
the gravity acting to stabilise which determines the stability/instability of a
given wave length.
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Figure 3.11: The zero order solution at !t = 0 (bottom) to � (top). The grain
diameter is shown on the horizontal axis for Red=Re� = 1.

3.3.1 Mathematical formulation of the problem

The linear stability analysis can be split into four parts: 1) the basic ow
over a at bed, 2) the ow over the perturbation, linearised around the basic
solution, 3) the sediment motion and 4) the coupling between the sediment
motion and the change of the perturbation. In this chapter the ow problem
will be solved fully numerically, and thus the approximations used in the
linearisations can be validated.

The ow problem

Consider a at plate in water oscillating with a angular frequency !0 and
velocity U 0

m (in this section a prime denotes a dimensional variable). The
at bed is perturbed with a sinusoidal perturbation with amplitude �0, wave
number �0 and growing in time as C(t):

h0(x0; t0) = �0C(t0) cos(�0x0): (3.10)

For now, only the ow problem over a �xed bed is examined, so C(t0) = 1.
The ow is forced by an outer oscillating ow:

u0(t0) = �U 0
m cos(!0t0): (3.11)

All variables are non-dimensionalised with the characteristic length scale in
the Stokes ow, �0 =

p
2� 0=!0 and the maximum velocity of the outer ow

U 0
m.
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Figure 3.12: The time-averaged ow over perturbations with � = 0:025 (left)
and � = 0:15 (right) and Re� = 80.

The Navier-Stokes equations are expanded to �rst order in �, and the
resulting equation is an Orr-Sommerfeld equation, which can be solved nu-
merically. For details of the derivation and the numerical solution, see the
papers by Vittori (1989) and Blondeaux (1990).

To zero order the classic Stokes solution is obtained (see e.g. Landau and
Lifshitz (1959), x24):

u(y; t) = (cos(y)e�y � 1) cos(!t); (3.12)

an oscillatory ow with strong gradients near the bed and a phase that varies
with y (�gure 3.11). This solution is supposed to be valid for ow over a bed
with sand as long as the grain diameter d0 < �0, or d < 1. The average shear
stress on the bed produced by the zero-order solution is zero, so the grains
just move back and forth, without any net motion.

The ow at �rst order is inuenced by the bottom perturbation. When
the ow is averaged over one wave-period, steady recirculating cells are
formed (�gure 3.12). These cells create a shear stress on the bottom directed
towards the crest of the perturbation. The ow in �gure 3.12 is calculated
using a full numerical solution of the Navier-Stokes equations. The spatial
Fourier transform of the numerical solution can be used to validate the as-
sumption behind the linearisation of the ow. It was found that up to a
steepness of the perturbation of about 0:1, only the �rst component was rel-
evant. This means that the �rst order solution is actually a very accurate
description of the ow.
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Figure 3.13: The height of the centre of the circulation zones as a function of
the wave number. Re� = 80. The upper curve shows the height of centre for
the cases where there is another set of rolls.

The centre-points of the lower pair of recirculating cells are quite close
to the bed, and the height of the centre is a function of the wave number
of the perturbation � (�gure 3.13). The shorter the perturbation, the closer
the cells come to the bed. When the perturbations become longer, the cells
move closer to the bed again. This e�ect is accompanied by the creation of
another set of rolls on top of the lower set, which is now squeezed closer to
the bottom (as in �gure 3.12, left).

Imagine now a grain with a diameter d = 1. For the long wave lengths
(� < 0:05), this grain will be of the size of the whole circulation zone, and the
strength of the net force moving it towards the crest will be small, or the net
force might even move the grain towards the trough. This is the mechanism
setting the upper wave length of the ripples. For the lower wave length, the
action of gravity on the grains is important.

The sediment transport problem

As described in chapter 5, the Shields parameter is used to �nd the ux of
sand on the bed. As the Shields parameters where rolling grain ripples are
created is small, the Meyer-Peter formula equ. (2.35) is well suited for this
study. Furthermore, the slopes are small in the perturbation theory, so the
linear gravity correction is su�cient to account for the e�ect of the sloping
bed (2.36).

In the laminar boundary layer under a wave, the vertical gradient of u0

varies quite rapidly, and it can be more convenient to use the velocity at
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some point, y00, away from the bottom instead of the shear stress. To �rst
order the shear stress on the bed can be written:

� 0 � �0� 0
u0(y00)

y00
; (3.13)

where y00 is taken at some fraction of the grain diameter, typically y00 =
1=2d0. Again, lengths are non-dimensionalised with �0, and then the Shields
parameter can be written as:

� = u(y0)
F 2
d

Red

d

y0
(3.14)

where Red = d0U 0
0=�

0 and Fd = U 0
0=
p
(s� 1)g0d0. The bed load is:

�b = 8(� � �c � �
@�

@x
)1:5 for � > �c

�b = 0 for � � �c: (3.15)

(3.16)

The addition of the gravity correction to the sediment transport provides a
stabilising mechanism to counterbalance the destabilising e�ect of the ow.
The gravity becomes stronger the shorter the wavelengths, as it goes like ��.

The formula for calculation of the sediment ux used by Blondeaux is a
rarely used one, made by Grass & Ayoub (1982). It can be written as:

�GA = a(s� 1)�1=2+bR0:64b; (3.17)

with R = Ufd=� and a and b are parameters. This formula was derived
on the basis experiments made with just one grain size (140 microns), and
includes four di�erent regimes, with four di�erent coe�cients for a and b. For
the regime coming closest to the present calculations a = 3:24 and b = 3:40.
The Grass & Ayoub formula has been used here only for comparison with
the results of Blondeaux and co-workers.

Coupling between sediment transport and bottom evolution

The evolution of the bed is found using the continuity equation for the sand
(2.48), which in non-dimensional form reads:

@h(x; t)

@t
= � 1

u0�0(1� n)

p
(s� 1)g0d03

@�b
@x

: (3.18)
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Figure 3.14: The growth rate from the stability analysis for di�erent values of
Fd (Re� = 80, Red = 80 and � = 0:15, �gure taken from Blondeaux (1990)).

To �nd the average growth/decay-rate of the bottom perturbation, only the
�rst component of the Fourier transform of @h(x; t)=@t is used. A generalised
growth-rate can then be de�ned as:

c = �1

�

*Z 2�=�

0

@h(x; t)

@t
cos(�x)dx

+
; (3.19)

where h�i denote average over one wave period.

3.3.2 Results

The results shown are from one example with Red = Re� = 80 and Fd = 3:0
(�gure 3.14 and 3.15). This means that the diameter of the grains are equal
to the thickness of the boundary layer; d0 = �0, which is on the borderline of
the validity of the Stokes boundary layer. When d0 > �0 the grains are larger
than the boundary layer thickness, and then the boundary layer becomes
turbulent (see �gure 2.13 in (Freds�e and Deigaard, 1992) for a nice overview
of laminar versus smooth and rough boundary layers).

In �gure 3.14 the growth rate as calculated by the linear stability analysis
of Blondeaux (1990) is shown. This analysis is performed with �c = 0.
Long waves are neutrally stable, and there is a band of unstable wavelengths
around � = 0:2.

The results from the numerical, fully non-linear analysis with the same
set of parameters as in 3.14 is shown in �gure 3.15. This analysis has been
performed with the two di�erent sediment transport formulas, and for �c = 0
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Figure 3.15: The growth rate from the numerics. The full line is the results
using Grass and Ayoub's sediment transport formula (3.17), and the dashed
line is computed using the Meyer-Peter formula (3.16). Re� = 80, Red = 80,
Fd = 3:0 and � = 0:15. To the left �c = 0 and to the right �c = 0:05.

and �c = 0.05. Here, again, a band of unstable wave lengths is observed, but
this time the band is much wider than in the linear stability case, and there
is only a narrow band of stable wave lengths in the long range limit. The
wave length of the maximally unstable wave length is of the same order as
in the analysis by Blondeaux.

3.3.3 Dependence on parameters

Several parameters a�ect the results of the stability analysis. These are:
y0=d, � and �c. In �gure 3.16 the growth rate is shown for a range of � and
y0=d. Increasing the gravity � makes the pro�les more stable. At � = 0:50
there are no unstable wave lengths (except for y0=d = 0:5). Varying y0=d
reveals a maximum of the growth rate at y0=d = 0:5.

The maximally unstable wave length, appears to become longer when
the gravity is increased (�gure 3.17). This is no surprise, as the gravity is
strongest for small wave lengths. The results for the two di�erent sediment
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Figure 3.17: The maximally unstable wave length as a function � for y0=d = 0:5.
Left: �c = 0, right �c = 0:05.

transport formulas are not too far from each other. Turning on the critical
shear-stress changes the results quite drastically for the results obtained by
using the Grass & Ayoub formula. Now the critical wave length appears
to be shorter. The results found by using the Meyer-Peter formula are also
a�ected, but not as much.

The results of the stability analysis can briey be summarised as follows:

� Due to the competition between the gravity which tries to stabilise
perturbations and the drag which tries to destabilise perturbations, a
maximally unstable wave length is found.

� For a short wave length the growth is limited by the action of gravity.

� For large wave lengths the growth is limited by the presence of a second
set of recirculating cells.

� For most parameter values a broad band of wave lengths is unstable.

� The model is generally very robust. Changing the values of the param-
eters does not change the value of the maximally unstable wave length
considerably.
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Extensive comparison with experiments has not been carried out, but the
case that has been studied in this section is marked in �gure 3.10. The
theory seems to under-predict the selected wave length even more than the
simple model, a fact that was also noted by Blondeaux (1990).

It is interesting to note that without a threshold for grain motion, the
stability theory would actually make the �rst bifurcation a supercritical pitch-
fork bifurcation. This makes it (at least in principle) possible to derive an
amplitude equation from the theory.

Finally, the broad band of unstable wave lengths deserves a comment.
Often in pattern forming systems, the non-linearities will make the many
unstable wave lengths interact, creating rich pattern dynamics (e.g. Cross &
Hohenberg (1993)). In rolling grain ripples this dynamics is not seen, in fact
the rolling grain ripple pattern does not show any dynamics. The ripples
just line up in parallel ridges, and real dynamics �rst start when they begin
to grow to vortex ripples.

3.4 Creation of vortex ripples via nucleation

The at bed is a theoretical abstraction which is hard to realize in an ex-
perimental situation, and which is rarely found in nature. In practice there
will always be some �nite perturbation present on the bed: a bump, a relict
ripple or a boundary. On this perturbation the maximum Shields parameter
�p will be larger than the maximum Shields parameter on a at bed (�0), and
therefore there can be grain motion even though there is no grain motion on
the at bed, i.e. �0 < �c < �p. This grain motion will create a ripple, which
again will create a new perturbation on either side, and so ripples will spread
into the at bed as a propagating front. This way of ripple creation I have
called nucleation, because new ripples nucleate around a perturbation. The
velocity of the propagating front of ripples has been measured by Carstens
(1969) and Nielsen (1979). In �gure 3.18 the creation via nucleation is il-
lustrated by the simulation of the ow and sediment transport over a small
triangular ripple on a at bed. Around the ripple the average bed load is
directed towards the ripple, which in e�ect will make the ripple grow. The
area where the new ripple will be nucleated is the area where the average
change in height h@h=@ti is positive. From the continuity equation (2.48) of
the sediment these are the areas where h@�b=@xi is negative, which is marked
on the �gure as \deposition".

The fact that ripples can form and exist under conditions where the at
bed is stable is important, because it means that the initial bifurcation, that
is the formation of ripples from the at bed, is sub-critical (as was also
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Figure 3.18: The bed load averaged over one period (h�bi). The areas where
@ h�bi =@x is negative are areas of deposition where a new ripple is being nucle-
ated.

realized by Scherer et al. (1999)).
A second implication of the nucleation of ripples is that it is experimen-

tally quite di�cult to study the �rst bifurcation, because the initial patterns
do not saturate at a small height, but instead grow to vortex ripples. An-
other problem is the boundary e�ects: it is very hard to maintain a at bed
without perturbations intruding from the boundaries.

3.5 Concluding remarks

The simple granular model, based on the motion of the individual grains,
shows quite good agreement with the measurements by Sleath (1976). The
model predicts that the selected wave length is just a function of the Shields
parameter, with the wave length divided by the grain diameter ' p� � �c.

While the granular model is simplistic and heuristic, the linear stability
analysis is based on a full solution of the ow around a perturbation on the
bed. Still, several parameters enter the model, the gravity parameter � and
the height above the bed where the uid ow is \measured", y0. The actual
growth rates predicted are quite sensitive to the values of these parameters,
but fortunately not the maximally unstable wave length. The broad band
of unstable wave numbers found in the linear stability might suggest a rich
dynamic of the pattern, a thing that is not seen in the real rolling grain
ripples.

Which of the two models describes the true nature of the rolling grains
ripples best is not a simple question to answer. To examine that, more
careful experiments on the rolling grain ripples are be needed. One simple
test would be to observe the dynamics of established rolling grain ripples, by
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changing the conditions such that the equilibrium wave length is changed.
In the granular model the rolling grain ripples are not able to split up and
make shorter ripple once a wave length is selected. They are able to form
longer ripples, though. In the model based on the linear stability the ripples
would be able to change in both directions, especially if the established wave
length has a negative growth under the changed conditions. However, such
experiments are a complicated business, mostly because of invasion of vortex
ripples, and because the rolling grain ripples do not seem to be stable.

Before using more time and energy on this question, one also have to
consider if rolling grain ripples are really important. As a pattern forming
system they are boring. The ripples are very one-dimensional, that is the
patterns have no defects and no dynamics. The selected wave length of the
rolling grain ripples has no relevance to the selected wave length of the vortex
ripples. These are created by a completely di�erent dynamics, which has
nothing in common with the rolling grain ripples. As the rolling grain ripples
are only created from a at bed and are very sensitive to a perturbation
nucleating vortex ripples, they also have no relevance for the coastal engineer
{ they are practically non-existing in the coastal zone.



56 Initiation of ripples



Chapter 4

The ow around vortex ripples

The study of the dynamics of the vortex ripples is to a �rst approximation a
ow problem. This is in contrast to, for example, the creation of ripples in
air, which is believed to be dominated by the granular dynamics (Anderson
(1990), Hoyle & Woods (1997), Terzidis et al. (1998), Nishimori & Ouchi
(1993) and Csah�ok et al. (1998). It is quite easy to realize that the ow
is important, because the selected wave length is mainly a function of a,
with the grain diameter entering as a second parameter through the Shields
parameter. Had the problem been a problem of granular dynamics, the grain
size would certainly have been more important. The granular properties
enter mainly through the settling velocity, which together with the Shields
parameter determines the amount of suspension present.

The complexity of the ow around vortex ripples has been a major obsta-
cle for the development of an understanding of the dynamics of the ripples.
The main di�culties, which makes a simple description of even the qualita-
tive features of the ow di�cult, are listed below:

1. The ow is fully turbulent.

2. Because of the constant oscillatory forcing from the wave, the ow never
reaches a steady state.

3. The ow involves regions of separation, and even advection of detached
separation bubbles (the vortices).

The �rst two points do not exclude a qualitative description. The turbulent
ow over a at bed can be resolved to some degree of accuracy if the pro�le
is assumed to be logarithmic in the boundary layer:

u(y; t) =
Uf (t)

�
ln

�
30y

kN

�
; (4.1)
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where Uf is the friction velocity, Uf '
p
�b=�, and the shear stress can be

found using Jonsson's friction factor, equ. (1.4) and (1.5). The Nikuradse
equivalent roughness is just the grain diameter for a rough wall and � 2:5d50
for a bed with loose sand (Freds�e and Deigaard, 1992). This description
of the ow using the \averaged" ow quantities, the friction fw and the
roughness kN is valid for �=a � 1, but for ripples where �=a = O(1) the
averaged quantities are furthermore a function of both the geometry of the
ripple and the ow parameters. The problem of �nding kN and fw for a
rippled bed is addressed in section 4.4.

To understand the ow around the ripples in detail, the problem in the
point no. three on the previous page is encountered, which is the largest
barrier for a mathematical ow description. Even in steady ow it is very
di�cult to resolve separation zones, due to the break-down of the boundary
layer approximation at the point of separation. This breakdown can be
circumvented to some degree by using an averaged version of the boundary
layer equations (Bohr et al., 1997; Putkaradze, 1997), but this description is
not currently able to resolve the ow around ripples.

Due to these problems the only way to study the ow has been through
experiments and, more recently, with numerics.

4.1 Previous e�orts (and some more recent)

The �rst to systematically study the vortex ripples was Mrs. Hertha Ayrton
(1910)1 . She studied ripples in a small tank which was tilted in an oscillatory
manner to create a standing wave. It was obvious to Ayrton that the vortex
created by the ripple crest was important for the ripples (�gure 4.1). Even
though this setup is not the most convenient for the study of ripples, because
the wave length of the ripples constantly changes throughout the length of
the tank, her observations are remarkably detailed. Using ground pepper as
tracer, she described the creation and the motion of the vortices.

Detailed measurements of the ow over a ripple bed have been made with
laser-doppler by Du Toit & Sleath in 1981 (1981), and in 1985 by Hedegaard
(1985). Using micro-propellers she made very detailed measurements of the
velocity close to the bed over a �xed smooth or rough ripple. Among other
things she found that the vortex exercised quite a strong shear stress on the
ripple surface.

1Mrs. Ayrton was the �rst woman to present a paper before the Royal Society of

London in 1910. The present paper was actually written in 1904, but the publication

postponed until 1910.
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Figure 4.1: The formation of the lee vortex (A), as seen by H. Ayrton (1910).
The �gure also illustrate the formation of a new ripple by nucleation (see chapter
3).

Most of the e�ort in recent years has been focused on obtaining a numer-
ical solution to the ow over vortex ripples. The �rst e�orts were made using
the discrete vortex (DV) method. To be very brief, the idea of the method
is to advect a number of point vortices in a potential ow, which in turn
is inuenced by the presence of the vorticity carried by the point vortices.
For a detailed description of the method in relation to the ow over ripples
see Perrier (1996). The method has turned out to be quite e�ective in some
ows, and it seemed obvious to try it on the ow over ripples. This have
been done by Longuet-Higgins (1981), by Blondeaux and Vittori (Blondeaux
and Vittori, 1990; Blondeaux and Vittori, 1991), by Hansen, Freds�e and
Deigaard (1994) and very thoroughly by Perrier (Perrier et al., 1994; Perrier,
1996). This method resolves many of the qualitative features of the ow,
but for quantitative work it does not perform so well { it has problems even
making a logarithmic pro�le over a at bed.

The alternative is to use turbulence modelling. Many have tried this
as well: Sato et al. (1986), Aydin using k-� modeling (1987), Tsujimoto
et al. using a k-� model (1991), Hyoseob et al. using a mixing length model
(1994), Perrier using k-� and Reynolds Stress turbulence modeling (1996).
Where the DVmethod calculates the full velocity �eld, the turbulence models
only captures the averaged velocities. This makes it easy to create a nicely
converged ow, suitable for i.g. morphological calculations.

Common for all numerical solutions of the ow over the ripples is that it
is quite easy to make a solution that looks like the \real thing". It is hard
not to form a vortex in the lee side, and have it ejected and advected when
the ow reverses. What is much more di�cult, and what has taken up quite
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a large bit of the time for the present Thesis, is to obtain a solution that
compares quantitatively with measurements.

4.1.1 Comparison with experiments

In the attached article (\Wave plus current over a ripple-covered bed") high
quality laser-doppler measurements of the ow over �xed ripples were per-
formed. The measurements were made under both wave-only and wave plus
current conditions. The measurements were compared with the simulations
of the computational model.

The comparison was not without complications. The measurements were
made in a wave ume with relatively shallow water. Thus the waves were not
linear, and the orbital motion had a vertical component, which was signi�cant
even quite close to the ripples. Still the comparisons were quite favourable
for the model for wave conditions.

For the wave plus current case, the problems with the real waves were
even harder, as in this case the waves were interacting with the current. This
comparison was harder because it was not simple to establish the same ow
conditions in the simulations as in the measurements. The main problem here
was �nding the right pressure signal for driving the ow. The agreement was
consequently not as good as in the wave-only case. This does not necessarily
mean that the model performs badly in a wave plus current situation, just
that the experiments were not optimal for comparing with this model. The
optimal set of experiments would be measurements of velocity pro�les over
ripples in a U-tube, which is exactly the same condition as is reproduced in
the model.

A comparison between measurements of the ow over a trench in a U-
tube and the results from a model based upon the same code as the present
model was performed by Jensen (1998). This experimental setup was much
better suited for a comparison with the simulations, and the correspondence
between the measurements and the simulations was very good.

4.1.2 Live vs. �xed ripples

A very common simpli�cation in the study of ripples is to assume that the
ow over �xed ripples is the same as that over real \live" ripples. All numer-
ical work to date has been conducted over �xed ripples, whereas there are
measurements over both �xed and live ripples. As the real ripple performs
some movement during the wave period, especially around the crest, it is not
obvious that the ow is exactly the same as over the �xed ripple.
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Figure 4.2: The friction velocity averaged over one half period, using both a �xed
and a moving ripple. The inset shows the crest of the moving ripple in the two
outermost positions (�=a = 1:2; h=� ' 0:25).

A comparison between the shear stress on a �xed and a live ripple has
been performed. The �xed ripple had approximately the same dimensions as
the live ripple, namely �=a = 1:2 and h=� = 0:25. As can be seen in �gure
4.2, the di�erence between the shear stress on the bed between the two
simulations is remarkably small. Of course the shear stress in the simulation
with the movable bed is not as smooth as in the �xed bed case, but this is
to be expected as the crest moves back and forth (see the inset).

The same comparison has been made with a wave plus current ow (�gure
4.3). Here the used pro�le for the �xed ripple was exactly the same as for
the morphological calculation, and than is why even better agreement is
achieved. This also means that some instabilities caused by small ripples in
the morphological pro�le is seen in the run with the �xed pro�le. In the
morphological calculation these would be swept out by an avalanche.

4.2 Wave-only ows

In this section the ow governed by waves without a superposed current is
treated.

4.2.1 Vortex dynamics

The most characteristic feature of the ow over vortex ripples are the dy-
namics of the vortices formed by the ripple. To visualise the vortices it is
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Figure 4.3: The friction velocity averaged over one half period, using both a
�xed and a moving ripple for a wave plus current situation with Uc=Um = 0:5
and D=a = 5:0.

convenient to look at the curl of the velocity �eld. Since the turbulence
model only operates with the averaged velocity �eld, this is not the true vor-
ticity, but rather the vorticity of the averaged velocity �eld. Nevertheless,
this quantity is excellent for visualising the vortices in the ow.

The snapshots in �gure 4.4 clearly reveal the formation of the separation
bubble very early in the wave period. The bubble posses a very strong
rotation, with velocities near the bed reaching values comparable to the free
stream velocity. The bubble grows quickly from the crest of the ripple, and
reaches the maximum length shortly after the outer ow begins to decelerate,
around !t = 150 �. At this point the length of the bubble is a little less than
a. When the ow decelerates, the bubble is \curling up" into the main ow,
but still maintaining the strong rotation. Shortly after the main ow has
reversed, the bubble is lifted over the crest and ejected into the ow, thus
becoming a free vortex (!t = 30 �). It is hard to see the ejected vortex in
the vector plots, where it just manifests itself as a uctuation in the velocity
�eld, but on the plots of the average vorticity it is evident. The vortex travels
far over the ripple, and when the ow reverses again it has travelled almost

Figure 4.4: (facing page) The ow over a �xed ripple at six instants during the
�rst half of the wave period. To the right is shown a vector plot of the velocity
�eld, and to the left the curl of the velocity �eld. Clockwise rotation is red and
anti clockwise rotation is blue. The contours have been cut short in areas of very
high \vorticity", and these are the blank areas in the middle of the separation
bubble.
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�=a = 0:8

�=a = 1:2

�=a = 2:4

Figure 4.5: The ow at !t = 120 � for a the wave only situation, but with
�=a = 0:6 (top), �=a = 1:2 (middle) and �=a = 2:4 (bottom). The legend is
as in �gure 4.4.

two ripple lengths, or more than two times a. When the next vortex is shed
into the ow, the previously ejected vortex is almost dissipated.

The maximum extent of the separation bubble is quite an important
topic, because the vortex is responsible for eroding the neighbouring ripples.
If the separation bubble does not extend far enough to reach the neighbouring
ripple, there is not much interaction. On the other hand if the separation
bubble reaches over most of the next ripple, a lot of sediment will be eroded
away. The dynamics of the sediment transport will be further elaborated in
chapter 5 and 6. In �gure 4.5 a snapshot is shown at the time of the maximum
extent of the separation bubble for three di�erent ripple lengths, �=a = 0:6,
1:2 and 2:4. The intermediate length is the same as has already been shown
in �gure 4.4. For the shorter ripple, the separation bubble extends over
the full length of the ripple and almost reaches the crest of the next ripple.
Furthermore the rotation of the bubble is not nearly as strong as for the
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longer ripples. This is similar to the situation in steady ow, which does not
lead to strong rotation in the separation bubble. It can then be concluded
that the separation bubble for the very short ripple has �nished the �rst
transient stage where it grows, and has reached a steady state.

For the very long ripple (�=a = 2:4) the separation bubble does not even
reach the trough of the ripple. It is still as strong as the bubble created for
the medium-length ripple.

4.2.2 The evolution of the separation bubble

For the sediment transport a most important quantity is the shear stress on
the bed. The bed load transport is a function of the shear stress and the bed
slope only, and the shear stress also determines the bed boundary condition
for the suspended load. The shear stress on the bed can be seen as the
\�nger-print" of the ow above the bed. Especially the separation bubble is
clearly visible in the shear stress pro�le. The shear stress is not everything,
though, for instance the advected vortices are only dimly visible in the shear
stress, and they too have some importance for the suspended load.

In �gure 4.6 space-time plots of the shear stress on the bed are shown for
a short ripple (�=a = 0:6), a medium length ripple (�=a = 1:2) and a long
ripple (�=a = 2:0). It is clear how the separation bubble is created at !t = 0 �

moves away from the crest with time. For the short ripple, the bubble extends
all over the ripple at the end of the �rst half period (!t = 150 �), while for the
long ripple, the bubble covers at most half of the ripple. The bubble being
thrown over the crest around !t � 200 � is seen as an increase in the shear
stress (the points marked with an \A" in �gure 4.6). Later, when the vortex
has travelled one ripple length, and passes the crest again, a similar increase
is seen (\B"). This is not seen for the longest ripple because the vortex does
not travel far enough to reach the crest a second time.

Another important characteristic of the separation bubble is that there is
a pronounced maximum in the shear stress, approximately halfway between
the separation point and the reattachment point. The shear stress here is
strong, around two times the shear stress on a at bed. For the short ripple
this maximum becomes much less pronounced at the end of the half period,
while it is still evident for the medium and the long ripple.

More insight into the e�ective shear stress on the bed can be gained by
averaging over a half or a whole wave period (�gure 4.7). On average there
is a very strong shear stress directed towards the crest of the ripple. This
stress produces a net current of bed load towards the crest, and is responsible
for the creation and the maintenance of the ripple. From both the averages
over the half and the whole period the previous observation about the short
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Figure 4.6: The shear stress on the bed divided by the maximum shear stress
on a at bed � 0 for di�erent lengths of the ripple: �=a = 0:6 (top), �=a = 1:2
(middle) and �=a = 2:0 (bottom).
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Figure 4.7: The shear stress on the bed averaged over the �rst half period (left)
and the whole period (right) for �=a ranging from 0.6 to 2.0. The crest is located
at x=a = 0:5. The pro�le for steady current included on the left plot is made
using D = 12:5h (h=� = 0:2).

ripple having a smaller and weaker separation bubble is evident.

For the short ripples the expansion of the separation bubble is blocked by
the neighbouring ripple. This blocks the evolution of the separation bubble,
and the separation bubble then behaves more like the separation bubble in
steady current (see �gure 4.7). The steady current separation bubble is much
weaker than the separation bubble in the transient regime when it is still
expanding. It can be concluded that the maximum length of the separation
bubble is the length of the separation bubble in the steady current regime,
which is seen from the �gure to be approximately 0:75�.

The ripples longer than 1:4a seem to have the strongest separation bub-
bles. Only for �=a � 1:6 does the separation bubble extend onto the neigh-
bouring ripple. Then the bubbles seems to have grown to their maximum
extent, but without reaching the next ripple. This means that the separation
bubble will not be able to get any sediment from the neighbouring ripple us-
ing bed load. Consequently no interaction between the ripples takes place.

The results from the calculation of ripples with lengths between �=a = 0:3
to 3:0, are summed up in �gure 4.8. For the very short ripples (�=a < 0:6)
the length of the separation bubble is equal to the length of the separation
bubble in steady ow. The maximum extent of the separation bubble is
reached at �=a � 2, and corresponds to �sep = a. The point where the
separation bubble is not able to cross the bottom of the trough is reached as
seen before at �=a � 1:6.

A �nal point is the shear stress in the trough between the two ripples
(�gure 4.9). There is a maximum in the shear stress in the trough when the
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Figure 4.8: The position of the \reattachment point" in the shear stress averaged
over one half wave period.The line labelled \steady state" corresponds to the
length of the separation bubble in steady ow (� 0:75�). The \no interaction"
line is the position of the trough (h=� = 0:2).
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Figure 4.9: The shear stress in the trough averaged over a half period as a
function of the ripple length. The line is an interpolation using cubic splines.
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ripple length is around �=a = 1:1. This has implications for the selection of
wave length, a topic which will be elaborated upon later. The no-interaction
limit is again found around �=a ' 1:75.

4.3 Wave plus current ow conditions

The situation in the wave plus current case is somewhat more complicated,
see �gure 4.10 and 4.11. The ow here is similar to the basic simulations
in the article, with the current vs. wave ratio (Uc=Um) equal to one, i.e.
a quite strong current. The amplitude of the motion can be split into two
parts, one for each half period (a+ and a�). For this case a rough estimate
gives a+ = 2a and a� = 0. In the �rst half period, there is as expected a
very strong free stream ow. The bubble which is created is very similar to
the bubble created in the wave-only case, and the maximum extent is also
the same. The last point is interesting, as the amplitude of motion for the
positive half period a+ is 2a, and one could then expect the bubble to travel
farther than in the wave-only case. In the second half period, the free stream
ow is almost zero, but there is still a ow over the crest, partly created by
the advected vortex from the �rst half period. This ow creates a separation
bubble, but it does not extend as far as the bubble from the �rst half period.

In �gure 4.12 a wave plus current situation with Uc=Um = 0:5 is shown
at the instant in each half period with maximum extent of the separation
bubble. In this case, where the current is still quite strong, the situation is
already much more symmetric, with the two bubbles having an almost equal
maximum size. This indicates that the current probably has to be stronger
than half the wave strength before any major reshaping of the ripples due to
the current takes place.

As for the wave-only case, the maximum extent of the separation bubble
has been examined. The extent in the �rst half period is labelled �+sep and in
the second half period ��sep. For a positive current it is clear that �

+
sep > ��sep.

A naive assumption for the extension of the separation bubble is

�+sep = �sep

�
1 +

Uc

Um

�
(4.2)

��sep = �sep

�
1� Uc

Um

�
; (4.3)

where �sep is the length of the separation bubble in the wave-only case. That
this assumption fails severely is seen in �gure 4.13. In the positive half period
the vortex is not able to grow much longer than in the wave-only case { for
Uc=Um = 1 the bubble is less than 20 % longer, and in the current-only case
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!t = 30 �

!t = 60 �

!t = 90 �

!t = 120 �

!t = 150 �

!t = 180 �

Figure 4.10: The ow in the �rst half period over a �xed ripples in wave plus
current ow. The ratio between the wave- and the current strength is Uc=Um =
1, and the depth over a is D=a = 5:0. The legend is as in �gure 4.4.
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!t = 210 �

!t = 240 �

!t = 270 �

!t = 300 �

!t = 330 �

!t = 360 �

Figure 4.11: The ow in the second half period over a �xed ripple in wave
plus current ow. The ratio between the wave- and the current strength is
Uc=Um = 1, and the depth over a is D=a = 5:0. The legend is as in �gure 4.4.
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!t = 120 �

!t = 120 �

Figure 4.12: The ow at the two instants with the maximum extent of the
separation bubble, for a wave plus current situation with Uc=Um = 0:5 and
D=a = 5:0. The legend is as in �gure 4.4.

it is 25 % longer. This is because the expansion of the bubble is barred by
the neighbouring ripple rather than by a. In the negative half period the
bubble is shortened more than the bubble is lengthened in the positive half
period. Still, for Uc=Um = 1 where the naive assumption predicted that the
bubble should disappear entirely, it is only 30 % shorter than in the wave
only case.

These observation shows that the boundary layer generated by the ripple
is very wave-dominated even though the depth-averaged current is strong.
The reason is that even though the velocity averaged over the depth might
be large compared to Um, it is still small near the bed due to the logarithmic
pro�le (�gure 4.14).

4.4 Integrated ow quantities

In the wave plus current case the ow averaged over one period can be con-
sidered as an ordinary current ow having a logarithmic velocity pro�le

hU(y)ix;t
hUfix;t

=
1

�
ln

�
30y

kwc

�
(4.4)

where kwc is the Nikuradse equivalent roughness in a wave plus current ow.

The averaged friction velocity (de�ned as hUf ix;t �
q
h�bix;t =�) is usually
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Figure 4.13: The length of the right separation bubble (�+sep) and the left separa-
tion bubble (��sep) vs. the current strength. The point at Uc=Um =

R
corresponds

to the current-only case. (�=a = 1:2; h=� = 0:2; D=a = 5:). The runs have
been made with a symmetric pro�le with h=� = 0:2 and D=a = 5.

described via a constant friction factor de�ned as:

fwc = 2

 
hUfix;tD

Q

!2

(4.5)

with Q being the average ux.
That there really is a logarithmic pro�le is clearly seen in �gure 4.14. Also

shown is the variation of the pro�le which is suppressed due to the average
over the ripple. This variation extends up to around y = 5h, and shows how
far into the ow the inuence from the ripples extends.

Finding the wave plus current friction factor fwc and the roughness kwc is
one of the main objectives of the attached article (\Wave plus current over
a ripple-covered bed"). In the following some work which was performed
together with the article will be presented. This is some extra remarks con-
cerning the friction over the ripples and calculations of the dissipation of
surface waves due to the presence of ripples on the bed.

Finding the friction velocity

The friction induced by the ripples is composed of two parts: skin friction �s
and form drag induced by the pressure. If p(x; t) is the pressure on the bed
and ~t = (tx; ty) is a unit vector tangential to the surface, the total friction is

�b(x; t) = p(x; t)ty + �s(x; t)tx; (4.6)
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Figure 4.14: Pro�les of the time and horizontally averaged velocity for simulations
with D = 250h, h=� = 0:2 and �=a = 1:2. The error-bars show the min and
max values of the time-averaged velocities, thus showing the amount of variation
of the time-averaged velocity over the ripple. The lower edge of the plot is at
the crest of the ripple.

which is averaged in space and time to give the total friction. As an alterna-
tive the total friction can be found from the driving pressure gradient:

h�bix;t = D

�
@p

@x

�
t

: (4.7)

The two estimates should be equal when the simulations have converged.
Because of the under-pressure created by the separation bubble, most

of the friction is carried by the form drag (�gure 4.15). This shall be seen
in contrast to the friction over e.g. dunes in rivers, where the friction is
partitioned approximately �fty-�fty between the skin friction and the form
drag (Freds�e and Deigaard, 1992). In the dune case the separation bubble
is only a small fraction of the ripple length, and it is furthermore a steady
separation bubble which is not nearly as strong as the separation bubble over
the ripples (�gure 4.8).

4.4.1 The dissipation

Another integrated ow quantity for the wave plus current case is the dissi-
pation of the wave:

�d = �
D
h�bix hUix;y

E
t
: (4.8)



4.4 Integrated ow quantities 75

Skin friction
Form drag

t (deg.)
350300250200150100500

0.2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

Figure 4.15: The skin friction and the form drag as a function of time over a
ripple (Uc=Um = 0:5; D=a = 5:0; h=� = 0:2; �=a = 1:2).

The dissipation is usually described via the dissipation factor fe de�ned as2:

�d = � 2

3�
�feUm

3: (4.9)

A basic run has been chosen for the calculations. The length and the
steepness of the ripples are �=a = 1:2 and h=� = 0:2. This is motivated by
measurements of the ripple sizes. The depth is 25h. From this basic run, each
of the parameters is changed one at a time, while the others remain �xed.
The steepness is varied from h=� = 0:05 to 0:20, the length from � = 0:8 to
1:8 and a run is made with a much larger depth, D = 250h. The results from
the calculation of the dissipation are scaled with the wave-only dissipation
few, and are plotted in �gure 4.16a-d.

The results are more scattered than the results for the friction, but one
trend stands clear: for Uc=Um < 0:5 the dissipation does not di�er much
from the wave-only dissipation, and if the steepness is 0:2 (which is the
case for most fully developed vortex ripples), the dissipation is the wave-only
dissipation up to Uc=Um � 1:0. Changing the height produces drastic changes
in the dissipation, which are more pronounced the lower the steepness. The
reason is that the wave-only dissipation is very small for the small steepnesses
(table 4.1), whereas the dissipation is less dependent upon steepness the
stronger the current.

2Note that there exist di�erent ways to de�ne the dissipation factor in the literature,

but the di�erence is only in the pre-factor.
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Figure 4.16: Variation of the wave plus current dissipation scaled by the wave-
only dissipation (few) as a function of Uc=Um. a) all simulation data plotted
together, b) varying h=�, c) varying �=a and d) varying D.

4.4.2 Comparison with \live" ripple

The results reported in the article and in the above section were made solely
using �xed symmetric pro�les. To examine the validity of the results of the
calculations of fc and fe a comparison was made between a live ripple, a �xed
asymmetric ripple and a symmetric ripple. The length of the ripple was 2a
(�gure 4.17). The results from the three runs are shown in table 4.2. Using
the �t formula which was found in the article:

fc
fc0

=

�
Uc

Um

��0:66

+ 0:73 (4.10)

the relative friction fc=fc0 where fc0 is the current-only friction can be found.
The current-only friction for a steepness of h=� = 0:188 (which was the steep-
ness of the pro�le for the live ripple) can be estimated by an interpolation in
�gure A1.23 to be fc0 = 0:0215. To estimate the dissipation it was realized
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Table 4.1: The wave-only dissipation.

Depth steepness length dissipation
D=a Hr=Lr Lr=a fe
5.0 0.20 1.2 0.33293

0.15 0.18556
0.10 0.05492
0.05 0.01975
0.20 0.8 0.23377
0.20 1.8 0.39508

50.0 0.20 1.2 0.32918

Symmetric ripple
Live ripple

x=a
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�

21.81.61.41.210.80.60.40.20
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Figure 4.17: The shape of the ripple from the morphological calculation com-
pared with a symmetric pro�le with the same steepness (Uc=Um = 0:5; �0 =
0:15; ws=Um = 0:185).

that for Uc=Um the wave-current dissipation is similar to the wave-only fric-
tion (�gure 4.16). The wave-only friction was then found from interpolations
using the values in table 4.1.

For the friction the three di�erent simulations are remarkably close. This
is a very important result, as it adds of credibility to the results presented
in the article, at least for current velocities smaller than 0:5Um. The value
found by using formula (4.10) is slightly under-predicted. This has to be
expected, though, as the steepness of the were less than 0.2, and it was
shown in the article that the friction for steepnesses smaller than 0.20 were
under-predicted by the formula.

The correspondence between the dissipation calculations seems to be se-
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Table 4.2: The wave plus current friction factor fc and the wave plus current
dissipation fe for three di�erent types of simulations and using �ts to the results
presented in the article and in section 4.4.1.

fc fe
Live: 0.0069 0.082
Fixed: 0.0062 0.077
Symmetric: 0.0065 0.30
Fit: 0.0050 0.35
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Figure 4.18: t-y diagrams of the space-averaged turbulent kinetic energy for pure
waves (top) and waves plus current (bottom), with Uc=Um = 1. To the left the
calculation has been made on a at bed, while on the right with ripples. On the
at bed the roughness has been arbitrarily set to kN = h.

riously dependent upon the shape of the pro�le. There is a factor of four
di�erence between the calculations on the asymmetric pro�le (live and �xed
ripple) and the symmetric ripple. This means that the calculations of the
dissipation should be used with care in an engineering situation.
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4.5 Turbulent kinetic energy

As a post scriptum to the article where the friction and the roughness of a
ripple bed are calculated, some of the limitations of such a description will
here be shown. The idea behind using a roughness to represent the ripples
is to be able to parameterise the e�ect of the ripples and just use a at bed
for the calculations. This is very desirable in calculations where the exact
near-bed ow is of less importance.

That the near bed ow over a at bed with a parameterised roughness
is quite di�erent from the near bed ow over a rippled bed is illustrated
in �gure 4.18. Here a spatial average of the turbulent kinetic energy k is
presented and compared with the results from a simulation over a at bed.
The situation on the at bed is dominated by turbulent di�usion. hkix forms
a maximum near the bed when the wave crest passes (at 0 �and 90 �), which
then di�uses outwards, seen as the tongue from left to right on �gure 4.18,
top left. For the ripple case, the situation is dominated by the advection of
the vortices. The same maximum near the bed as in the at bed case is seen,
but this does not spread di�usively away from the bed, rather the primary
vortex creating this maximum in hkix is thrown into the ow which makes
the maximum away from the bed to be located in time exactly at the time
where there was a minimum in the at bed case.

The same thing is seen in the wave plus current case, only with the
di�erence that there is no symmetry between the two halves of the wave
period. It is also seen that the action of the vortices disappears a few ripple-
heights away from the bottom, in consistency with what was seen on �gure
4.14.

4.6 Summing up

The main results from this chapter can be summed up briey:

� The ow over a live ripple is very similar to the ow over a �xed ripple.

� For uc=Um < 0:5 the ow is wave-only like.

� The transient separation bubble seen in the ripples is very strong com-
pared to the separation bubble in steady current ow (a factor of 5 to
10 stronger).

� For �=a > 1:6 the bubble does not extend over the trough.

� The maximum extent of the separation bubble can be approximated as
�sep:max ' min(0:75�; a).



80 The ow around vortex ripples

� The main part of the friction on a ripple is carried by the pressure drag,
and not by the skin friction.



Chapter 5

Sediment transport over ripples

The addition of sediment transport to the ripple problem introduces two
new non-dimensional parameters: the Shields parameter and the settling
velocity (see section 1.2). This makes a complete description of the whole
phase space much more demanding. Another complicating fact is that the
sediment transport is split into two partitions, bed load and suspended load,
which have to be treated separately, because they are driven by di�erent
mechanisms.

The bed load is mainly a function of the local shear stress, and therefore
a lot of the results from the analysis of the ow and the shear stress on the
bed from section 4.2.2 directly gives the behaviour of the bed load.

For many cases, the suspended load carries the largest volume of sand,
but a lot of this volume just stays in suspension and is advected back and
forth. Therefore the horizontal gradients of the suspension are not very large,
so the suspension does not contribute as much to the erosion/deposition of
the ripple as could be expected from the volume of the transport.

In section 4.1.2 it was shown that the ow was the same over a �xed ripple
and a live ripple. The same comparison is shown in �gure 5.1, focusing on
the sediment transport. Some di�erence is seen in the transport over the live
and the �xed ripple, but the general pattern is the same, especially is the
concentration of suspended sediment over the crest (5.1, right) the same for
the live and the �xed ripple.

5.1 Four test cases

For the bed load the Shields parameter is the most important parameter. To
illustrate the bed load under di�erent conditions, two examples have been
chosen: medium bed load rate, �0 = 0:15 ' 3�c and high bed load rate,
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Figure 5.1: Comparison between the suspended sediment over a live and a �xed
ripple. To the left is shown the averaged transport over one half period (top lines)
and the whole period (bottom lines). The right �gure shows the concentration
of suspended sediment averaged over one wave period. (�=a = 1:2, �0 = 0:15,
ws=Um = 0:079).

�0 = 0:50 ' 10�c.

The suspended transport is both a function of the Shields parameter and
the settling velocity. The Shields parameter determines how much sediment
is thrown into suspension via the bed boundary condition cb(�; �) (2.47). The
settling velocity can roughly be said to determine how much sediment stays
in suspension, and how far the suspended sediment is transported. Usually
the Rouse parameter is used as a dimensionless parameter characterising the
settling velocity:

R =
ws

�Uf
; (5.1)

where � is von K�arm�an's constant. The Rouse parameter enters naturally
in the Vanoni distribution of suspended sediment over a at bed in steady
current:

c(z) = cb(�)

�
D � z

z

b

D � b

�R

; (5.2)

where b is the point where the matching of the bed boundary condition is
made, usually b = 2d. It is seen that the larger the Rouse parameter, the
more rapidly the concentration of sediment diminishes as the distance from
the bed is increased. A small settling velocity then means that the sediment
will reach further away from the bed. The shear stress enters two places in
the expression for the Vanoni distribution: in the exponent, where higher
shear stress has a the same e�ect as a small settling velocity, and in the bed
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Figure 5.2: The sediment transport averaged over one wave period for the four
test cases. Left: bed load, right: suspended load.

boundary condition, where a high shear stress will put more sediment into
suspension. All in all, a small Rouse parameter gives more suspension.

In a wave ow there is not a log pro�le in average, and the Vanoni pro�le
does not apply. Furthermore the averaged shear stress is zero, so another
formulation than the one used in steady ow has to be used. One option
is to use the maximum shear stress on the bed during the wave period (e.g.
Freds�e and Deigaard (1992)). This works �ne on a at bed, but for a rippled
bed this is not obvious. The maximum shear stress will occur around the
crest and is very sensitive towards the exact shape of the crest. It is there-
fore a \fragile" parameter, which should be avoided. The spatially averaged
shear stress could be used instead, Uf:max = max(j hUf ix j). The wave Rouse
parameter is then:

Rw =
ws

�Uf:max

: (5.3)

The problem is that it is hard to know before a simulation what Uf:max will
be, and it will depend on the geometry of the ripple. Therefore a simpler
non-dimensional parameter, namely ws=Um is used to specify the settling
velocity, and only after the simulation can Rw be calculated.

Two di�erent settling velocities have been chosen to illustrate the e�ect of
changing this parameter on the suspended transport, namely ws=Um = 0:185
and ws=Um = 0:065. As will be shown in chapter 6 this corresponds to two
di�erent regimes of ripples. The large settling velocity correspond to coarse
sediment, on the order of 1 mm for realistic conditions.

With the two di�erent values of the Shields parameter and the two di�er-
ent settling velocities, four di�erent test cases have been constructed (table
5.1). For all four cases a �xed ripple pro�le is used with �=a = 1:2 and
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Figure 5.3: The time and space averaged concentration of suspended sediment.

h=� = 0:2.

Table 5.1: The four test cases used for calculation of the sediment transport.

Test case �0 ws=Um Rw

W1 0.15 0.185 0.82
W2 0.15 0.065 0.29
W3 0.50 0.185 0.82
W4 0.50 0.065 0.29

The time averaged bed load (�gure 5.2, left) is qualitative similar for the
two cases, although the amount of sediment transport is quite di�erent. In
general the bed load causes a transport which is directed towards the crest,
i.e. maintaining and building up the ripple pro�le.

While interpreting the bed load transport it has to be remembered that
in reality most of the ripple pro�le is at the angle of repose. This mean that
the bed load in e�ect will be determined by avalanches, so that be bed load
on a mature ripple will be directed down slope instead of up slope as seen
here. In the trough, however, the bed load will be similar to the one shown
here.

For test case W1 and W2 snapshots of the suspended sediment in the
�rst half period (�gure 5.4 and 5.5) show the large e�ect of changing the
settling velocity. Even though the total amount of sediment in suspension
is markedly di�erent (see also �gure 5.3) the general features are similar.
A strong jet of sediment is thrown over the crest of the ripple, on top of
the separation bubble. When the ow turns this jet follows the separation
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Figure 5.4: The transport of suspended sediment over a ripple at six snapshots
(!t = 30 � to 210 �). The ow is the same as in �gure 4.4. The scale show the log
of the concentration of suspended sediment, the lighter the higher concentration
of sediment (test case W2, �=a = 1:2, �0 = 0:15, ws=Um = 0:185).

bubble over the crest. In test case W1 the settling velocity is so large that
the sediment settles almost immediately after this, while in test case W2 the
cloud of sediment can be followed as it is advected with the ow. Another
feature which is similar in both cases is the large concentrations of sediment
which is seen close to the bed, particularly inside the separation bubble. This
transport is dominating the total suspended load in test case W1, while the
suspension in the jet dominates in test case W2. The suspended sediment
in test case W1 can then be said to be more dominated by the local shear
stress, almost like an extended bed load, while the transport is dominated by
advection in test case W2. The two modes of suspension have been labelled
the near-bed suspension and the advected suspension, respectively.

Another representation of the suspended sediment transport is to look at
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Figure 5.5: As �gure 5.4, but with ws=Um = 0:065 (test case W1).

t-y plots of the transport through cross-sections at the trough and the crest
(�gure 5.6). Over the crest two maxima are observed, and when the �gure
is compared with �gure 5.4 the events causing the maxima can be identi�ed.
The �rst maximum at !t = 20 � occurs because the vortex from the previous
half period is shed and advected over the crest. The second maximum is
when the remains of this vortex return, after having been advected one ripple
length. Near the bed high concentrations are evident at all times, except just
near the point where the ow turns and cb becomes zero. Two maxima are
also seen over the trough. The �rst, around !t = 60 �, is mainly due to the
advected vortex. The second maximum, at !t � 125 �, does not extend all
the way to the bed. This maximum is due to the jet of sediment formed at
the crest and thrown into suspension.

In the trough very low concentrations are seen until !t = 100 �, after
which the bed concentration is generally high. The low concentrations occur
before the separation bubble reaches the trough, where the shear stresses at
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Figure 5.6: A t-y plot of the concentration of the suspended sediment over the
crest (left) and the trough (right). The colour coding is made on log(c), (test
case W2).

the bed are small giving rise to low bed concentrations. When the separation
bubble has reached the trough it gives rise to negative shear stresses, and
some sediment is di�using into suspension. The layer of high concentrations
is very thin, because the sediment has not had time to di�use far away from
the bed.

The suspended transport is markedly di�erent for the test cases with
di�erent settling velocities. For W1 and W3 there is a high settling velocity,
and the suspended sediment is con�ned to the area just above the bed, and
is thus dominated by near-bed suspension. That is, the transport is directed
towards the crest. Just around the crest the suspended load is directed away
from the crest, which is due to the strong inuence of the jet of sediment
being throw over the crest just here. For the two test cases with small settling
velocity (W2 and W4), the suspension is more dominated by the sediment in
the jet, and is therefore mostly advected suspension. Here the time averaged
suspended load is in general directed away from the crest, in contrast to the
bed load, and there is only a small zone where the sediment is transported
towards the crest.

5.2 Sediment transport in wave plus current

situations

The sediment transport in wave plus current situation is even richer than
the sediment transport under wave-only conditions. In waves alone the total
transport is zero, but in wave plus current there is a net transport of sediment.
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Figure 5.7: The sediment transport averaged over one wave period for the four
test cases. Left: bed load, right: suspended load.

This can be either positive or negative, even when the superposed current is
only positive.

In the wave only case the symbol �0 referred to the maximum Shields
parameter on a at bed. To be consistent this could be extended to the wave
plus current situations, so that �0wc = max(�0(t)). This choice of de�nition
of �0 is complicated by the absence of a simple way to determine the shear
stress on a at bed in wave plus current conditions. Therefore, for wave plus
current situations, �0 will refer to the maximum shear stress on a at bed
in the corresponding wave case, where the simple method of the constant
friction factor can be used.

First the sediment transport will be examined in detail for two of the test
cases from the previous section with two di�erent current velocities; Uc=Um =
0:5 and 1.0 for test case W2 and W3. Test case W3 has a high Shields
parameter and a low settling velocity { this means a bed load dominated
regime. Test case W2 has a low Shields parameter, and a small settling
velocity { a suspension dominated regime. The ow in the two di�erent
situations is the same as the two wave plus current ow cases examined in
detail in section 4.2.1 (see �gure 4.10 and 4.11). Together with the two
current velocities four test cases are again constructed (table 5.2).

At the low current velocity (Uc=Um = 0:5), the pro�le of the time averaged
bed load is almost symmetric (�gure 5.7) for both test cases. For the high
current velocity there is a considerable asymmetry in the bed load pro�le,
reecting the fact that the separation bubble at the lee side of the ripple
extend much further than the separation bubble on the upstream side of the
ripple. As a result of this, the ripple in the low current strength is expected
to have only a slightly asymmetric pro�le, while there will be a considerable
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Figure 5.8: The ux of suspended sediment averaged over one wave period;
hucit, over the crest (left) and the trough (right).

asymmetry at Uc=Um = 1:0.

As seen in the previous section, the time-averaged suspended transport
follows that of the bed load for test cases W3a and W3b. For test cases
W2a and W2b there is seen to be a strong positive transport, around a
factor of three larger for the strong current than for the low current strength.
This transport is mainly because of the large amount of sediment being in
constant suspension due to the low settling velocity. Where this sediment
was \passive" in the wave-only case, it is now advected with the current, and
contributes signi�cantly to the total transport.

Looking at the time-averaged ux of suspended sediment over the crest
and the trough (�gure 5.8), an interesting detail is revealed. In the trough
the ux of suspended transport is negative up to y=h = 1. This is not
surprising, as the suspended transport here is dominated by the separation
bubble. In a wave current situation (with positive current) the strength
of the separation bubble in the positive half period will be stronger than
the separation bubble in the negative half period. Thus there will be a
net negative transport over the trough. This is similar for bed load which
also gives rise to a negative transport over the trough. Above y=h = 1 the
transport of suspended sediment is positive. For test cases W3a and W3b
the transport here is almost zero, reecting that no sediment extends very
far away from the trough. Above the crest there is not surprisingly seen a
strong positive transport just above the crest. What is more interesting is
the negative transport seen just above the crest for the low current strength.
This negative transport is made when the jet of sediment extending over the
crest is thrown over the crest as the ow reverses.

The total transport rates are summed up in table 5.2. They show the
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Table 5.2: The parameters for the four test cases for wave plus current ows,
together with the resulting net transport rates. Rfit is the Rouse parameter calcu-
lated by �tting a Vanoni pro�le to the pro�le of the suspended sediment averaged
over a wave period. The Rouse number R is calculated as R = ws=� hUf it;x

test Uc=Um �0 ws=Um R Rfit h�bix;t h�six;t h�totix;t
W2a 0.5 0.15 0.065 1.6 1.8 -0.04 4.18 4.13
W3a 0.5 0.50 0.185 4.5 4.1 -0.23 0.06 -0.18
W2b 1.0 0.15 0.065 0.9 1.0 -0.07 12.28 12.19
W3b 1.0 0.50 0.185 2.6 2.5 -0.53 -0.20 -0.73

surprising fact that for all cases the total bed load is negative. For test case
three the suspended transport is very small, and thus the bed load dominates,
giving rise to a net negative sediment transport, even for a current strength
of Uc=Um = 1!. In test case two, on the other hand, the suspended sediment
dominates clearly, and there is a strong positive sediment transport.

Away from the bed the ow develops a logarithmic layer (see �gure 4.14),
and the pro�le of the suspended sediment here behaves as in the current-only
situation giving rise to a Vanoni-like pro�le with the di�erence that the bed
boundary condition is di�erent. The Rouse parameter is Rwc = ws=� hUf it;x.
The pro�les of suspended sediment can be seen in �gure 5.9, and a comparison
between the Rouse parameter calculated from the settling velocity and the
mean friction velocity on the ripple with a Rouse parameter obtained by
�tting the Vanoni pro�le in the region 3:75 < y=h < 10 is seen in table 5.2.
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Figure 5.10: The time and space averaged sediment transport over ripples vs. the
current strength, for three di�erent settling velocities: ws=Um = 0:08 (top left),
ws=Um = 0:13 (top right) and ws=Um = 0:18 (bottom left) (�=a = 1:2; h=� =
0:20; �0 = 0:23; D=a = 5:0).

The agreement between the calculated and the �tted value is remarkably
good, when the short range of logarithmic pro�le for this small depth is
taken into account.

The same series of wave plus current runs as were examined in section 4.3
have been run with sediment transport. The Shields parameter is �0 = 0:23
i.e. moderate bed load, and three settling velocities were used: ws=Um =
0:08, 0.13 and 0.18 (�gure 5.10). The average bed load is negative, and almost
linearly proportional to the current strength. The suspended transport on
the other hand, is always positive. There seems to be a maximum in the
suspended transport, located at Uc=Um = 0:8 for ws=Um = 0:18, at 1.0 for
ws=Um = 0:13, and at a even higher current strength for the lowest settling
velocity. With negative bed load and positive suspended load, the total load



92 Sediment transport over ripples

ws=Um = 0:18
ws=Um = 0:13
ws=Um = 0:08

ws=Um = 0:18

Uc=Um

h�tix;t

10.80.60.40.20

100

80

60

40

20

0

-20

Figure 5.11: The total sediment transport for the three di�erent settling veloci-
ties.

is determined by a balance between bed load and suspended load. For the
highest settling velocity the negative bed load wins, and the total load is
negative. For the lower settling velocities the suspension is stronger, and the
total transport is positive.

5.3 Summing up

� The time-averaged bed load is directed from the trough towards the
crest.

� The suspended load is much larger than the bed load (for most cases),
but the time-averaged suspended load is generally smaller than the bed
load.

� The time-averaged suspended load is dominated by the near-bed trans-
port, except around the crest, where the time averaged bed load and
suspended load are opposing each other.

� The net bed load is predominantly negative in wave plus current situ-
ations, while the suspended transport is positive.

� For small Rouse parameters the total sediment transport can be nega-
tive, even for Uc=Um = 1:0.



Chapter 6

The dynamics of vortex ripples

Having dealt with the ow and sediment transport over predominantly �xed
ripples in quite some detail, the attention will now be turned towards how
the ow and the sediment transport shapes the rippled bed. Of particular
interest is the question of the equilibrium length and shape of the ripples.

An outline of the chapter is as follows. After a review of existing mea-
surements of the ripple geometry (section 6.1), the qualitative dynamics of
the ripple pro�le will be illustrated using some long simulations of several
ripples (section 6.2). The important processes here are the annihilation of
ripples and the creation of new ripples. Hereafter a stability analysis of the
fully developed pro�les will be performed (section 6.3). This way it is possi-
ble to �nd the minimal wave length of the ripples (�m). It is shown that the
important quantity in the dynamics of the ripples is the transfer of sediment
over the trough of the ripples. This way it is argued that it is possible to
calculate the minimal wave length using the sediment transport over just one
�xed ripple by determining the transport over the trough as a function of the
ripple length (section 6.4). This insight is used to construct a very simple
model of the ripples, which shows the dynamics of a one dimensional ripple
pro�le (section 6.5). Finally the shape of the ripples for di�erent values of
the Shields parameter and the settling velocity is calculated in section 6.6.

6.1 Measurements of ripple geometry

The �rst measurements of the length of the ripples was performed by Bagnold
(1946) (he called the equilibrium wave length \the natural pitch"). Bagnolds
major �nding was that the ripple length was proportional to a for most cases,
a result which has been con�rmed several times since (for a compilation of
measurements, see Nielsen (1979)). Most of these measurements are per-
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Figure 6.1: The average wavelength for a number of experiments, collected by
Nielsen (1979).

formed in wave umes or, as in Bagnolds case, in oscillated trays where the
pattern is two-dimensional and defects are moving around.

The measurements of ripple lengths are not unambiguous, however. When
a transect from a two-dimensional ripple pattern is extracted, it might cover a
part of one or more defects, which will turn up as small ripples in the transect.
If the ripple wave length is calculated as the number of ripples divided by
the length of the transect, the defect(s) e�ectively make the apparent wave
length shorter. Thus the wave length quoted by most authors is in fact a
combined measurement of the local wave length and the density of defects.
When they report that the wave length becomes shorter when the shear stress
is increased, it is therefore not clear if the ripples actually become shorter,
or if there are an increased number of defects. A simple way to circumvent
this problem is to measure the distribution of local wave lengths, and de�ne
the ripple wave length as the most probable wave length. It is important to
bear these points in mind, when experimental data are interpreted.
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Figure 6.2: The average steepness for a number of experiments, collected by
Nielsen (1979).

An important part of many of the studies of the ripple geometry was to
identify the relevant non-dimensional parameters which described the exper-
imental conditions best. As there was not a consensus on the parameter(s)
to use, this lead to a situation where the results were reported using di�er-
ent phase spaces. Nielsen (1979, 1981) made a thorough compilation of all
the measurements and transformed them to the same set of non-dimensional
parameters. For laboratory waves he described the wave length as being a
function of the mobility number:

 � U2
m

(s� 1)gd
: (6.1)

Note that the mobility number is similar to the Shields parameter on a at
bed. The di�erence is that the Shields parameter takes the friction of the
bed into account through the use of the friction velocity Uf instead of Um.
The results are not without a considerable scatter (�gure 6.1), but they
also compromise a large set of conditions. For mobility number less than
approximately 30, the wave length is more or less proportional to a with a
proportionality constant close to the commonly cited range between 1.2 and
1.4. For higher mobility numbers there is a considerable scatter in the data
as the at bed limit is approached. Whether this is a modi�cation of the
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Equilibrium wave length

Too long wave length

Figure 6.3: An example of the motion of a defect in a two-dimensional ripple
pattern.

most probable wave length or it is due to an increase in the density of defects
is not clear.

The steepness of the ripples (�gure 6.2) were plotted as a function of the
Shields parameter, �0. similar pattern. For small values of �0, the steepness
is slightly smaller than 0.20, and above �0 � 0:5 it declines rapidly towards
the at bed limit.

It is not obvious that the is possible to use a one dimensional phase space
to describe the wave length of the ripples as done by Nielsen. As it was
argued earlier (section 1.2), the settling velocity should also be considered
ws=Um.

Recently, a novel experimental setup has been employed to measure the
wave length of the ripples (Stegner and Wesfreid, 1998; Scherer et al., 1999).
This consists of a circular channel which is driven by an AC motor. In
this way a one-dimensional pattern is created, without end-e�ects and with
conservation of the sand. Using this setup Stegner (1998) found the wave
length to be proportional to a up to �0 = 0:23 and  = 26. The minimal
settling velocity was ws=Um = 0:07. For larger shear stresses the wave length
became longer, a result which was attributed to the e�ect of inertial forces on
the grains. These measurements have another problem, namely that there is
an uncertainty on the measurements associated with the periodic nature of
the bed. The uncertainty is �� = �=N where N is the number of ripples. As
this experiment was rather small, the uncertainty was 20 % for the largest
shear stress.

6.2 Qualitative dynamics of the ripples

The main limitation of the present model is that it is only handles one-
dimensional ripple pro�les. The one-dimensional case di�ers from the two-
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dimensional case in one important aspect, namely by the rôle of the defects.
In most cases a two-dimensional pro�le has defects which are responsible for
the wave length adjustment of the ripples (see e.g. �gure 1.2). Consider a
ripple pro�le where the wave length is a bit longer than the minimal wave
length. Then there is in principle room for another ripple if the ripples
squeeze a bit closer together (the \Tokyo metro"-e�ect). In that case a
defect can move into that particular region of the bed and thereby adjust the
wave length towards the equilibrium wave length (�gure 6.3).

In the one-dimensional case the ripples have to create the new ripples
themselves, so to speak. If the pro�le is homogeneous, i.e., all the ripples
have the same length, a creation of a new ripple can only happen by a spatial
period-doubling where all the ripples nucleate a new ripple simultaneously.
After the period-doubling there can be some dynamics which in the end
might lead to a state closer to equilibrium. However, the period-doubling
only happens when the pro�le is quite far away from its equilibrium length,
depending on the Shields parameter and the settling velocity. Thus the one-
dimensional pro�le may be locked in a state of frustration from which it can
not escape. In two-dimensions the wave length may be adjusted with the aid
of defects.

A major problem with morphological calculations is that they can only
be made with an integer number of ripples in the computational domain. As
the calculations are very demanding in terms of CPU time, it is only possible
to have a few ripples in the domain. Therefore the selected wave length can
not just be found by making one big calculation and see what wave length is
selected in the end { more elaborate arguments will have to be developed.

Before moving to the more detailed treatment some results from the mor-
phological runs of the model are presented. The aim is to illustrate some of
the basic dynamical phenomena occurring in the ripple pro�les.

Creation

In �gure 6.4 an example of the creation of ripples is shown. The simulation
has been initiated with two ripples, which are obviously too long and too
high. A period-doubling takes place in both troughs. In fact one trough
is so wide that there is room for one extra new ripple in addition to the
one created by the period-doubling. The initial dynamics is fast, but as the
pro�le becomes more homogeneous the dynamics slow down.
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Figure 6.5: The evolution of a ripple pro�le showing the process of annihilation
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Annihilation

An example of annihilation is shown in �gure 6.5. Generally every second
ripple is just annihilated, but during the creation of the second of the �nal
ripples (as counted from the left side) some interesting dynamics occur. Here
three small ripples are competing to become the �nal, big ripple. Due to sym-
metry the middle ripple should have the best chances to win, but eventually
it is dominated by its neighbour, which moves in to become the �nal ripple.

Small settling velocity

As will be shown later a transition between long and short ripples exists
around a settling velocity of ws=Um = 0:070, where the dynamics are domi-
nated by the advected suspension (�gure 6.6). The run is started as before
with many small ripples. The ripples merge to form two large sinusoidal
ripples with smaller ripples on top.

Strained ripples

If the ripple pro�le is one-dimensional, or if there is no defects in the two-
dimensional pro�les, which can happen for small Shields parameters, the
ripple pro�le can be strained; the ripples are either shorter or longer than
their equilibrium length. This can be observed when the ripples are con�ned
to a limited domain, where there is only room for an integer number of
ripple. Strained ripples were �rst described in the measurements by Lofquist
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Figure 6.8: An example of the appearance of a period-two pro�le when the
domain is larger than the equilibrium wave length, but smaller than two times
the marginal wave length (�0 = 0:50; ws=Um = 0:10).

(1980) (in an almost one-dimensional setup), who found that the lengths of
the ripples could be varied between �=a = 1:1 and 1.3. The straining of a
pro�le with one ripple is seen in �gure 6.7. In this case, where the Shields
parameter is rather small, the pro�les can be strained quite a lot, before a
spatial period-doubling appears. For higher Shields parameters and lower
settling velocities the doubling happens earlier as shown in �gure 6.8. Here
a pro�le with one big and one small ripple is in fact stable. This was also
shown in the one-dimensional experiments of Scherer et al. (1999).

6.3 Stability analysis

The dynamics of the ripples and the mechanics behind the selection of wave
length has been analysed in more detail using a stability analysis of the fully
developed pro�les. The idea is to have two identical fully developed ripples
in a periodic domain, except that one of the ripples is perturbed. When
the morphological model is run with these initial conditions two things can
happen; either the ripples are unstable and the smaller ripple will be taken
over by the larger ripple and diminish, or the ripples are stable such that the
smaller ripple can grow and the two ripples will end up with equal size. The
wave length where there is a cross over between stability and instability is
the marginally stable wave length.

An example of such an analysis is shown in �gure 6.9. Here the ripple
lengths are �=a = 1:15 and 1.35. The ow conditions are the ones of test
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Figure 6.9: The evolution of two non-equal ripples from morphological calcu-
lations. The small plots on the right show a zoom of the crest region on the
right-most ripple (test case W3).

case W3, i.e., �0 = 0:50 and ws=Um = 0:185 { a bed load dominated regime.
The right ripple is perturbed by making it 10 % smaller than the left ripple.
Two di�erent behaviours are observed: in the case where �=a = 1:15, the
smaller ripple is slowly being eaten by the larger ripple. In the other case
the two ripples are stable, and the smaller ripple slowly grows. The marginal
wave length is therefore to be found in between the wave length of the short
ripples in the examples, so �m ' 1:25. In practice the stability analysis is
done for many wave lengths to �nd the wave lengths with cross-over between
stability and instability.

6.3.1 The exchange of sediment between ripples

It is interesting to examine the mechanisms underlying the stability proper-
ties of the ripples. To this end the exchange of sediment between the two
ripples is studied. Again focus on the case of the two ripples where the right
ripple is the smaller ripple. If the net transport across the trough between
the left and the right ripple is positive, sediment will be transfered from the
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Figure 6.10: The time-averaged sediment transport over the trough region be-
tween two ripples for three di�erent ripples lengths. The sediment transport is
divided by the maximum bed load on a at bed, �0b. �t is the total sediment
transport. The vertical line marks the trough point. The average is performed
over period no. 2 to 10. (test case W1).

Table 6.1: The time- and space-averaged sediment transport rates in the trough
between two ripples (test case W1).

�=a = 1:1 �=a = 1:2 �=a = 1:4
h�bix;t -0.0296 -0.0164 0.0093

h�six;t -0.0065 -0.0017 -0.0088

h�tix;t -0.0362 -0.0147 0.0004
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Figure 6.11: The sediment transport over the trough region between two ripples
as a function of time. The wiggles in the bed load are due to avalanches in the
trough region (test case W1).
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Figure 6.12: The sediment transport over the trough region between two ripples
as a function of time for �=a = 1:15. The dotted line is an estimation of the
suspended transport without the advected part (test case W1).
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left pro�le to the right, i.e., the pro�le is stable and vice versa.
For such a con�guration the sediment transport from the second to the

tenth period has been averaged (�gure 6.10). The �rst period was discarded
to avoid e�ects due to the initial reshaping of the pro�le used as start con-
dition. The time averaged bed load in the trough (�gure 6.10, top) is de-
termined by the strength and the extension of the separation bubbles from
the large and the small ripples. For the two smaller pro�les (�=a = 1:05
and 1.15) the separation bubble from the large ripple dominates, and sed-
iment is transfered from the small to the large ripple. For �=a = 1:35 the
relative strengths of the two bubbles changes, and a small amount of sand is
transported to the smaller ripple from the large ripple.

For this case (W1) the suspension (�gure 6.10, second from the top) is
dominated by the near-bed suspension, and a somewhat similar transport
patterns as for the bed load is seen.

A time series of the sediment transport in the trough between the two
ripples has been extracted (�gure 6.11). To obtain a reasonably smooth
signal the transport in ten points around the trough point were averaged to
make the time series. A �rst observation shows quite a lot of sediment going
back and forth over the trough, even in the case where the two ripples are
stable. The marginal wave length is therefore not the no-interaction limit
as was the case for the rolling grain ripples (section 3.2.2); the equilibrium
situation for the vortex ripples is rather dynamical. If the wave length were
determined by the no-interaction limit, the wave length could be found from
an examination of the length of the separation bubbles in �gure 4.8.

The bed load in the trough is mainly created by the separation bubbles
moving back and forth over the trough. The small wiggles in the bed load are
the �ngerprint of small avalanches occurring in the vicinity of the trough. The
bed load created by the smaller ripple (!t = 275 � to 15 �) is almost identical
for the three cases. The same is the case for the separation bubble created
by the longer ripple, except for the case with �=a = 1:4 where the bed load
created by the longer ripple becomes smaller than the one created by the
smaller ripple. Thus the longer ripple is not able to regain as much sediment
as the smaller ripple gain from the longer ripple.

In the time series of the suspended sediment three maxima can be ob-
served (�gure 6.11, middle and �gure 6.12). The suspended sediment can be
split into two parts: the near bed suspension and the advected suspension
(see also section 5.1). The two maxima \B" and \C" are created by the
advected suspension, and if they are ignored (the dotted line in �gure 6.12)
the near bed suspension, which follow the bed load signal, can be estimated.
It is then clear that maximum \A" is created by the near bed suspension.
The maximum \B" is created when the cloud of sediment in the vortex from
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Figure 6.13: As �gure 6.10, but with ws=Um = 0:09.

the second half period is advected over the trough (see also �gures 5.5 and
5.6, !t = 60 �). The maximum \C" is created when the vortex returns a
second time. This time the bubble does not carry any sediment, but as it
crosses the crest it triggers an extra discharge of sediment as a jet on top
of the separation bubble (the return of the vortex can be seen on �gure 4.4,
!t = 120 � to 150 �). For �=a = 1:35 the \B" and \C" maxima disappears
because the sediment has been deposited before it reaches the trough. For
smaller settling velocities the \B" maximum will still be present. The \C"
maximum, however, disappears because the vortex never reaches the trough
a second time.

In the above example the bed load was dominating, and the suspension
only played a very minor rôle. The same procedure has been repeated, but to
add more suspension, the settling velocity has been lowered to ws=Um = 0:09
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Figure 6.14: As �gure 6.11, but with ws=Um = 0:09.

(�gures 6.13 and 6.14). The bed load is similar to the previous case, which is
to be expected as the Shields parameter have not been changed. Even though
the levels of suspension is in general much higher in this case compared to
before (on the order of 30�0b compared to 1�0b before, see �gure 6.14, middle),
there is not any major changes in the net transport of sand between the
ripples, and the marginal wave length is not a�ected. For even lower settling
velocities down until ws=Um ' 0:070 the selection of wave length is not
a�ected by the large amount of sediment present. It thus seems as if the
selection is still governed by the bed load and the near-bed suspension in the
trough.

When the settling velocity becomes smaller than 0:070Um the marginal
wave length suddenly changes from around 1:25a to 0:8a (�gure 6.15 and
6.16). The average bed load in the trough is seen to be negative for both
the long and the short set of ripples. This is of course to be expected as
the separation bubble now will be fully developed and cover most of the
neighbouring ripple. If the bed load over the trough is almost the same for
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Figure 6.15: As �gure 6.10, but with ws=Um = 0:065.

both ripple lengths, there is a big di�erence in the suspension, and it is the
suspension which governs the selection of the marginal wave length.

6.3.2 Results

The morphological stability analysis have been conducted for Shields param-
eters 0.15 and 0.50, and settling velocities in the range from 0.03 to 0.185
(�gure 6.17). The marginal wave length seems to be completely independent
on the Shields parameter. Furthermore the wave length is also independent
upon the settling velocity, except at the transition from the near bed domi-
nated regime to the regime dominated by advected suspension.
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Figure 6.16: As �gure 6.11, but with ws=Um = 0:065.
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Figure 6.17: The variation of the marginal wave length as a function of the
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Figure 6.18: The bed load in the trough averaged over one half wave period for
two steepnesses as a function of the wave length. The lines interpolating the
points are drawn using cubic splines (test case W1).

6.4 The stability analysis using �xed pro�les

In the previous section a method was devised to �nd the marginal wave length
using a stability analysis of two almost equal-sized ripples. It was furthermore
elucidated that the stability/instability of the smaller of the two ripples could
be deducted by looking at the sediment transport over the trough. This
method is computationally rather demanding as morphological calculations
are involved and many periods of iterations might be needed before a clean
trend shows up near the marginal stability point. It would therefore be very
convenient if the calculations could be done using �xed pro�les thus avoiding
the morphological calculations. A method to accomplish this is outlined in
the following.

If the two ripples considered are very close to being equally sized, the
small di�erence between them can probably ignored when the transport over
the trough is considered. It will therefore be enough to examine the transport
in the trough of just one single ripple. This was already done to some extent
in section 4.2.2, where the shear stress averaged over one half period in the
trough were described as a function of the wave length of the ripple. As the
sediment transport is a non-linear function of the shear stress, the average
shear stress in the trough will not give the right information. Therefore the
average bed load in the trough has been calculated (�gure 6.18). It was found
that the trough bed load was dependent upon the steepness of the ripple so
therefore two di�erent steepnesses were used. The bed load is predominantly
negative, reecting the fact that the separation bubble causes sediment to
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Figure 6.19: A comparison between the Shields parameter on a �xed and a
moving pro�le. Due to the movement of the crest (see inset), the result from
the �xed pro�le have been moved 4 % to the right to obtain a good agreement
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Figure 6.20: The marginal wave length for di�erent values of the Shields pa-
rameter using �xed pro�les and considering only bed load. This is made for
h=� = 0:20. The full line is an interpolation using cubic splines.

be moved over the trough from the neighbouring ripple. A clear minimum in
the trough bed load is evident around �=a = 1:0 for h=� = 0:20 and around
�=a = 1:07 for the steeper ripple. It can easily be argued that the minimum
of these curves are exactly at the marginal wave length: imagine two ripples
with slightly di�erent wave lengths. The net transport over the trough can
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Figure 6.21: Illustration of period-two stable pro�les.

now be calculated using the curves shown in �gure 6.18. The one ripple with
the largest (negative) transport over the trough will gain sediment from the
other ripple, and this ripple will then dominate. The most dominant ripple
is the ripple with the largest (negative) transport over the trough, which has
a wave length corresponding to the position of the minimum in �gure 6.18.

The marginal wave length which is calculated this way is somewhat
smaller than what is to be expected. The reason for this is that the move-
ment of the crest has not been taken into account. For this example (W1),
the crest moves approximately 0:1a back and forth. This means that the
separation bubble will be pushed a little bit further away from the crest than
is the case for the �xed pro�le. This is illustrated in �gure 6.19 where the
Shields parameter averaged over one half period is compared for a live rip-
ple and the �xed ripple (h=� = 0:25) used in the calculation to construct
�gure 6.18. As is expected, the graph of the Shields parameter has to be
shifted to the right to obtain a good correspondence. This shows that the
wave length calculated with �xed pro�les should be adjusted with approx-
imately 8 % to account for the moving crest. The wave length calculated
before, �equ = 1:07a now becomes �equ = 1:14a, a result which is in better
correspondence with the stability analysis in the previous section.

This method of calculating the marginal wave length can be tried for dif-
ferent values of the Shields parameter. It was found that changing the Shields
parameter does not lead to any change in the marginal wave length, unless
the Shields parameter is very small (�gure 6.20). Here the non-linearity
caused by the critical Shields parameter becomes strong and makes a limita-
tion of the wave length. The smallest Shields parameter shown in the �gure
is �0 = 0:033. If the Shields parameter is made just slightly below that value,
the length quickly dips to around 0:7, and then there is no more motion of
sand in the trough. This means that for �0 < 0:033 the pro�les are frozen,
and no more dynamics between the ripples takes place. There might still
be some motion of sand on the crests of the ripples, but the ripples will not
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Figure 6.22: The geometry of the ripples in the simple model. Note that the
ripples does not have to be symmetric.

be able to a�ect the neighbours. The description of the transport of sand
over the trough also help explaining the period-two pro�le seen in �gure 6.8.
De�ne the transport over the trough averaged over one half period as

�m(�) � h�bi1=2 jtrough: (6.2)

If the length of the domain is smaller than 2�m there might exist an equilib-
rium situation where

�m(�1) = �m(�2) and �1 + �2 < 2�m (6.3)

{ this is illustrated in �gure 6.21. This is the situation in �gure 6.8. This
also gives a method of obtaining two points on the curve �m(�).

6.5 A simple model of the dynamics of ripples

In this section a simple model for the dynamics of the ripples, based on the
exchange of sediment between neighbouring ripples, is constructed.

Similar to the model of the rolling grain ripples the ripples are here con-
sidered as single \particles". Each ripple consist of a left and a right side
with lengths �i� and �i+ respectively. The ripples are triangular with a �xed
angle of repose �. Each ripple is characterised by a position xi and a height
hi (�gure 6.22). Using the positions and the heights of the neighbouring
ripples, the lengths of each side can be found:

�i� =
1

2

�
xi � xi�1 +

1

tan�
(hi � hi�1)

�
(6.4)

�i+ =
1

2

�
xi+1 � xi +

1

tan�
(hi � hi+1)

�
(6.5)
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Figure 6.23: The exchange of sediment between a ripple and the neighbour in
the �rst half period. The ripple i exchanges sediment with the ripple i+1. Note
that the mass �m does not have to be positive { a negative mass corresponds
to the arrows pointing the other way.

and the masses:

mi�1 = li�(hi � 1

2
�i� tan�) (6.6)

mi+1 = li+(hi � 1

2
�i+ tan�): (6.7)

The total length of the ripple is �i = �i� + �i+. The dynamics enters when
mass is exchanged between neighbouring ripples. Each half period some mass
�m is taken from the neighbouring ripple (the right ripple in the �rst half
period and the left ripple in the second half period). This mass is distributed
on the two sides of the ripple; for the �rst half period:

�m� = (1� �)�m (6.8)

�m+ = ��m (6.9)

and vice versa for the second half period (�gure 6.23). If � = 1 all the
sediment is deposited on the side next to the neighbour from which the
sediment is taken, and if � = 0 the sediment is deposited on the other side.
In both these cases there is only a weak coupling between the two sides of
the ripple, which will result in very asymmetric ripples. To get a stronger
coupling � should have a value between 0 and 1. Here is used � = 1=2.

The crucial point is the amount of sediment exchanged each half period
�m. Following the �ndings in the previous section, this is a function of the
length of the ripple �m(��), where �� is �+ for the �rst half period (with
positive ow) and �� in the second half period. �m has been modelled as a
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Figure 6.25: An example of two di�erent shapes of the interaction function
having the same value of �max.

bi-linear function, de�ned by the three parameters �m0, �mmin and �mw

(�gure 6.24):

�m(��) =

8<
:

�m0 + 2(�mmin ��m0)�� for �� <
1
2

�mmin

�
1� �� � 1

2

�mw � 1
2

�
for �� � 1

2

(6.10)

The minimum point of �m is now at one half, which means that all lengths
are made non-dimensional with the (total) ripple length at the minimum.

The parameters entering the model are the initial length of the ripples
�0, the length of the domain L and the three parameters characterising the
interaction function �m. These three parameters can be reduced to only one
important parameter.

Firstly, �mmin is seen to be of minor importance. It has to be remem-
bered that the interaction function describes the transfer of mass over one
half period, while the important quantity is actually the transfer of mass
averaged over one whole period:

h�miit = �mi(�i;+)��mi(�i+1;�); (6.11)

which is independent upon �mmin.
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Figure 6.26: An example of the dynamics of the model. Left: a zoom of the
ripple pro�les, right: the evolution of the ripple crests. The time scale is arbitrary
(�max = 1:35).

Secondly, the two parameters �mw and �m0 can be combined into just
one other parameter, �max, which sets an upper limit for the ripple length
(�gure 6.25):

�max = �mw �
�m0(�mw � 1

2
)

�mmin

: (6.12)

If the side of a ripple becomes longer than �max then there is room for
another ripple which can dominate the large ripple. If the interaction is
just described in terms of �max the steepness of the function is still left un-
described. This determines the magnitude of h�mit, which again sets the
speed of the interaction which can be scaled out.

6.5.1 Results

Following the curve in �gure 6.18, a reasonable choice of parameters for the
interaction function is: �m0 = �0:3 and �mw = 0:75; �mmin is arbitrarily
set to �1. This gives �max = 1:35. These absoulte numbers for the mass is
of course far too big, and a relaxation factor on the order of 1=20 is used.
Results from a sample run with 100 initial ripples and the initial ripple length
�0 = 0:75 are seen in �gure 6.26. A fast coarsening process is seen in the
beginning, followed by a slower relaxation towards the equilibrium state. A
careful analysis showed that, given a large enough domain, the equilibrium
wave length is not dependent upon the initial conditions. For this example
�equ = 1:15 � 0:02. This value is in between the minimum wave length, 1,
and the maximum wave length 1.35. It is, however, not just the average of
the two.
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Figure 6.28: The evolution of the wave lengths in the model (same parameters
as used in �gure 6.26). Each line is shifted to allow them to be distinguished
from each other.

The equilibrium wave length has been calculated for di�erent values of
�max (�gure 6.27). Here it is even more clear seen that the equilibrium wave
length saturates to a value smaller than the average of the minimum and the
maximum wave length.

The possibilities of this model are far from exhausted. One particularly
exciting aspect is the possibility of making a connection with so-called phase
equations (Cross and Hohenberg, 1993). Such an equation should be able
to describe the slow relaxation of the model, i.e, the �nal adjustment of the
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pattern. The evolution of the local wave lengths in the model are shown in
�gure 6.28. Apart from the curve for t = 25 where there are smaller ripples
in between the more mature ripples, a smooth modulation of the wave length
is observed, which should be captured by a continuous model.

Another obvious extension is to use the model for the case of two dimen-
sional ripple pro�les.

6.6 The equilibrium pro�le of ripples

The equilibrium pro�le of vortex ripples has been the topic of some spec-
ulation. One reason for the interest is that the steepness is important for
the friction and the roughness (see the article \Wave plus current over a
ripple-covered bed").

Sleath (1982) proposed a conformal mapping for the ripple pro�le, based
on measurements of ripple pro�les (�gure 6.29). This pro�le have a rounded
crest, and Sleath argued that this was an average equilibrium pro�le. The
average was performed over the wave period, where the crest is rocking back
and forth. The shape of the crest is quite important for the ow over the
ripples, and a rounded crest seems to be particularly unsuited for the simu-
lations of the ow over ripples, as this gives a less strong separation bubble
than would have been the case with a ripple with sharp crest.

Freds�e (1992) and Br�ker (1985) have developed a simple model which
gives either very triangular pro�les or a parabolic pro�le (�gure 6.29).

The basic concept behind the simple models of the ripple pro�le developed
by Freds�e and Br�ker, is to calculate the pro�le that has a zero transport
averaged over one period, i.e.,�

qb(x; t; hx) +

Z D

h(x)

qs(x; t) dy

�
t

= 0 (6.13)

for all x, where hx is the bed slope. The bed load is a function of the slope
of the bed through the gravity correction1. If the shear stress on the bed and
the suspension are known, equ. (6.13) can be solved for hx(x), which can be
integrated to �nd h(x). In the models of Freds�e and Br�ker the idea is to
make a plausible assumption of the shear stress and the suspension, and from
that calculate the pro�le. In the bed-load-only-case, it was found by Br�ker
that almost any reasonable assumption gives a very triangular pro�le. By
adding suspension she found corrections to the pro�les, making the ripples
less steep (�gure 6.30).

1In fact the suspension is also a function of the bed slope through the bed boundary

condition, but this has been ignored for the present purposes.
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Figure 6.29: Three examples of ripple pro�les: a triangular pro�le with sides
the angle of repose (33 �), a parabolic pro�le with steepness h=l = 0:1625 as
suggested by Freds�e (1992) and the pro�le made by the conformal mapping of
Sleath (1982). The steepness of the latter pro�le has been set to 0.2.

Figure 6.30: Example of the pro�les found by Br�ker. The less steep the pro�les
the more suspension (from Br�ker (1985))

Using a �xed pro�le, the shear stress and the suspension have been calcu-
lated for �0 = 0:15 and ws=Um = 0:10 (�gure 6.31, left). Solving equ. (6.13)
for hx and imposing a maximum slope of the angle of repose, the pro�les
shown in �gure 6.31, right is found. The pro�les are almost triangular ex-
cept for a small rounded trough. This shows that a major the part of the
ripple is dominated by avalanches. As this method does not resolve the back
and forth motion of the crest, the resultant steepness is too large, but apart
from that there is not much di�erence between the simple calculation and
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Figure 6.31: The sediment transport over a �xed pro�le averaged over one period
(left) and the resultant pro�les compared with the pro�les from a morphological
calculation, shown in the two extreme positions (�0 = 0:15; ws=Um = 0:10).

the full numerical solution.

6.6.1 Results

Using the morphological calculations the ripple pro�les have been calculated
for �0 = 0:15 and �0 = 0:50 for a wide range of settling velocities (�gure 6.32
and 6.33). In all cases in the regime dominated by bed load and near-bed
transport, the ripples are very triangular, but they become slightly less steep
as the settling velocity is lowered. This might be partly due to a larger back
and forth motion of the crest as the sediment transport is increased, which
gives rise to less steep ripples.

The ripples are in general steeper than could be expected from the mea-
surements presented in section 6.1. The discrepancy might partly be due to
the use of too large an angle of repose (33 �). As there is permanent motion
on the sides of the ripples, the packing will be loose, and they can not be
expected to reach the static angle of repose. In fact, Stegner & Wesfried
(1998) found that the angle of repose on the ripples were 27 % to 15 % lower
than the static angle of repose. This means that the steepnesses calculated
here are overestimated by approximately 20 % to 30 %.

6.7 Waves plus current

The stability analysis for �nding �m can in principle be repeated for the case
of waves plus current. If the calculations needed were big for the wave-only
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Figure 6.32: The equilibrium pro�les for ripples with �0 = 0:15 (top) and �0 =
0:50 (bottom) and varying the settling velocity from ws=Um = 0:185 to 0:050.
The pro�les are shown at the end of the �rst half period, but two pro�les (stippled
lines) are shown at the end of the second half period to illustrate the movement
of the pro�le during the period.

case, they are enormous for the wave plus current case. Furthermore the
phase space in the case has been enlarged due to the appearance of the two
quantities Uc=Um and D=a.

As an example of morphological calculations under wave plus current
conditions, the equilibrium pro�le has been calculated for D=a = 5 and a
current strength varying between zero and Um (�gure 6.34 and table 6.2).
For Uc=Um � 0:5 the wave-only pro�le is only subject to minor changes due
to the current, but for Uc = Um the pro�le is very asymmetric and clearly
dominated by the current.
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Figure 6.33: The steepness of the ripples as a function of the settling velocity.
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Figure 6.34: Ripple pro�les in wave plus current situations (�0 = 0:15; ws=Um =
0:185).

Table 6.2: The velocity c of the four ripples shown in �gure 6.34

Uc=Um c=Um

0 0
0.25 0.00058
0.50 0.00033
1.0 0.00083



6.8 Summing up 123

6.8 Summing up

The important result in this chapter is that the minimal wave length can be
calculated through a stability analysis of the fully developed pro�les. It was
illustrated in section 6.4 how this method could even be carried out using
�xed pro�les. The discrepancy between the results from the morphological
calculations and the ones using �xed pro�les still has to be accounted for.
A very interesting question is how �m relates to the equilibrium wave length
of the ripple. It was argued in section 6.2 that for a full understanding
of this, a two-dimensional ripple pro�le will have to be considered, as the
presence of defects are important. A generalisation of the simple model from
section 6.5 to two dimensions might help to shed light on this. In relation to
the simple model, it should be mentioned that it is very easy to write and
interface equation which show ripple-like behaviour (e.g. Csah�ok, Misbah,
and Valance (1998, Terzidis, Claudin, and Bouchaud (1998)). The model
presented here is not barely based on symmetries and heuristic reasoning,
but has a solid foundation based on physical facts.

A interesting question is posed by the sudden jump in �m at ws=Um �
0:070. This point marks a transition between ripples formed by near-bed
sediment transport and ripples formed by advected suspension. This transi-
tion might have a deeper inuence on the ripple dynamics. Nielsen (1979)
classi�ed a set of measurements into one- and two-dimensional ripples2 and
found, that the transition between one- and two-dimensional ripples was
around around ws=Um = 0:070. This might also show that the ripple pro�le
becomes chaotic and only obtains a steady state in a statistical sense.

The calculated ripple pro�les are not surprisingly dominated by the sides
being at the angle of repose. The most important parameter governing the
steepness is thus the dynamical angle of repose.

2In fact Nielsen share the common misconception that because a one-dimensional ripple

pro�le is created by a two-dimensional ow, the ripples are also two-dimensional. He thus

classi�ed the ripples into two- and three-dimensional ripple patterns.
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Chapter 7

Discussion

The backbone of this study of ripples has been to develop a computational
model, such that the ow and sediment transport could be studied in detail.
The model was capable of performing morphological calculation of ripples.
With the aid of the morphological calculations, the dynamics of ripples was
studied.

7.1 A qualitative bifurcation diagram

Using the knowledge obtained about rolling grain ripples in chapter 3 and
about vortex ripples in chapter 6 it is possible to sketch a bifurcation diagram
for the creation of ripples (�gure 7.1). As control parameter have been chosen
the Shields parameter. Because of the subcritical nature of the bifurcation,
there is an unstable branch going backwards from the �rst appearance of
ripples at �0 = �c. This curve shows how large a perturbation is needed to
initiate ripples if the Shields parameter is smaller than the critial Shields
parameter. As soon as ripples are initiated they will continue to grow until
they reach the state of equilibrium vortex ripple shown by the upper curve.
This curve is almost horizontal, but the heigth do become slightly smaller as
the Shields parameter is increased. The point marked �n is the point where
there is no exchange of sediment between neighbouring ripples (see section
6.4). The ripples are still stable, and will be stable all the way down to as
point where there is no motion even on the crests of the ripples. This point
is probably very close to �0 = 0.

Using the bifurcation diagram the question of whether an amplitude equa-
tion for the ripples can be derived using an expansion around the �rst bi-
furcation from the at bed (�0 = �c) can be discussed. Strictly speaking the
subcritical nature of the ripples does not exclude a description using am-
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Figure 7.1: A qualitative bifurcation diagram, showing the �rst bifurcation from
a at bed. The region where rolling grain ripples are expected to occur is loosely
sketched.

plitude equations. If the nonlinearities are su�ciently weak an expansion
around the �rst bifurcation will be valid even though the patterns are fully
developed and reach the upper line. The vortex ripples are, however, not
merely weakly nonlinear. A more important objection is that the ripples
created from a at bed, the rolling grain ripples, a qualitatively di�erent
from the fully developed vortex ripples. A description of the dynamics of the
rolling grain ripples can therefore not be expected to give any insight on the
dynamics of the vortex ripples.

7.2 Summary of main �ndings

The main points found during the work will be briey summarised:

� Rolling grain ripples can be described by a granular model. As the
physics of rolling grain ripples and vortex ripples are di�erent from
each other, a description of the dynamics of the ripples based on an
expansion around the at bed state, i.e., an amplitude equation, is
bound to fail.

� The ow and the sediment transport over �xed vortex ripples are similar
to the transport over \live" ripples. This was illustrated by developing
a method to obtain the minimal wave length using only �xed pro�les.
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� The relative friction (and thus the roughness) of a wave plus current
ow over vortex ripples is mainly a function of Uc=Um. The same is
not the case for the dissipation.

� The sediment transport over ripples are dominated by near-bed sed-
iment transport for ws=Um & 0:070, and by advected suspension for
ws=Um . 0:070.

� The time- and space-averaged bed load in wave plus current situations
is negative, while the suspension is positive.

� The vortex ripples are an example of an extremely non-linear pattern
forming system. It was conjectured that the dynamics of the vortex rip-
ples could be described by considering only local interactions between
neighbouring ripples.

The use of morphological calculation has proven to be an extremely powerfull
tool in the study of ripples. It should, however, be used intelligently { a brute-
force calculation with many ripples is not only computationally heavy, but
it does not reveal much about the intrinsic mechanisms driving the ripples.
The methods developed here for the study of vortex ripples, e.g., the stability
analysis of the fully developed pro�les, could probably be used with success
on other structures formed by uid ow (bars in rivers, mega ripples in the
coastal zone etc.).
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Chapter 8

Topics In Shell Models of

Turbulence

In this part of the Thesis, some applications of shell models of turbulence are
developed. Shell models have become a popular tool in statistical turbulence,
and the amount of literature on shell models is large { there seems to be
a whole industry producing papers on shell models. The reasons for the
popularity of the shell models are twofold 1) it is relatively simple to integrate
them numerically and extract high order moments and 2) they describe many
of the statistical features of the Navier-Stokes equations, like intermittency,
surprisingly well. One major drawback is that they are not derived from
the Navier-Stokes equations, but are based on a heuristic reasoning and on
conservation of the symmetries in the Navier-Stokes equations.

Two quite di�erent applications of shell models are considered. One is the
continuous limit of the so-called GOY model (the attached articles \Bursts
and Shocks in a Continuum Shell Model" and \The Zero-spacing Limit of
the GOY model"), and the other is the advection of a passive scalar by a
minimal shell model (the attached article \Shell Model for Time-correlated
Random Advection of Passive Scalars"). As the major part of the work is
reported in the articles, only a brief presentation of shell models will be given
here.

Many di�erent shell models have been created (see e.g. Bohr et al.

(1998)). To give a short introduction to shell models, the common GOY
model by Gledzer, Ohkitani and Yamada (Gledzer, 1973; Yamada and Ohk-
itani, 1987) is described. This is the model in which the continuous limit is
examined in section 8.2. A short introduction to the work on the advection
of passive scalars is given in section 8.3.
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8.1 The GOY model

A shell model consist of a discrete number of shells N . To each shell is
associated a wave number kn and a velocity un. The shell are spaced such
that

kn = rn with 1 � n � N: (8.1)

with the standard (arbitrary) choice r = 2 the whole inertial range can be
covered with relatively few shells, typically between 20 and 30. The velocity
of each shell un is a (complex) measure of the energy on the shell, and can
also be regarded as the velocity di�erence �vn = jv(`)� v(x+ `)j on an eddy
of scale ` � k�1

n . The models are thus one-dimensional and therefore lot
of the spatial structures observed in real turbulence are not captured in the
models.

The crucial point is the interaction between the shells, which are deter-
mined using an analogy to the Richardson picture of the turbulent energy
cascade. Energy is pumped in at the large scales (shell numbers one and
two), forming large eddies. These eddies break up into smaller eddies, which
again break upon into even smaller eddies, represented by energy on higher
and higher shell numbers, until the eddies are so small that they are dissi-
pated by viscosity. The main idea is that the interaction between the shells
is local in k-space, that is, there is only interaction between neighbours and
next-nearest neighbours.

The terms in the evolution equation for each shell is determined by anal-
ogy to the Navier-Stokes equations. The viscosity is the Fourier transform of
the viscous term in the Navier-Stokes equations: �k2nun, and are thus exact.

To preserve the right dimension, the advective terms, which couples the
shells, are of the form knuaub. In the GOY model this is written as:

(
@

@t
+ �k2n)un =

i(anknu
�
n+1u

�
n+2 + bnkn�1u

�
n�1u

�
n+1 + cnkn�2u

�
n�1u

�
n�2) + f�n;nf (8.2)

where � is the viscosity, f the forcing and nf is the forcing scale. An asterix
denotes complex conjugation. The model as it is written has three free
parameters, an; bn and cn. One of the parameters can be gotten rid of
by a rescaling of time, and the custom is to set an = 1. The two other
parameters are set depending upon the conserved quantities of the Navier-
Stokes equations. The conserved quantities can be written as:

Q� =
NX
n=1

k�junj2 =
NX
n=1

rn�junj2: (8.3)
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For the conservation of energy (in the absence of forcing and dissipation)
� = 0. This enforces the requirement that the coe�cients follow the relation:

an + bi+1 + ci+2 = 0 (8.4)

such that the parameters can be described in term of one free parameter, �:

an = 1; bn = ��; and cn = �(1� �): (8.5)

The behaviour of the model is dependent upon the value of �, which deter-
mines the other conserved quantity. This can be either the enstrophy


 =
NX
i=1

k2njunj2 (8.6)

which de�nes a two dimensional variant of the GOY model (� = 1 + r�2)
(see e.g. Ditlevsen & Mogensen, (1996)). For three dimensional turbulence
the other conserved quantity is the helicity H =

P
k� v(k) � v(k) which in

the GOY model becomes:

H =
NX
i=1

(�1)iknjunj2 (8.7)

and � = 1� r�1.

8.1.1 Properties of the GOY model

The observable which is commonly used is the pth. order structure function,
which in a shell model is de�ned as:

S(p) � hupni : (8.8)

The structure functions scale with kn such that S(p) / k
�(p)
n . From the Kol-

mogorov theory of turbulence the scaling of the structure functions are given
as �(p) = 1

3
p. This result is exact for the third order structure function, but

for higher order structure functions a deviation from the Kolmorov scaling,
is observed; the so-called anomalous scaling. One of the surprising facts is
that the GOY model quite accurately have the same anomalous scaling of
the structure functions as is seen in measurements of high Reynolds-number
turbulence (Jensen et al., 1991).
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8.2 Continuous limit of the GOY model

The continuous limits of the GOY model have been studied in the attached
articles \Bursts and Shocks in a Continuum Shell Model" and \Continuous
Limit of the GOY Model".

8.2.1 �-expansion

The limit have been explored in two ways. First an epsilon expansion around
� = 1 was explored. To �rst order this gives the Parasi-equation (Parisi,
1990):

u�t + 3ikuuk = �iku2; (8.9)

where subscript denotes di�erentiation and the expansion parameter has been
eliminated by a rescale of time. This equation was studied in great detail in
the �rst of the two articles. It was found that through a transformation of k
and u such that u = k�1=3v and k = (2x)�3=2 equ. (8.9) can be turned into
a complex Burgers equation:

v�t � ivvx = 0 (8.10)

It was furthermore found that the real and the imaginary parts has a constant
phase. For a pulse moving down the inertial range, the real part became zero,
and only the imaginary part survived. Using that equ. (8.10) becomes:

vt � vvx = 0; (8.11)

the Burgers equation, which can be integrated using characteristics. This
equation forms shocks, and to integrate through the shock a conservation
law has to be applied. In the transformed space the conservation of energy
reads:

E =

Z
(2x)5=2v2dx: (8.12)

If the GOY model is expanded to third order one gets:

�iu�t = 2�(1� 2�)u(u+ 3kuk)+�
u2kk

2(13 + 6k) + 7u2 + u(3k3ukkk +
31

2
k2ukk + 34kuk)

�
�3 (8.13)

This equation does not form shocks as it has higher order terms. It does,
however, form shocks in the second derivative. This makes it quite di�cult
to integrate it numerically.
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8.2.2 The zero-spacing limit

The limit explored in the article \The zero-spacing limit of the GOY model"
is slightly di�erent. Here the shell spacing r is just set to one, such that the
middle term in the GOY model (8.2) disappears:

@u�n
@t

= �i(un+1un+2 � un�1wn�2): (8.14)

This limit is rather weird, as this means that all the shells have the same k.
However, as argued in the article, the qualitative behaviour resembles that
of the GOY model for r larger than one, which justi�es an examination of
that limit. This examination form the basis of the article.

8.3 Advection of a passive scalar

In the statistical mechanics of a turbulent ow two main problems are stud-
ied: 1) the statistics of the velocity �eld and 2) the statistics of a scalar
which is being passively advected by the velocity �eld. It turns out that
the intermittency of a passive scalar is much stronger than the velocity �eld
itself, giving rise to stronger anormal scaling (e.g. Jensen et al. (1992)).

In 1968 the Kraichnan model of the advection of a passive scalar were
introduced which is basically the equation of motion for a passive scalar �:

@�

@t
+ (u � r)� = �r2� + f� (8.15)

where � is the di�usivity of the scalar, f� is forcing and u is the velocity
�eld. The idea of the Kraichnan model is to advect the passive scalar by
a solenoidal random velocity �eld with a prescribed spatial correlation and
delta-correlated in time.

Benzi, Biferale & Wirth (1997) introduced a shell model of the Kraichnan
model:

[
d

dt
+ �k2m]�m(t) = i[cm�

�
m+1(t)u

�
m(t) + bm�

�
m�1(t)u

�
m�1(t)] + �1mf(t) (8.16)

where bm = �km and cm = km+1 for imposing conservation of the scalar \en-
ergy" de�ned as E =

PN
n=1 �n�

�
n in the limit of zero di�usivity and no forcing.

The forcing term acting on the �rst shell is Gaussian and delta correlated in
time. The advecting velocity �eld um(t) is composed of independent complex
Gaussian processes which are delta correlated in time:

hum(t)u�n(t0)i = k��wn=2m �(t� t0)�nm (8.17)
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where the exponent �wn is the parameter determining the scaling of the ve-
locity �eld. This can be seen as a turbulence parameter with a value between
zero and two. This model is much easier to integrate numerically than the
Kraichnan model and it has the further advantage that an analytical clo-
sure is provided for calculating the anomalous correction to the fourth order
structure function (Benzi et al., 1997). The model is, however, not able to
reproduce the Obukov-Corrsin scaling for the second order structure func-
tion; H(2) � k

�2=3
m given a velocity �eld scaling according to Kolmogorov

scaling �wn = 2=3.
In the work reported in the attached article (\Shell Model for Time-

correlated Random Advection of Passive Scalars"), the model is extended
such that the velocity �eld is correlated in time instead of just being delta
correlated. The velocity �eld is generated by a Ornstein-Uhlenbeck process
resulting in a signal exponentially correlated in time. The prescribed velocity
�eld then becomes:

hum(t)u�n(t0)i =
jv2mj
�

exp(�t� t0

��m
)�nm (8.18)

where now vm / k
��=2
m describe the scaling of the velocity �eld, �m is the time

correlation for shell m and � is a parameter which determines the strength
of the time correlation. For � = 0 the delta correlated limit is recovered. A
dimensional argument gives the characteristic time for each shell:

�m / 1

kmjvmj / k�=2�1
m ; (8.19)

and the scaling of the space- and time-correlations for each shell is then fully
described by the parameter �. The value of � = 2=3 describes the Kolmogorov
scaling of the velocity �eld, which is the limit explored in the article.

The model is studied analytically in the delta correlated limit and using
perturbation theory the correction due to the time correlation is calculated
(this part of the work is mainly due to P. Muratore-Ginanneschi). To verify
the analytical work and to extend the results into the non-perturbative regime
the model is integrated numerically.

The main results in the article are briey highlighted:

� The relation between the delta correlated velocity �eld and the time
correlated velocity �eld is:

�wn = 1 +
�

2
: (8.20)

This mean that the value of �wn which corresponds to the Obukov-
Corrsin scaling is �wn = 4=3, and explain why Benzi et al. (1997) were
not able to �nd Obukov-Corrsin scaling.
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� The method of Benzi et al. (1997) for calculating the anomalous scal-
ing was extended to the sixth and the eight order structure functions.
These results were con�rmed by numerical integration of the model.

� The addition of the correlated velocity �eld resulted in strong anoma-
lous corrections.

� The numerical integration of the model with time correlation also showed
a strong correction to the delta correlated model for small values of the
time correlation �. The non universality became smaller as the physi-
cally relevant limit � � 1 was approached. However, it is not possible to
say whether there is a clear saturation of the correction at some value
of �.
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