HOW TO CALCULATE THE GEOMETRY OF VORTEX RIPPLES
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Abstract: The topic of this paper is the calculation of the wave
length and the profile of fully developed vortex ripples. A computa-
tional model of the flow and sediment transport over vortex ripples
has been constructed, which makes it possible to perform morphologi-
cal calculation of vortex ripples. Using a stability analysis of the fully
developed ripples, the minimal wave length of the ripples is calcu-
lated. This minimal wave length was found to depend on the settling
velocity only. The profile of the ripples are calculated, and the steep-
ness is found to depend upon the Shields parameter and the settling
velocity.

INTRODUCTION

In the coastal zone, the appearance of ripples on the bed is ubiquitous,
occurring at shear stresses even smaller than the critical shear stress for grain
movement on a flat bed, up to sheet flow conditions. The ripples modify the
conditions near the bed such that the flow and sediment transport is qualitatively
different from the conditions on a flat bed. A description of the flow and sediment
transport over a rippled is therefore an important boundary condition in models
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of the coastal environment. The flow and sediment transport is determined by
the geometry of the ripples, i.e. the length and the height, and the assessment of
these is the topic of the present paper.

Ripples created by gravity waves fall into two categories: rolling grain ripples
and vortex ripples. The rolling grain ripples are a transient phenomena arising
when ripples are formed on a flat bed. The initiation of rolling grain ripples have
been described by Blondeaux (1990) and Vittori & Blondeaux (1990) using a
fluid mechanical instability, and by Andersen (1999) by a granular model. The
rolling grain ripples are not interesting for the coastal engineer as they are not
stable (Stegner & Wesfried 1998, Scherer et al., 1999) and always develop into
the predominant ripples in the coastal zone: the vortex ripples (hereafter all
references to the ripples refer to vortex ripples). The physics behind the wave
length selection of the rolling grain ripples are very different from that of the
vortex ripples. The results from the rolling grain ripples can therefore not be
used for the vortex ripples.

Since the seminal work of Bagnold (1946), there has been many measurements
of the geometry of the ripples (for a compilation see Nielsen, 1981). The theore-
tical understanding of the mechanism behind the selection of wave length and the
geometry of the ripples is however scarce. The only attempt at building a model
of the fully non-linear ripples is the simple model of Fredsge & Broker (1983).

The aim of the present paper is to show some of the basic mechanisms behind
the selection of the ripple length and how the ripple profile is formed. To this
end a computational model has been constructed. The idea have been to keep
the setup in the model as simple as possible to facilitate a clean description of
the dynamics of the ripples.

THE COMPUTATIONAL MODEL

The model consists of a ripple profile with one or more ripples on the bottom
of a channel. The boundaries on the sides are periodic such that the calculation
is performed on an infinite train of ripples. The simulation is made in a duct of
height 2D which is accomplished by having a symmetry line at y = D (i.e. the
vertical gradient of all quantities is zero; /0y = 0 at y = D).

The model consists of three parts: the flow model, the sediment transport
model and the morphological module. For a detailed description of the model see
Andersen (1999).

The Flow Model
The flow is described by the Reynolds-averaged Navier-Stokes equations
which is driven by an oscillating pressure gradient added all over the domain.



This is an artificial way of simulating real waves, which is similar to performing
experiments in an U-tube. This way only the horizontal part of the orbital motion
is resolved, and the streaming in the bottom boundary layer is not resolved.

The flow is regarded as fully turbulent and to resolve the turbulence the k-w
model of Wilcox (1988) is used. The k-w model consists of a transport equation
for the turbulent kinetic energy k and the dissipation of the turbulent kinetic
energy w:
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The eddy viscosity is calculated as:
k
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and the closure coefficients are given as (Wilcox, 1993):

v =1 v=5/9 p*=9/100
f=3/40 o=1/2 o*=1/2.

This model is similar to the popular k-¢ model but has two improvements: 1) it
is possible to integrate through the viscous sub-layer without dubious damping-
functions, thus avoiding the use of wall-functions (Patel and Yoon, 1995), 2) the
model is known to perform better in flows with strong adverse pressure gradients
(Wilcox, 1993), which is exactly the case for the wave boundary layer. Further-
more the boundary conditions on the bed for £ and w are simple and make it
possible to account for both smooth and rough bed conditions. The k-w-model
has previously been used with success to calculate the flow over dunes in rivers
(Yoon and Patel, 1996).

The details of the numerical solution of the model can be found found in
Andersen (1999) and Tjerry (1995), but the main points will be briefly mentioned.
The Reynolds-averaged Navier-Stokes equations are solved using a finite volume
code. The discretization in space is made using the high order limiter scheme
ISNAS (Zijlmea, 1996), which is similar to the classical QUICK scheme by Leonard
(1979). The discretization in time is implicit with the higher order spatial terms



made semi-explicit to retain a 5-cell stencil, and the pressure is solved using the
PISO algorithm (e.g. Versteeg and Malalasekera, 1995).

The flow model was validated against measurements of the velocity profile
over a rippled bed.

The Sediment Transport
The sediment transport is divided into two partitions, the bed load and the
suspended load.

The bed load is described using the Engelund-Fredsge formula (1976). This
formulation is similar to the well known Meyer-Peter formula, but it has correc-
tions to avoid over-estimation of the transport at high shear stress rates, and it
also provides a compatible boundary condition for the suspended sediment. For
details of the bed load formula and the bed boundary condition used see Fredsge
& Deigaard (1992) and Andersen (1999).

The bed load flux ¢, is a function of the slope of the bed and the Shields

parameter defined as
Th
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where 7, is the shear stress on the bed, p is the density of the water, s (= 2.65)

the relative density of the sediment, g the gravitational acceleration and d is the
grain diameter.
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The suspension is modelled as an advection diffusion process of the concen-
tration of suspended sediment c:

Dc oc
D = wSa—y + V(esVe), (6)

where w; is the settling velocity and e, = vy is the diffusivity of the suspended
sediment. The bed boundary condition is a reference concentration at y = 2d
given as a function of the Shields parameter.

The flux of sediment is made non-dimensional as:

o b
¢y = —m (7)
1

)d

g(
b= /y:hm“c@' (8)

The Morphological Module
When the flow and the sediment transport has been calculated it is, at least
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in principle, simple to make a morphological calculation where the bed profile
is continuously changed. The change in the bed profile can be found using the
continuity equation for the sediment

8h(x,t):_ 1 Og(x,t) (9)
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where n (= 0.4) is the porosity of the bed and ¢, = ¢, + ¢5 is the total sediment
flux.

If the slope of the bed exceeds the angle of repose (33°) then an avalanche
sets in. This is simply modelled by a strong down slope flux of bed load.

The continuity equation is discretized using the QUICK scheme of Leonard
(1979) which is third order accurate in space. To avoid numerical instabilities
the sediment transport is smoothed using an ordinary running average. In prin-
ciple the bed can be updated every time step using the continuity equation, but
in practice this requires that acceleration terms due to the moving grid are incor-
porated in the governing equations (e.g. Mayer 1997). Instead a more pragmatic
approach has been adopted — the bed is only updated every tenth time step. This
way the solver is “kicked” every time the bed and the grid are updated, but after
ten time steps it has recovered completely. Usually 3000 time steps per period
have been employed for morphological calculations.

THE FLOW OVER RIPPLES

The flow over a rippled bed can be characterised by five non-dimensional
parameters: A/a, h/\, ky/D and Re,. Here A\ and h is the ripple length and
height, ky is the Nikuradse roughness of the bed, D is the depth and Re, =
Una/v is the Reynolds number with a being the amplitude of the oscillatory
motion and U, the maximum velocity away from the bed. The Reynolds number
and the relative roughness is of minor importance, and if D > 15h it has been
found that the flow is nearly independent upon the depth (Andersen, 1999). This
leaves only two important parameters, the length and the steepness of the ripples

AJa and h/A.

The flow over ripples is dominated by the movement of vortices over the
ripples. The snapshots in figure 1 clearly shows the formation of the separation
bubble early in the wave period. The bubble has a very strong rotation, with
velocities near the bed on the order of the free stream velocity. The bubble grows
quickly from the crest of the ripple, and reaches the maximum length shortly
after the outer flow begins to decelerate. At this point the length of the bubble
is a little less than a. When the flow decelerates, the bubble is “curling up” into
the main flow, but still maintaining the strong rotation. Shortly after the main
flow has reversed, the bubble is lifted over the crest and ejected into the flow,
thus becoming a free vortex (wt = 30°). It is hard to see the ejected vortex in

5



wt =30°

Q
o

&

0.4

wt =120°

0.2

N -

0.5 1

0.8

0.6

0.4
0.4

wt =180° ;\\\\/\) Vi

0

0.2
0.2

o Lr=m

Figure 1: The flow over a fixed ripple at three instants during the first half of the
wave period. To the right is a vector plot of the velocity field, and to the left the
curl of the velocity field. The contours have been cut off in areas of very high
“vorticity”, and these are the blank areas in the middle of the separation bubble
(Ma=12, h/A=0.2).

the vector plots where it only manifests itself as a fluctuation in the velocity field,
but on the plots of the average vorticity it is evident. The vortex travels far over
the ripple, and when the flow reverses again it has travelled almost two ripple
lengths, or more than two times a. When the next vortex is shed into the flow,
the vortex ejected at the end of the previous half period is almost dissipated.

THE SEDIMENT TRANSPORT OVER RIPPLES
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Figure 2: The transport of suspended sediment over a ripple at six snapshots (wt =
30° to 210°). The flow is the same as in figure 1. The scale show the log of
the concentration of suspended sediment — the lighter, the higher concentrations of
sediment (test case one, \/a = 1.2, h/A = 0.20).

When the sediment transport is considered, two more non-dimensional pa-
rameters enter the problem, namely the maximum Shields parameter on a flat
bed (0") and the relative settling velocity ws/U,,.

The sediment transport over ripples is illustrated through two test cases. The
maximum Shields parameter on a flat bed for both test cases is 8’ = 0.15, which is
reasonably low, but still far above threshold. Two values of the settling velocity
have been used: ws/U,, = 0.185 and 0.065. The high settling velocity correspond
to a regime with almost no suspension (test case one), and the low settling velocity
correspond to a regime which is dominated by suspension (test case two).

Snapshots of the suspended sediment in the first half period for the two test
cases (figure 2 and 3) show the large effect of changing the settling velocity.
Even though the total amount of sediment in suspension is markedly different
the general features are similar. A strong jet of sediment is thrown over the
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Figure 3: As figure 2, but with w,/U,, = 0.065 (test case two).

crest of the ripple, on top of the separation bubble. When the flow reverse this
jet follow the separation bubble over the crest. In test case one the settling
velocity is so large that the sediment settles almost immediately after this, while
in test case two the cloud of sediment can be followed as it is advected with the
flow. Another feature which is similar in both cases is the large concentrations of
sediment which is seen close to the bed, particularly inside the separation bubble.
This transport is dominating the total suspended load in test case one, while the
suspension in the jet dominates in test case two. The suspended sediment in test
case one can then be said to be more dominated by the local shear stress, almost
like an extension of the bed load, while the transport is dominated by advection
in test case two. The two modes of suspension have been labelled the near bed
suspension and the advected suspension respectively.

Averaging the sediment transport over one period, the effect on the ripples is
seen (figure 4). The bed load is the same for both test cases, and in general it is
seen that there is an average transport of bed load towards the crest. The effect of
the bed load is therefore to bring sand from the trough to the crest of the ripple,
where it again falls down as avalanches on the sides of the ripple. For the first test
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Figure 4: The sediment transport averaged over one wave period for the two test
cases. Top: bed load, bottom: suspended load (A/a = 1.2, h/\ =0.2).

case the suspension is dominated by near bed suspension, which is transported
by the near bed flow like the bed load. The average suspension is therefore also
directed towards the crest of the ripple. In test case two the advected suspension
dominate which result in the average suspension being directed away from the
crest. The advected suspension therefore tends to destabilise the ripple.

STABILITY ANALYSIS

The dynamics of the ripples and the mechanics behind the selection of wave
length has been analysed in more detail using a stability analysis of the fully
developed profiles. The idea is to have two identical ripples in a periodic domain,
except that one of the ripples is perturbed. When the morphological model is run
with these initial conditions two things can happen: either the two ripples are
unstable, i.e. the perturbed ripple will be taken over by the unperturbed ripple
and diminish, or they will be stable and the perturbed ripple can grow and the
two ripples will end up with equal size. The minimal stable wave length is where
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Figure 5: The evolution of two non-equal ripples from morphological calculations

(0" = 0.50, wy/U,, = 0.185).

there is a cross over between stability and instability.

An example of such an analysis is seen in figure 5. Here the ripple lengths
are A\/a = 1.15 and 1.35. The flow conditions are ' = 0.50 and w,/U,, = 0.185 —
a bed load dominated regime. The right ripple is perturbed by making it 10 %
smaller than the left ripple. Two different behaviours are observed: in the case
where A/a = 1.2, the smaller ripple is slowly being eaten by the larger ripple.
In the other case the two ripples are stable, and the smaller ripple slowly grows.
The minimal wave length is therefore to be found in between the examples, so
Am = 1.25.

The analysis have been conducted for ¢ = 0.15 and 6" = 0.50 over a range
of settling velocities (figure 6). The results are somewhat surprising. The min-
imal wave length could take two values: for settling velocities wy, > 0.070U,,
the selected wave length were 1.25a. This corresponds to a regime dominated
by bed load and near-bed suspension. For w,; < 0.070U,, there is a transition
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Figure 6: The variation of the minimal wave length as a function of the settling
velocity for ¢/ = 0.15 and ' = 0.50.

to a smaller wave length, due to a dominance of the advected suspension. The
minimal wave length did not depend upon the Shields parameter. The transi-
tion point (ws/U,, = 0.070) corresponds well with the transition between a one
dimensional ripple pattern and a two dimensional ripple pattern as measured by
Nielsen (1979).

The relation between the minimal wave length ()\,;,) calculated above and the
most probable wave length in a ripple pattern is not a trivial question. The
minimal wave length sets the shortest possible length of the ripples. If a train of
ripples is squeezed so that the length of one or more of the ripples become shorter
than A, then that (or these) ripples will be annihilated and the train of ripples
will adjust to a new average wave length. This length will, however, be larger than
Am. The average length can be made shorter if one of the ripples spontaneously
create a new ripple or if a defect invades into the pattern. The defects present
in the ripple pattern is therefore responsible for pushing the pattern towards the
minimal wave length. The density and motion of the defects is the topic of further
studies.

It should be noted that ), is relatively large compared to measurements of
ripple lengths (Nielsen, 1981). This might be attributed to the presence of defects
in the ripple pattern during the measurement. The measurements of the ripple
length is often performed by taking a transect of a two-dimensional rippled bed
and then defining the wave length as the length of the transect divided by the
number of ripples. If there is a defect in the transect this will show up as a
short ripple, with the result that the wave length is being underestimated. The
measurement is therefore a combined measurement of the wave length and the
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Figure 7: The sediment transport averaged over one period without avalanche correc-
tion (top) and the resultant profiles compared with the profiles from a morphological
calculation (bottom). The profile from the morphological calculation the profile is
shown in the two extreme positions. (¢ = 0.15, w,/U,, = 0.10).

density of defects in the profile.

THE RIPPLE PROFILE

The equilibrium profile of vortex ripples has been the topic of some interest,
one of the reasons for the interest being that the steepness is important for the
friction.

The ripple profile can be calculated by brute force using a morphological
calculation. It can also be calculated using the sediment transport over a ripple
averaged over one wave period. This is the basic concept behind the simple model
of the ripple profile developed by Fredsge & Brgker (1983). The idea is to find
the profile that has a zero transport averaged over one period, i.e.

(¢o(2,t,ha) + bs), = 0 (10)
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Figure 8: The equilibrium profiles for ripples with ' = 0.15 (top) and #" = 0.50
(bottom) and varying the settling velocity from w,/U,, = 0.185 to 0.050. The profiles
are shown at the end of the first half period, but two profiles (w;/U,, = 0.184 and
0.065, stippled lines) are shown at the end of the second half period to illustrate the
movement of the profile during the period.

for all z, where h, is the bed slope. The bed load is a function of the slope of
the bed through the gravity correction. If the shear stress on the bed and the
suspension is known Eqn.. (10) can be solved for h,(z), which in turns can be
integrated to find h(z). In the model of Fredspe & Brgker (1983) a plausible
assumption of the shear stress and the suspension is made, and from that the
profile is calculated. In the bed load only case, it was found that almost any
reasonable assumption gives a very triangular profile. By adding suspension
Brgker (1985) found corrections to the profiles which reduced the steepness of
the ripples.

Using a fixed profile the shear stress and the suspension have been calculated
for 0" = 0.15 and w,/U,, = 0.10 (figure 7, left). Solving (10) gives the profiles
shown in figure 7, bottom. The profiles are almost triangular except for a small
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rounded trough reflecting the fact that a major part of the profile is shaped by
avalanches. As this method does not resolve the back and forth motion of the
crest, the resultant steepness is too large, but apart from that there is not much
difference between the simple calculation and the full numerical solution.
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Figure 9: The steepness of the ripples as a function of the settling velocity.

Using the morphological calculations the ripple profiles have been calculated
for " = 0.15 and 0" = 0.50 for a wide range of settling velocities (figure 8 and
9). In all the cases in the regime dominated by bed load and near-bed transport
the ripples are very triangular, but they become slightly less steep as the settling
velocity is lowered. This might be partly due to a larger back and forth motion
of the crest as the sediment transport is increased, which gives rise to a less steep

ripple.

The ripples are in general steeper than could be expected from measurements
(see e.g. Nielsen, 1981). The discrepancy might partly be attributed to a too large
angle of repose used in the calculations (33°). As there is constantly motion on
the sides of the ripples the packing will be loose, and they can not be expected
to reach the static angle of repose. In fact, Stegner & Wesfried (1998) found that
the angle of repose on the ripples were 27 to 15 % lower than the static angle
of repose. This means that the steepness calculated here are overestimated with
approximately 20 to 30 %.

CONCLUSION AND ACKNOWLEDGEMENTS

The minimal wave length of vortex ripples were calculated, and it was found
that there is a cross-over between two different wave lengths, determined by the
settling velocity. The profiles of the ripples were very triangular with sides the
angle of repose, but showed a decline in steepness when the settling velocity were
reduced or the Shields parameter increased.
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