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A detailed discussion of Nekrasov's approach to the steady water-wave problems leads 
to a new integral equation formulation of the periodic problem. This development 
allows the adaptation of the methods of Amick & Toland (1981) to show the conver- 
gence of periodic waves to solitary waves in the long-wave limit. 

In  addition, it  is shown how the classical integral equation formulation due to 
Nekrasov leads, via the Maximum Principle, to new results about qualitative features 
of periodic waves for which there has long been a global existence theory (Krasovskii 
1961, Keady & Norbury 1978). 

1. I N T R O D U C T I O N  

1.1.  Introductory remarks 

Under consideration are the steady two-dimensional waves which can arise as the free surface 
of a heavy, ideal liquid acted on by gravity, and contained in a channel of infinite extent with a 
horizontal bottom, in the absence of surface tension effects. I t  is well known that both periodic 
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waves (Keady & Norbury 1978; Krasovskii 1961) and solitary waves (Amick & Toland 1981; 
hereinafter referred to as I) of large amplitude may occur in these circumstances. A precise 
account of the free boundary-value problem presented by this situation is given in the next 
section, and various physical parameters describing the flow are introduced. After some basic 
results about conformal mappings and Jacobi elliptic functions have been recorded in $ 1.3, the 
method ofNekrasov (1967) is used to reduce the existence question for these free boundary-value 
problems to a similar question for nonlinear integral equations. Throughout this section, we 
emphasize the role which various physical parameters play in these integral equation formu- 
lations. For example, in the periodic case, the wavelength and the mean depth (which is defined in 
$1.2, and which is the quantity referred to as the undisturbed depth in Cokelet (1977)) are 
specified a priori and appear as constants in the equations, whereas other quantities such as mean 
velocity, thejux and the j o w  velocity at the crest depend on the solution of the equation being 
considered. An account of this is given in theorems 1.5 and 1.6. 

Of the two integral equation formulations (1.31) and (1.32) of the periodic problems given in 
§ 1.3, equation (1.32) is perhaps the more familiar. Keady et al. (1978) used it to prove a global 
existence theorem for periodic water-waves (though the physical interpretation of its solutions 
there is different from ours). Equation (1.31), which is equivalent to the usual integral equations 
for periodic wave (Krasovskii 1961; Nekrasov 1967; Milne-Thomson 1968), has distinct advan- 
tages for our purposes in $ 3. The most important of these is its striking resemblance to the 
approximation used in I, $ 3.2 to prove the existence of large-amplitude solitary waves. 

After a few remarks in 5 2.1 about recent developments in the theory of large-amplitude 
periodic water-waves, 5 2.2 is devoted to a summary and sketch of the proofs of a global bifurcation 
theorem for periodic waves of wavelength h on a flow of mean depth h, where h and h are any 
given positive real numbers. Among these results is the existence of a connected set of such waves 
containing waves of all amplitudes up to that of a wave of extreme form. This connected set 
contains a wave whose maximum angle of inclination to the horizontal is /3, for any /3 E [0, in: + €1 
where E > 0 is sufficiently small, and the mean velocity of all such waves is bounded away from 
zero and infinity. Some of these results are already known in a different context, while for others 
the proof given here is new. For the sake of clarity, we have collected them here and expressed 
them in terms of equation (1.31), which is the form in which we shall need them again in $ 3. 

I n  5 2.3 we show that solutions of equation (1.32) lie in a cone which is smaller than the cone of 
non-negative functions in C,[O, $A], namely the cone 3?of non-negative functions u which are 
decreasing on [ ih,  $A] and such that u ( x )  > u(gh -x), x E [0, ah]. This leads to a considerable 
improvement in the global bifurcation theory for (1.32). We show that the maximal connected 
subset of non-trivial solutions which bifurcates from the curve of trivial solutions ((p, 0): p E R) 
at  the first characteristic value, 67~Ah-I coth (2nh/h), of the linearized problem is unbounded, 

* 
and lies in (6nAh-lcoth (2nh/h), co)x A". Then using the strong maximum principle, we argue 
that if (p,O) lies in it, then O'(X) < 0 on [&A, $A]. The significance of this observation, which lies 
in the fact that O represents the angle of inclination of the free surface (suitably parametrized) 
with the horizontal, is discussed, and the possibility of extending the method to get information 
about the shape of the extreme wave is mentioned, but no firm conclusion is reached.? Using an 
idea of Benjamin, we show that the maximum angle of inclination of any periodic or solitary 
water-wave under consideration (those in the sets VAor V' in theorems 2.2 and 3.5, respectively) 
is less than +n. (These conclusions are described, more plainly, in $2.4.) 

t See footnote on p. 649. 
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Finally, the main result of this paper is proved in $ 3, and is summarized as follows: if h is 
fixed, then as h -+ co the connected sets of periodic waves of wavelength h on a flow of mean 
depth h converge, in a certain sense, to a connected set ofsolitary waves whose asymptotic height 
is h. This connected set enjoys all the properties of the connected set %? mentioned in I, theorem 
3.9, and the behaviour of the corresponding waves is described in I, $ 4 .  The global existence 
of solitary waves is already known (I); what is new here is that periodic waves converge to 
solitary waves in the long-wave limit. An easy corollary of our general result in this direction is 
the following: 

COROLLARY3.4. For each P, 0 < P < in,and h,  h > 0 there exists on a j o w  of mean depth h ,  aperiodic, 
symmetric water-wave of wavelength A, the free surface of which subtends an angle ,5 with the horizontal at its 
steepest point. If h isjixed and A, f co as n -+ co, then a subsequence of the periodic wave projiles converge 
unzformly on compact subsets of  R to the profile of  a steady solitary water-wave whose free surface subtends a 
maximum angle of ,5 with the horizontal, and whose asymptotic depth is h. 

Such results as these may be regarded as global versions of the theorems of Ter-Krikerov 
(1960,1963) and Lavrentiev (1943,1947,1954) who proved existence of small-amplitude solitary 
waves by showing the convergence of small-amplitude periodic waves to solitary waves as their 
wavelength increases indefinitely. (See Bona et al. for another global treatment of a related 
problem.) I t  is worth noting that because the mathematical theory of large-amplitude water- 
waves lacks any form of global uniqueness result, we cannot claim that all solitary waves may be 
described as the long-wave limit of a sequence of periodic waves. The results of $ 3  follow im- 
mediately by the methods of I",5 3 once the similarity between (1.31) and equation (3.10) of I 
has been noted. The analysis presented here has the advantage that the linearization about the 
zero solution of (1.31) is well understood because exact solutions can be found. I t  may be regarded 
as a small step towards finding theoretical confirmation of the very striking numerical results 
given by Cokelet (1977). 

1.2. The water-wave problems 

The question being considered is the existence problem for steady, two-dimensional waves on 
the surface of an ideal liquid acted on by gravity. In  this section two possible types of flow are 
considered. 

( a )  A symmetric, periodicjow of wavelength h whose mean depth is h t  

If such a flow exists and if the free surface has a unique maximum per wavelength, then a cross- 
section of the flow perpendicular to the wave crests may be identified with a region in the complex 
z-plane between the line y = 0 and a curve ( x  + iH,(x) : x E R}. Here HA:R -+ (0, co) is a function 
of period h which is even and is decreasing on the interval (0, +A) (see figure 1). One wavelength 
of this flow then occupies the region S, bounded by the lines x = + +A, y = 0 and the free surface 
I?, = ( X+ iHA(x):x E ( - Jh, *A)}. Since the fluid is supposed to be incompressible and the flow 
irrotational, there exists an analytic function, the complex potential, w = Q + ik ,  which is related 
to the velocity ( u ( z ) ,  v ( z ) )  of the flow a t  a point z E S, by the expression 

t The mean depth h is defined in (1.9) by h = Q/c, where c is the mean velocity defined by (1.6) and Q is the 
flux carried by the flow. The definition of mean velocity is one of two which Stokes (1847,pp. 444-445) considered 
as being reasonable for the water-wave problem. The mean depth is sometimes called the undisturbed depth 
(Cokelet 1977). (See also Wehausen & Laitone 1960, pp. 456-457.) 

54-2 
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Since the flow is symmetric about x = 0, w must satisfy the relation 

-
whence $&)= -9d -2) 

and $(z) = $(- 3 ) .  

In  particular, $, is zero on the imaginary axis and, by periodicity, 

$,(z) = -&(z)  = 0 if R e z  = + & A .  

4 c  crest 

$=-1 2ch 
,---,.-.-e-.t,C $ = i d  

-\ 

,' \ 

iy ?)-ih+iy P./ ..............................................ih+iy 


S h  -
FIGUREI. A steady wave of wavelength h on a flow of mean depth h. The region occupied by one wavelength 

is SA.  The mean velocity of the flow is - c, and its speed at  the crest is qc. 

Let C = {z(t): t E [O,l]) be any simple curve in S, directed from - & A  + iy to & A t -iy. Then 

JC{u(z) -iv(z)}dz = w(-&A+iy) -w(&A+iy) 

= $(-&A+iy) -$(&A+iy), 
by (1.4)) 

= - ($(&A) -$(-& A ) )  

by (1.5). In  particular, if C is chosen to be a horizontal line (for example, the bottom of the 
domain S,), we find that 

which is called the mean velocity and is denoted by -c. (If the flow is considered in a frame of 
reference relative to which the mean velocity is zero, then cis the phase speed of the wave.) Since 
the bottom (y =0) and the free surface I?, are streamlines, the stream-function $ must be constant 
on both, and without loss of generality, we may suppose that 

$(z) = 0 if ZEI '~ .  
Since h is the mean defith of the flow, 

$(z) = - Q if I m z  = 0, (1.8) 

where Q = ch. (1.9) 

(Note that for a given flow the mean depth is not to be confused with an integral average of the 
height of the free surface. I t  is defined by (1.9) once thejux Q of the flow is known. By definition, 
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-Q is the value of $ on the bottom when $ has been normalized so that $ = 0 on the free 
surface.) Finally, since F, is a free streamline, the pressure is a constant there, and Bernoulli's 
theorem then implies that 

$IV$(z)12+gImz = const. 

for all z E. I?,, where g is the acceleration due to gravity. 
The existence question for this type ofperiodic flow is first one offinding the region S, occupied 

by one wavelength of the flow, and then one of finding $ and 11. such that a periodic flow of 
wavelength h and mean depth h occupies S,. I t  must be shown that $ and 11. satisfy all the 
conditions (1.1)-(1.5), (1.7)' (1.8) and (1.10) in S,, where Q is given by (1.9) and c is given by 
(1.6). 

A Y  

h- c S c-h 
+-A A 

v v
+=-ch 0 

FIGURE.2. The region occupied by a steady solitary wave of asymptotic velocity c (from right to left) 
and asymptotic height h. 

(b )  Solitary waves on ajow of asymFtotic depth h 

By a steady solitary wave is meant a symmetric two-dimensional flow whose free surface is in the 
form of a single symmetric wave of elevation, whose extent is infinite, and which is asymptotic 
to a finite height a t  2 co (see figure 2).  The flow at -t- a3 is supposed to be approximately uniform 
horizontal flow from right to left in the channel. The boundary-value problem posed by this 
situation is first to find the flow domain S bounded by the line y = 0 and a curve r = {x+ iH(x): 
XE. R), where the even function H i s  decreasing on (0, co) and 

lim H(x) = h, (1.11) 
1x1+a 

and then to find a complex potential w satisfying all the boundary conditions, which, in this case, 
take the following form. The relation between the complex potential and the velocity field is 
given by (1.1)) and since the flow is symmetrical (1.2) must also be satisfied. Since the flow is 
supposed approximately uniform and horizontal a t  points of S far from the crest, we have 

dw
lim u(z)--iv(z) = lim --(z) = - c  ( z ~ s ) ,  (1.12) 

IzI -+m I E I - + ~  dz 

where -c is the asymptotic velocity of the steady flow. ( In  a frame of reference relative to which 
the asymptotic speed is zero, c is the phase speed of the wave.) Since r and the bottom are both 
streamlines, we may suppose that 

$ = 0  on r 
and $ = - c h  if I m z = O .  (1.14) 

The boundary condition (1.13) is a normalization, as before, and (1.14) follows from (1.1 1) 

hecause the stream function is a constant on the bottom, and by (1.12)) @,(z) -+ c as Izl -+ oo, 
z E S. Finally, since r is a free streamline, Rernoulli's theorem requires that (1.1 0) must hold on r. 

,+ 
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If, by analogy with the periodic case, the mean velocity of a solitary wave is calculated from 
4,'

the formula lim A-'1u(x+ iy) dx for any y c (0, h), then it follows from (1.12) that this value 
h - t m  -*A 

coincides with the asymptotic velocity. Since the flux of the solitary wave is ch, it follows that 
the mean depth and the asymptotic depth coincide. 

I t  is appropriate at  this stage to mention one further parameter associated with a flow, solitary 
or periodic. In either case, q ,  is used to denote the speed of the steadyjow at the crest of a wave. 

As is well known, both the free boundary-value problems described above can be reformu- 
lated as nonlinear integral equations (Milne-Thomson 1968; Nekrasov 1967). In  ij 1.4 this formu- 
lation is discussed in detail, but before we can do that we need to introduce some conformal 
mappings. The approach of the next two sections is suggested by the remarks in the appendix of 
Keady et al. (1978). 

1.3. Preliminary mapping theorems 

A treatment ofJacobi's elliptic functions which is adequate for our purposes is given in Copson 
(1972). The reader may also refer to Nehari (1952) for additional material. Throughout this 
section, and in all of the sequel, h is an arbitrary butjxed positive real number. 

For k E (0,1), sn (., k) denotes the odd Jacobi elliptic function of modulus k with primitive 
periods 4K and 2iK' and simple poles with residues I lk  or - l / k  at points congruent to iK' or to 
2K+iKf (mod 4K, 2iK1), respectively. The primitive periods are given in terms of k by the 
formulae 

and 

Clearly K and Kt are monotone functions of k E (0, I ) ,  with K 4$n and K' I.co as k 4 0, while K I.m 
and K ' $ ~ T c  as kf 1. 


For any h > 0, let k, be the modulus of the unique function sn ( a ,  kA)such that 


where K, and Ki are defined in terms of k, by (1.15) and (1.16). Since h is fixed, k,, KA and Ki are 
monotone functions of h and 

2KJh + n/4h 

as h -+ co.Throughout we shall use s, to denote the elliptic function sn (. ,k,) for all h > 0, and s, 
to denote the analytic function tanh which is the pointwise limit of sA as h -t co (Copson 1972, 
p. 414, ex. 1). 

Standard theory (Copson 1972, p. 414, ex. 4; or Kober 1952, p. 172) ensures that the mapping 
5, from the complex [-plane into the complex &-plane defined by 

is a conformal mapping of the region R, = ( 5  = x + ill: - < x < $A, -h < 7 < 0) onto the 
region B' = {[ = reiS: 0 < r < 1, -TC < s < TC}.The function a, is analytic on R,, qnd maps the 
boundary portion A, = {[E R,: 5 = x + iO, x E [ - +A, +A)) onto the set {[ = ei? - TC < s s n}, 
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and maps i3RA\AAonto the non-positive real axis in the unit disc.? Let 0,: [ -+A,  &A)-+( -n, n] 
be defined as follows: p,(x) = S  for XE[-+h,&h) ,  


if and only if s E ( -n, n] and 6, (X+iO) = eis. 


Another, more convenient way of saying this is that for x E[ - +A, $A), p,(x) = s if and only if 

SE( -n ,n ]  and 

cos+s+isin+s = - i k i s , ( 2 ~ , ( ~ + i h ) / h )  

where C, and d, denote the even Jacobi elliptic functions cn (. ,k,) and dn (., k,), respectively. 
(Algebraic identities and rules for differentiating the functions c,, dA and s, are given in Copson 
(1972, p. 384).) The expression (1.19) follows from the relation (1.17) and Copson (1972, p. 396, 
example 3) .) $ Let q,: 9' -+RAdenote the inverse ofj,, and let q,: ( -n, n] -+ [ -gh, +A) denote 
the inverse ofp,. From equation (1.19) it follows that 

sin 4s = -( +kh) sA(2Kh~h(s)/A) 
+ kAsh2(2KAqh(s)/A)' 

which, upon differentiating with respect to s and using (1.19) along with the identities in Copson 
(1972, p. 384), yields 

g COS &s= -
h 

,where ' denotes differentiation. But, by the algebraic identities relating s,, c, and d, there results 
that 

(1 - k , ~ f ) ~  = ~ $ d f + ( l - k , ) ~ ~ ~ ,  

and so (1.19) and (1.20) together yield the following expression for q i :  

To simplify the notation, we define the following expressions: 

f (s) = g sec hs, I 
for all SE( -n ,n ) ,  and A = h/(2KA(1+ k,)). 

Recall from (1.18) that A +- 2h/n as h -t co. (1.24) 

Since the only zeros of dJ,/dc occur at  5 = -ih and at  5 = + $A - ih, the real and imaginary 
parts of fi satisfy the Cauchy-Riemann conditions on the boundary portion {eit: -n < t < n) 
of a s ' .  Hence 

= f!f,(s)
for all s E ( -n, n) . 

t The minus sign in the definition ofJA reverses the usual orientation and causes the point 5 = -&A+ iO to be 
mapped onto [ = ein. 

$ The negative root is taken in (1.19) since the point s = n: corresponds to x - -&A. 
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Before finishing this discussion of conformal mappings, we note that in the limiting case when 
h -+ co a mapping which takes the region R ,  = {X + i r :  x E ( -co, co), -h < 7 s 0)  conformally 
on to 9'and the boundary portion A, = { X  + iO: x E ( -co, co)) onto {ei? -n s s s n},is given by 

$ ( g )  = - tanh2 (n(6 +ih) /4h) 

= -s:(n(c+ih)/4h). 

If the inverse of$ is denoted by q, then it follo~rs just as before that 

= (h /n)sec &s= (2h/n)f (s). (1.26) 

If v: [ - n ,  n] -f R is a continuous, odd function with v(n)  = 0, then there exists a unique 
harmonic function u" on the unit disc 9= (6:161 < 1 )  which satisfies the Neumann boundary 

condition au"/arl,is = v(s) ,  s E ( -n,  n ] ,  and the normalization condition u" = 0. I t  is easy to 

see that for all s E ( -n, n ] ,  
r x  

1 sin Is sin It
where G(s, t)= -

n1=1 1 

1 sinQ(s+t)1=--in/2n sin Q(s-. t )  

for all (s, t )  E ( -n, n] x ( -n, n ] ,  s # t, and u" is zero on the real axis in 9.(The identity (1.27)and 
further properties of G are from I,  theorem 2.5 . )  Note that (1.27) ensures that G(s, t )  0 for all 

( s ,t ) E[O,n]X [ o , ~ ] ,s # t. 
The next theorem concerns the change of variables which enables the convergence result of 

5 3 to be deduced from the work of I .  

THEOREM1.1.  Let V:[ - & A ,  gh) -+ R be a continuous, odd function which is positive on ( 0 , i A )  with 
V (-$A) = 0. Thenputting v(s) = - V(q,(s)) ,for all S E  ( -n,  n ] ,  dejines a continuous, oddfunction which 
is positive on (0 ,  n ) ,  and v(n)  = 0. 

Moreover, if A is given by (1.23), then 

for all s E ( - I T ,  n ] ,  ifand only if ~ ( $ 1= - U ( ( ~ A ( J ) ) ,  

where 

Furthermore, there exists a harmonic function 0on RA such that 

O(x+i0) = U ( X )  for X E [ - Qh, $A), 

= V ( X )  for x E ( -Qh, $ A ) ,  

and # = 0 on c?RA\ilA. 
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Proof. I t  follows from (1 .19)  and from the formula for the elliptic function of a sum that, under 
the change of variables 

x = q , ( s )  and s = q , ( t ) ,  s , t E ( - n , n l ,  

the kernel 

becomes 

Since q i ( s )  = -Af,(s)  on ( - n ,  n ] ,  the result for the first part of the theorem is immediate. 
Because u is continuous and odd on ( -n ,  n ]  and v ( x )  = 0, it follows that there exists a unique 

function u", harmonic on 9 and continuous on 3,such that 

and u"(eit)= u ( t )  

for all t E ( -n ,  n ] .  Since v is odd, u" is zero on the real axis in B.Therefore 0defined by 

is harmonic on RAand continuous on R,. Since fi, maps BR,\A, onto the non-positive real axis 
in 9,where u' vanishes, it follows that 0vanishes on BRA\AA. The results for D o n  Ah follow by 
(1 .25) .  

Proof. This follows by a simple calculation from the expansion from sn (u ,k) (Gradshteyn & 
Ryzhik 1965, p. 912,  eqn. 2 0 ) : 

2 K  nu " 1  ql 2
Insn(u,k) = In-+Insin--4 C, --

n 2 K  (sin r&)}l ~ l l l + q z  
.where q = e-xR'IK. 

THEOREM1.3. The solutions of the linear characteristic value problem 

consist precisely of the set of characteristic values { ( 6 A n l / h )  coth (2nlh/h)}l"_, with corresfionding eigen- 
Junctions {sin ( 2 n l q A ( ~ )  In  particular, the smallest characteristic value, ,uA/h)}lm,,, = ( 6 A n l h )coth 
( 2 n h l h )46 / n  as h +a. 

Proof. From lemma 1.2 it follows that the set of characteristic values of the operator defined by 
the right-hand side of (1 .29)  comprise the set { ( 2 n l / h )coth ( 2 n l h / h ) } ~ , ,and the corresponding 
eigenvectors are {sin (2nlx/h));"_,. The result is then an immediate consequence of theorem 1.1 
and the fact that A + 2 h / n  as h -+ by (1 .24) .  Since f A l ( x )  < f A z ( x )if A, < A,, it follows that 
pA12 ph2 by I ,  theorems A 1 and A 2. (See also lemma 3.3.) 
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1.4. On integral equations for water-waves 

The purpose of this section is to show the equivalence of two nonlinear integral equations, each 
of which is a formulation of the periodic water-wave problem when the mean depth and the 
wavelength are given. Theorem 1.4 is a statement of this equivalence, while in theorem 1.5 
a precise description of the wave which corresponds to a solution of equation (1.31) is given. 
Theorem 1.6, which is taken without proof from I, is a statement of the corresponding result 
for solitary waves. 

Let h be fixed, as in the previous section, and let h be any positive real number. 

THEOREM (0, +A), with 1.4. (i) If O: [ - &A, &A)-+ IW is continuous, odd, and O < O(X)< i n  on 
O( - & A )  = 0, and iffor all S E  ( -n ,  n], 

then 8: ( -n, n] -+ R is continuous, odd, and 0 < 8(s) < +x on (0, n) and 8(n) = 0. Moreover, for some 
,u > 0,8 satisjies the equation 

for all s E ( -n, n], ifand only if@satisjes the equation 

1 1 sA(2KA(x+s)/h) sin O (s) ds 
@ = i A " n s A ( 2 K A ( x - s ) / h )  j~ s in@(w)dwI $ +  

for all x E: [ -&A, &A). Here A is given by (1.23) and fA by (1.22). 
(ii) If@is as in (i) and satisjes (1.32), then there exists a harmonic function on RAwhich coincides with O 

on the boundary portion A,,, and which is zero on BR,,\A,,. 1f6is used to denote this harmonic function on RAY 
then 

I sin O ( X )  

O(w) dw 

f o r a l l ~ + i O ~ A , ,= [-&h,$h).  

Proof. The first part follows immediately from the definition of q,, as the inverse oft,,. The 
equivalence of (1.31) and (1.32) may be seen by changing variables and by using (1.25). 

The next result is a precise statement of the sense in which solutions of equation (1.31) corre- 
spond to non-trivial periodic water-waves. Once the method of I has been applied to prove the 
convergence of solutions of the equation for waves of period h to solitary wave solutions as h -t a, 
the convergence of periodic waves to solitary waves in the physical domain will follow. 

THEOREM1.5. Suppose that 8 is an odd, continuous function on [ -n, n] with 0 < 0(s) c n on (0, n) and 
8(n) = 0, which satisjies the integral equation (1.31) on [ -n, n] for some p > 0. Then 8 is real-analytic on 
[ -n, n] and satisjes 0 < 0(s) < &n on (0, n). Moreover, there exists a solution of the periodic water-wave 
problem ofperiod h on aJow of mean depth h. The mean velocity of thejow is given by 
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from which thejux Q and the speed at the crest qc may be calculated as follows: 

and q c  = (3gAc/p)+. (1.36) 

The free surface FA is then given by {(x, HA(x)) : x E ( -&A, ih)), where for x E (0, $A), 

Remark. I n  this expression for the free surface profile, the value of HA(0) is given by chexp ( p ( 0  +it))  d t ,  were i'is the function in (1.39) below. Since f is uniquely determined 
in RA by 6 and (1.39), one may determine HA(0) explicitly in terms ofp, 6, h, and A. Unfortu- 
nately, it does not appear possible to put this result in as neat a form as (1.34) (1.37), or (1.38). 

I n  theorem 2.4, we show that the upper bound of i z  for 13may be replaced by &z. 

Proof. The method of proof of theorem 2.2 (ii), (iii) applies to any solution of (1.31)) and not 
just to those in VA. Hence, the real-analyticity of 6 and the a priori bound of i n  for 8 follow 
immediately. 

Let 6be the function which is harmonic on RA mentioned in theorem 1.4 (ii), and denote the 
unique function which is harmonic on RA and conjugate to 6 (that is, F- i 6  is analytic in RA) 
such that 

$/fiAexp (T(X- ih)) d~ = 1. (1.39) 

If f? denotes the harmonic function on 9 with boundary values 8, then the real-analyticity of 8 
(ensures that 6 is real-analytic on 3.Since 6 ( ( )  = -8(j,(c)), CE  4,the analyticity o f j A  on RA 
ensures that 6 is real-analytic on RA, and hence that is real-analytic by the Cauchy-Riemann 
equations. Because - i 6 is analytic on RA, we can use it to define an analytic function fi on RA 
by putting 

fi(5) = 1' exp {i'(&)- i6(5)} dl .  (1.40) 
-ih 

The function f i is injective on RA; for otherwise there exist c,, c2e  RA with 

and this contradicts the fact that 161< +K on RAby the maximum principle. Since fi'(5) # 0 in 
R,, it follows that RA is mapped conformally onto a region SA by fi, and that fi is invertible there. 

Because 6 is odd on A,, and zero on the rest of aRA, it follows that 6 (5)  = -6(- t )  and 
?(c) = i'(-C), C E  RA.From thisobservation and (1.40) there results that -fi(c) = fi( -<), [E RA. 
Combining this with (1.39) and the fact that @ = 0 on BRA\AA yields that S, is bounded by the 
tines y = 0, x = f$A and the curve FA= fi(A,). If c lies on the line Ah, then 

( d / d ~ )Re fi(c) = exp (p(c))  cos 6 (5)  > 0, 
55-2 
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and so, for some even function HA,we have 

I?, = (X+ iH,(x) : x E [ -$A, $A)). 

A further calculation based on (1.40) yields that 

Since fi is invertible, fi-1 is analytic on s,.We shall now show that if a complex potential w is 
defined on S ,  by putting 

w(z) = $(z) +i$(z) = cfi-l(z) (1.41) 

with c given by (1.34)) then all of the conditions (1.1)-(1.10) are satisfied, and the proof of the 
theorem will be complete. 

The velocity field (u,  v) generated in S, by w is given by 

u(z) - iv(z) = -dw/d : 

= -cexp ( -F(rii-l(z))) {cos @(a-l(z))  + i sin @(fi-l(z))), (1.42) 

whence - 6(fi-l(z)) is the angle which the negative velocity vector makes with the x-axis, and 
cexp ( - T(W1(z)) )  is the speed ofthe flow a t  z €3,. Since -m 7 )  = f i (-c),C E  R,, it follows that 
equations (1.2)-(1.4) are satisfied. Since 6 = 0 on aR,\A,, it is immediate from (1.40) that (1.5) 
holds. T o  show that (1.6) is satisfied we note that, by (1.39), 

Next, if z E I?,, then rii-l(z) E A,, whence $(z) = 0. If z E3, and I m  z = 0, then I m  fi-l(z) = -h, 
and so $(z) = -ch. I t  follows that (1.7)-(1.9) hold. 

Let T: [-&A, &A] -+R denote the restriction of Tto A,. Then, since 6 = 0 on BRA\AA, it  follows, 
by Cauchy's theorem and (1.39)) that 

1tA 

exp (T(x))cos @(x)d x  = exp (F(x- ih)) dx  = A. 
-+A 

However, from (1.33) and the Cauchy-Riemann equations, 

T(x)= T(0)- f In (1 + ($)!'sin ~ ( w )dw) 
0 

for all x E[- BA, *A]. Substituting this expression for T into (1.44) gives 

1 cos 0(x)
exp ( - T ( 0 ) )  = i d x-1 

( I  + ($11'sin ~ ( w )dw) 
0 

by (1-34)) whence q: = c3 exp ( -3T (0)) = 3gAc/,u, 

and so (1.36) is satisfied. 
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I n  order to prove (1. lo) ,  we must show that Q(u2(z) +v2(z))+g Im z is constant on FA, or, 
equivalently, that Qc2 exp ( -2T(x))+g Im 6(X i-iO) is constant for xE [-$A, $A]. A calculation 
gives 

(d/dx) [Qc2 exp ( -2T(x))  + g I m  $L(X + iO)] 

= -c2 exp ( -2T(x))T1(x)-g exp (T(x))sin O(X) 

= exp (T(x)(-cz exp ( - 3T(x))T1(x)-g sin @(x)I 
= 0 

by (1.45) and (1.46). 
Finally, to calculate the wave profile we proceed as follows. At a point x +iy E I',, the free 

surface is given by 
Y = H,(x), 

where Hi(x) = - tan @(fi-l(x + iH,(x))). Hence 

-IodZ1(x) 

tan @(x)cos O(X) exp(T(x))  dx  
= 

= - sin @(x) - (;pc)i+Jz-l(~) dx,
o (1 + ($)Jxsin ~ ( w )dw) B 

. . - 0 

where di: [-$A, $A) -+ R is given by 

-- -pc2 4 x cos @(XI) 
f dx'. '(I + ( $ ) J * ' ~ ~ @ ( ~ )o 

dw)
Hence if x E [0, Qh], 

where .-I(%) = (di o qn) (x) = PA(di-I (x)) < 0, 

and so, for s E ( -n, 01, 
p 2  4 cos 0(x')~ ~ ( 5 ) 


a(s)  = dioqA(s)= - 4 dx' 
i3g(1) I0 (l+($)/rsin@(w)dw) 

This completes the proof of the theorem. 

THEOREM on [-n, n] with 0 < B(s) 6 n on (0,n)1.6. Suppose that 0 is an odd, continuous function 
and B(n) = 0, which satisjes the integral equation 
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for all s E [-x,  x ] ,  wherep > 0 and f ( t )  = 3 sec i t  for t E ( -x,  n )  . Then Of EL,( - x,  x ) ,  O is real-analytic 
on ( -x ,  x ) ,  and 0 < O(s) < &x on ( 0 , x ) .  Moreover, if h and c are any positive real numbers which satisfy 

then there exists a steady solitary wavejow whose mean velocityt and asymptotic height (see 5 1 .2 )  are -c and 
h respectively. The speed q, ofthejow at the wave crest may be calculated from the expression 

Moreover, the solitary waveprojile I' is given by { ( x ,  H ( x ) ) :  X E  R} where for x > 0 ,  

f ( t )  sin O(t) 
(1.48) 

and for s E ( -x ,  O ) ,
(:+
 j: ( w )sin e ( w )dw 

Remark. In  this case, we can assert that the value of H ( 0 )  is 

because the asymptotic height is known (see I, theorem 4.6).  

Proof. While this theorem is formally the limiting case of theorem 1.5 as h -+ co, it needs a 
separate proof. This may be done by modifying the method of proof of theorem 1.5, using 
the mapping$ from R ,  onto 9' introduced in 5 1.3. The function O is then required to be in 
L1( - co, co), odd, positive on ( 0 ,  co),  and to satisfy 

tanh ( x ( x+6) /4h)  sin @ ( E )  

tanh ( ' ( x - ' ) / ~ ~ )  

an equation which may be obtained from equation (1.47) by putting x = ( - 2hlx )  ln 
(sec4s + tan frs), and E = ( - 2hln)  In (sec i t  + tan i t ) ,s, t E ( -x ,  x ) .  An alternative proof is to be 
found in I, theorems 1 .l, 4.1, 4.3 and 4.6. (The function O in I, theorem 1.  I differs from that 
which arises in the method suggested by the proof of theorem 1.5 by a change of sign.) 

For the sake of giving a complete description of Nekrasov's integral equations, we include in 
the Appendix the equation for periodic waves on a flow which is infinitely deep. The derivation 
there is slightly different from those already in the literature, and emphasizes the dependence of 
the flow parameters on a given solution of the equation. I t  is shown how this equation can be 
written in an alternative form which involves the conjugate operator from the L,-theory of 
Fourier series. While a similar formulation might be adopted in the case offinite depth (Krasovskii 
x961), we avoid this approach because the normalization requirement ((1.39) above and 

7 Recall from the Introduction that in the case of solitary waves, thr notion of mean velocity coincides with 
that of asymptotic velocity, and similarly, the mean depth and the asymptotic depth coincide. 
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Krasovskii (1961, p. 1002, eqn (1.19)) means that when the depth is finite the conjugate operator 
is nonlinear. I n  any case, (1.31) and (1.32) are preferred, since the dependence of the integrand 
on 0 and O is given explicitly. 

2. THEG L O B A L  T H E O R Y  

2.1. Background 

The first proof of the existence of large amplitude, periodic water-waves is due to Krasovskii 
(1961) and is based on an adaptation of the monotone minorant theorem (Krasnosel'skii 1964) to 
a particular version of Nekrasov's equation. Among his results on the existence of periodic water- 
waves in a channel with a wave-like bottom is included the special case when the bottom is flat. 
I n  this case, the conclusion is that for eachpositive h and A, and for each p E (0, &n), there exists a wave 
of wavelength A, on a j o w  whose mean depth is h, which is such that the maximum angle of inclination of the 

free surface to the horizontal is P and the mean velocity of all such waves is bounded away from zero and 
inznity. Though this result is highly suggestive, it does not amount to a global bifurcation theorem 
since neither the question of bifurcation, nor the question of the existence of a connected set of 
solutions is considered. The first result of this kind is due to Keady et al. (1978)) who regard 
Nekrasov's integral equation as an example in the general theory of global bifurcation (Dancer 
1973; Rabinowitz 1971; Turner 1975). They proved the following: ij"L and Q arejixedpositive real 
numbers, then there exists a connected set of periodic water-waves which bifurcates from the set of horizontal, 
uniformjows, each of which is o f j u x  Q, and each of which has wavelength 2L with respect to the velocity 
potential. This  set contains a wave whose speed at the crest is qc for any value of qc in the interval 
(0, (gLn-l tanh (xQ/L)))). 

Since the mathematical theory of steady water-waves still lacks any global uniqueness result, 
it is not possible to assert that the solutions obtained by Krasovskii are included in the connected 
set which Keady and Norbury obtain. ( In  principle, Krasovskii's method may yield solutions 
lying off the bifurcating set, if such exist.) Nevertheless, it can be shown (Toland 1978, inde- 
pendently of the work of Krasovskii) that this bifurcating set contains waves with maximum angle 
of inclination to the horizontal P, for all values of P in the interval (0, &n). Indeed, it has been 
shown by McLeod (1982) that this connected set ofwater-waves contains awave whose maximum 
angle of inclination to the horizontal is P, for all ,8 E (0, +n + s] for some s > 0. 

I n  the next section, we shall summarize the global bifurcation theory for periodic water-waves 
of spatial wavelength h on a j o w  of mean depth h. Because of our declared intention to deduce from 
these results the corresponding theorems for solitary waves on a flow of mean depth h, we state 
theorems about the periodic problem in terms of the integral equation (1.31) rather than the 
equivalent equation (1.32). In  5 2.3, we shall see how the use of (1.32) leads to new results about 
the bifurcation of periodic waves, which are obscured by the formulation of the problem as (1.31). 

2.2. The bifurcation of periodic waves of wavelength h on a j o w  of mean depth h 

Throughout this section, we consider waves of wavelength h on a flow o f j x e d  mean depth h. 
Accordingly, we are interested in solutions (p,0) of (1.31) with p > 0 and 0 < 0 ( s )  < i n  on (0, n) . 
!Since all solutions of (1.31) are odd, it suffices instead to consider the eigenvalue problem 
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where the kernel G is defined in (1.27).  Let C,[a, b] clenote the Banach space of continuous 
functions on [a, b] which vanish at  a ancl b, and let %,[a, b] denote the closed, reproducing cone 
of non-negative functions in C,[a, b] .  For any [a, b] c 10,n ] ,  C[a,  b] drnotes the usual Banach 
space of continuous functions on [a, b] with the supreinem norm. For convenience with notation, 
we will abbreviate &[0, TC] Since G is non-negative almost everywhere on [0, rt] x [0,n]as 4. 
and is the kernel of a compact, linear Hammerstein operator on C,[O, n ]  (1, theorem 2.5 ( a ) ,  ( b ) ) ,  
i t  follows that this linear operator leaves <Xiinvariant. The linearization of (2.1) about B = 0 

is given by 

B(r) = 3 t )f A ( t )H(t) dt,~ S ; G ( S ,  
and from theorem 1.3  it follows that the characteristic valuc with smallest absolute value is 
F A ~ ~ h - ~ c o t h(27th/h) -t f ; / ~  as h --> m, and the corresponding cisenvector is sin ( 2 n q A ( s ) / h ) .  
Before the global bifurcation result may be stated, one furthcr observation is necessary. 

LEMMA > 0, and let O t~.gobe such that,for all s E [ O ,  x],2.1. Let / L  

where .Jx = (sgnx) mi11 ((x1, TC),for all x E R. 

Then (i) 0 < O(s) < n. on ( 0 ,  n ) ,  and (ii) /L > prA= GAnh-lcoth (2nh /h ) .  

ProoJ The proof of this result is an easy consequence of the maximum principle, and is proved 
by the method used to establisll theorem 3.3 ( a ) ,  (c) of I .  No modifications are rrquired. 

The next result is a summary of the global existence theory for solutions of equation (1 .31) .  

Throughout the discussion, the mean depth is fixcil. Let 9,= { ( p ,0 )E (0, co) x X,: ( p ,0 )satisfies 
(2.1) and O # 0 )  U ( ( p A ,0))  where it, = 6Anh-l cot11 (2xh/h). Section 2.3 gives more sophisti- 
cated properties of 9,;in particular, the uppcr bound of i n  in (ii) and (vi) may be replaced by 
{TI.Much ofthis result is well-known, though maybe in a differrnt form. We outline the proof for 
completeness. 

r r r ~ ~ o ~ a ~2.2. Let VAdenote the maximal connected subset o f  yAin R x C,[O, n ]  which contclins (,aA,0 ) .  

Then 


(i) 'tAis  ciosed and unbounded. 
(ii) If ( p ,  0 )  F V,\((p,, O ) ) ,  then /c > ,u, and 0 < O js) <: i n  on ( 0 ,n ), ulhence { / L :  ( p ,0) E V,,) = 

[PA, 
(iii) 6 is  a real-analytic futzction on 10, TC]. 
(iv) For each A, 6 > 0 ,  there exists a constant B,, > 0 suclz that 

$ p  > p,, + ct' and ( / i ,  0 )~e,,. 
0 ( s )  2 B,, sin s (2 .4)  

(v) rJ' (p,0) E C ~ , ,then the mean tlelocity oJ' the corresponding ruave is given by the formula (1 .34)  and 
will be denotpd by c ( p ,  0 ) .  For each h > 0,  there exists a closed interz~al [aA, b,,] (0 ,KI) such that 

{c(/&,0 ): (,ti,, 0 )  cg,$)c [G,,,b,,], 

and a ,  6,  < hil for all h > 0,-\ 0 as h -.0 ,  ~r~hile 
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Let the speed of the corresfiondingjow at the wave crest, calculated from (1 .36) ,  be denoted by q,(p, 8 ) .  

( v i )  I f  {(p,, 8,)) c and pn -+ co as n -+ co, then q,(p,, 8,) -+ 0,  and there exists a subsequence 

{On(,,} of{8,) such that -+8 uniformly on [S, n ]  for each S > 0, where 8 is a non-trivial solution of the 

The function 8 is real-analytic on ( 0 ,  n ]  and 0 < 8 ( s )  < +n on (0 ,n ) .  Furthermore the following dichotomy 
holds:? either l i m  8 ( s )  = i n ,  or 

8-0 f 

0 < l i m i n f O ( s )  < Qn < l i m s u p O ( s ) .  
s-to t s-to t 

The periodic wave corresponding to a solution of (2.5) has a stagnation point at its crest (i.e. q ,  = 0 ) .  
( v i i )  Let {(,LA,, 8,)) c '%, denote the subsequence in ( v i ) .  Since (p,, 8,) satisjies equation (2 .1) ,  it follows 

that the function 8; dejined on [0 ,  pn n ]  by 

0: ( x )  = enW P n ) ,
satisjes the equation 

(Y/ ~ n )sine; ( Y )  
d y  

f A  (w /Pn)sin O,* ( w )d w  

for all x ~ [ O , p , n ] .  
Moreover, as n -+ co, (8;)  converges uniformly on compact subsets of ( 0 ,  co) to a function 8* which 

satisjies the boundary-layer equation 

2 a 1 x + y  i s i n  8* (y)
e * ( x )  = d ~ ,S j oE 1 n I - /  

X - y  1 s sin^*(^) d w  

and sup 8 * ( x )  > Qn. I t  follows that there exists an E > 0 such that, for all n suficiently large, 
X E ( O , ~ )  

10, Icoro,R 1  2 Qn +E.  Hence, for each E [0 ,  Qn +€1 ,  there exists a periodic water wave of any speciJied mean 
depth and wavelength, the free surface of which subtends a maximum angle to the horizontal of /3. 

(v i i i )  For each N > 0, the set { ( p ,  8 )  E ~ A :p < N )  is relatively compact in the topology of R x C1for  
each integer I 2 0,  where C1is the Banach space of l t h  order continuously dzferentiable functions on [0 ,  n]. 

ProoJ: ( i )  T h e  proo fo f  this is a simple application o f  Dancer (1973, t heorem 2 )  t o  equat ion (2.3),  
once  the  a priori bound o f  l e m m a  2.1 has been  noted (see K e a d y  et al. (1978, l e m m a  4.1) for a 
similar t reatment  o f  equat ion ( 1 . 3 2 ) ) .  

(ii) T h a t  p > p ,  follows after mult iplying equation (2.1) b y  f,and b y  the  eigenfunction o f  
the  linear equat ion (2 .2) ,  w h i c h  corresponds t o  the  characteristic value p,, and integrating 
over  ( 0 ,  n )  . 

A slight modif ication o f  I ,  theorem 3.3 ( d )  yields that  0 ( s )  < $ n  o n  (0 ,n ) .  I n  this case t h e  
crucial observation is tha t  the  function P defined o n  9' b y  putting 

is a super-harmonic function o n  9' which  attains its m i n i m u m  at every point o f  t he  boundary  
portion {eit: t~ ( - n ,  n ] ) .  ( T h e  use o f  t he  super-harmonic pressure function P t o  show tha t  the  

t Professor L. E. Fraenkel and the authors have now proved that O(s) ?r Qn as s -t 0+ for solutions of equation 
(2.5) when 0 < h < m. (See Amick, Fraenkel & Toland 1982.) 
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free surface of periodic water-waves have no vertical tangents was introduced by Spielvogel, 
(1970)~ and used again by Keady et al. (1978).) Here p" and Yare defined asfollows. If (p, 8) E%, 
then suppose that 

03 


8(s) = a, sin ls, 
l = l  

and put f,(w) sin B(w) dw 

for t E [-n, n] . If a -L/' p(t) dt, then it follows that 
O-2n -, 

for r E [0, I ) ,  t E ( -n,n] defines an analytic function on 9.Then put 

and 

for 5 ~ 9 'where q, is the inverse of the conformal mapping a, introduced in 5 1.2 (and prime 
denotes differentiation). With this definition of P, the proof that 8 < i n  follows exactly as in 
I, theorem 3.3 (d). 

(iii) Lewy's (1952) theorem ensures that 8 is real-analytic on [0, n]. 
(iv) If this result is false, then for some 8 > 0 and for each n,  there exists (,a,, 8,) n {[p, + 

8, OO) x Xo) and s, E (0, n) such that 8,(sn) < n-I sins,. Now for each closed interval [a, b] c 
(0, n), there exists E > 0 (depending on [a, b]) such that if t E [a, b], then 

G(s, t) 2 Esins 

for a.11 s E [0, n] (see I ,  theorem 2.5 (c)). Hence 

2jjo'
n-1 sin sn 2 Bn(sn)= G(s,, t) jT(t) sin On(') d t  
-+ f,(w) sin On(w) dw 
Pn 

Since [a, b] is chosen arbitrarily in (0, n), there results that 

tf) sin On(t) 
-+ 0, 

-+ fA(w) sin 0, (w) dw 
Pn 

almost everywhere in [0, n]. From the a priori bound established in (ii), it follows that 8, -+ 0 in 
L,(O, n). However, an integration of (2.1) over (0, n) after multiplication by sins yields that 

8, (t) sin t dt 

iJ:h(t)sin 0,(t) sin t 1 jOK
6, is) sin s ds = d e G 111 -

fA( 1 1 )  sin O,(w) dw -+I:/,(w) s i n ~ ~ ( w ) d w '  
Pn r['n 
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whence {p,) is bounded, since f, sin 8, + 0 in L1(O, n) . Because G is the kernel of a compact linear 
operator on Co[O, n], and because {p,) is bounded, it follows that 8, converges to 0 in Co[O, n]. 
But V, is closed, from which there follows the contradiction that the sequence {p,) c [p, + 6, a )  
converges to p,. 

(v) If (p, 8) EV,, h > 0, then by (1.23) and (1.34) there results that 

c(p, 8) 6 const. x KAh i  	 f,(t) cos e(t) 

f,(w) sin B(w) dw 

Hence, for any N > 0, the set { ~ ( p ,  8): (p,8) E%,, h E (0, N]) is bounded above, or else there 
exists a sequence (p,, 8,) E VAn,A, E (0, N], such that 

as n i.a. 
I n  the latter case it follows, by the bounds in (ii) above, that 8, -t i n  in Ll(O, n), and sin 8, -t 1 

in L,(O, 71). Without loss of generality, suppose that lip, i.a E [0, in] and A, + h E [0, N] as 
n -t a.Hence, for any interval [a, b] c (0, n), it follows by I, theorem 2.5 (c) that 

where the constants are independent ofsufficiently large n. Hence, by the dominated convergence 
theorem 

in L,(O, n), as n + co, and so for any I 2 1, 

lJOff
sin 1s 8,(s) ds = 

sin lt f,,(t) sin B,(t) 
= - ~ / o f f ~ ~ ~ ~ l n ( ~ + / ~Soff -

-+' C  fAnsin 8,, 
dt 	 fAnsin8n)dt 

Pn 

as 11 i.00. 

Therefore, for each integer 1 2 1, equation (2.6) gives 

hn/on sin IS ds = - cos lt ln (a +/: fA) dt 

= $/off sin 1t -f d t )  dl. 

a +/:fA 

However this is a contradiction since, i fa  is non-zero the right-hand side is o(l / l)  by the Riemann- 
Lebesgue lemma while the left-hand side is not (for odd I). I n  the case a = 0 the right-hand side 
may be re-written as 

- Xsin It " f (t )$1t o { i n t d t  + / I as l + a  
f,

0 

while the left-hand side of (2.7) vanishes for all even I. 
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Hence the set (c(p, 8) : (p,8) E%,, h E (0, N]) is bounded above. In  order to show that an upper 
bound may be found which is independent of N, we proceed as before by seeking a contradiction. 
If the result is false, then c(p,, 8,) -t co for some sequence {(p,, 8,))) where (p,, 8,) EV,, and 
A, -t co. However, a slight modification of the proof of theorem 3.1 (iv) yields that there must 
therefore exist a subsequence {(p,(,,, 8,(,))} such that (l/p,(,,, On(,)) -+ (a ,8) E [0, co) x L2(0, n), 
and c(pn(,), On(,)) +{[6gh/n] ( a+ 1;f (t) sin 8(t) dt)}fr E [,/(gh), 2 ,/(gh)]. This is a contradiction. 

Finally, to show that, for fixed A, the set {c(p, 8):  (p,8) EV,) is bounded below by a positive 
constant, it suffices to observe that 

c(p,8) a const. x (1;(j+ ~ ' f , ( u )  sin ~ ( w ) d s ) - ~ d t ) - '  o 

2 const. (by (iv)) 

where both constants are independent of (p,8)  €9,.To complete the proof, we observe that 
~(p,,0) = ((ghl2n) tanh (2nhlh))fr -+ 0 as h -+ 0. 

(vi) Since c(p,, 8,) < M, it follows from (1.36) that q,(p,, 8,) -t 0 as n -+ co.The asymptotic 
behaviour of (8,) as n -+ co is established by a slight modification of the arguments in I, 5 5 ,  using 
(iv) to obtain the appropriate estimates. The behaviour of the limiting function 8 may be 
analyzed by precisely the method used to establish the results in I, theorem 5.2 (d)- (g) .  

(vii) This is the main result of McLeod (1982) reformulated in terms of equation (2.1). The 
prooffor equation (2.1) is identical (with certain obvious modifications), and there is no need to 
repeat it here. Since %, is a connected set in [W x C,[O, n] which contains (p,, 0) and a point (p, 8)  
with sup 8(s) > in:+ s, it is immediate that for each P E [O,+x+ E ]  there exists an element 

S€[O,rr] 


(p,8) E V, with SUP B(s) = P. 
SEI0,Xl 


(viii) We sketch the proof for I = 1;for general 1the result follows by induction. Let ( / L ,  8) E V, 
with p < N. Then the odd extension of 8 to [ -x, n] is the conjugate of the even function p defined 
in the proof of (ii) (for the L2-definition of the conjugate operator, which is sufficient for our 
purposes here, see Appendix). Standard theory (Zygmund 1977) then gives that 

18jCa < const. x Ipjca, 

where Cu denotes the Banach space of Holder continuous functions on [ - n, n] with exponent 
a E (0, I ) ,  and the constant depends only on a. For s,, s2 E [ -n,n], 

< const. x Qpls,--s2j 6 const. x + N l ~ , - ~ , l .  

Thus jpj,a 6 const. and hence j8jca < const., where the constant depends only on N, a and A.  
However, the function d8/ds is the conjugate of 

and so Idp/dslca < const., whence Id8/dsjCa < const., and once again the constant depends only 
upon N, a and A. The result for 1 = 1 then follows by the Ascoli-Arzela theorem. The proof in the 
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general case follows once one has taken into account that the conjugate of the It11 derivative ofp  
is tlie ltb derivative of 0. 

Remark. The proofof theorem 2.2 (ii)-(vi), (viii) did not use the connectedness of%?,, and so all 
of these results hold with FAreplaced by ,(P,. 

2.3. I'roperties of periodic waves 

In  9 2.2 the global nature of the solution set of the periodic water-wave problem was studied 
through its formulation as the integral equation ( I  .3 1). This equation bears a striking resemblance 
to the approximation used in I ,  5 3.2 to prove the existence of large-amplitude solitary waves. I n  
$ 3  we shall adapt the proofs in I to prove that as A -+ cc the unbounded, closed connected sets 
V, converge, in a certain sense, to a global 'branch' of solutions of the solitary wave problem. 

I n  this section, we exploit the integral equation (1.32) to gain further insight into the nature 
of pcriodic waves which lie on the bifurcating set V,. These results do not seem immediately 
accessible from (1.31), and are new. 

In  this section, our interest is restricted to solutions (p, O) of equation (1.32). Since O is an 
odd function on [ - ;A, :A], it suffices to consider the equation 

sin O(e) 
d&, (2.8) 

x E [0, &A]. I-IereA, .r, and K, are defined in 3 1.3;the positive parameters h and h upon which they 
depend arc chosen arbitrarily but are thcn~fixed. 

Since tlie domain R, = {(x, 7) : x E ( -4 A, ;A), 7 E ( -h, 0)) is mapped conformally onto tlie 
cut unit disc 9'= {rei1: t E ( -x, n),r E (0 , l ) )  by a,, the results of tlicorem 2.2 have implications 
for the solution set of (2.8), some ofwhich are set out below. Let FA= { (p ,O) E (0,co) x $i[O, ,',A] : 
O # O and (p,O) satisfies (2.8)) U {(p,, 0)), where /A, = GAxA-l coth (2xh/A) is given in theorem 
1.3. Where necessary, we shall identify O E,X,[O,+A] with its odd extension to [ - $A, A]. 

'THEOREM2.3. Let 8,denote the maximal connected subset of FAin (0, GO) x C,[O, &A] which contains 

(PA,0). Then 
(i) &,={(/A,@): O(X) = - 0 ( p , ( ~ ) ) , ~ ~ [ O , i h ] ,where(p,O)~%,). 
(ii) 8, is closed and unbounded. 
(iii) If 6 denotes the harmonic function on R, with ( - 3 ( ~  = O(X), ;YE[ - $A, ;A], and 6 = 0+ iO) 

elsewhere on c?R,, then 1 sin O(X) 
(2.9)

sin@(w)dw' 

2 E [ - 12 A, A]. Furthermore, 6 is real-analytic on 4; in particular, O is real-analytic on [0, ,',A]. If O is 
rton-trivial, then 

(iv) 6,(0,7) > 0 ,&~( ih ,7 )< Ofora l l7~( -h ,O) .  

(v) (-3, (x, 7) > Ofor all (x,7) E (O,,',A)x [ -h, 01. 
(vi) @,,(0,7) > 0, 6,,(iA,7) < Ofora l l7~( -h ,O) .  

ProoJ Theorem 1.4 (i) and the maximality of V, and 8, in 9,and YA,respectively, together 
prove (i). Parts (ii) and (iii) follow immediately from theorem 2.2. By theorem 2.2 (iii), t!? is real- 
analytic on -G, B(p",(<)).and hence 6is real-analytic on EAsince$, is analytic there and @(<) = -

Equation (2.9) is a restatement of (1.33). 
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T o  prove (iv)-(vi), we use the maximum principle (Protter & Weinberger 1967). By the 
maximum principle for a harmonic function u on a rectangle R we mean the fact that min u < 

BR 


u(Y) < maxu, for all Y E  R; while the strong maximum principle refers to the fact that at every 
aR 

point of aR, other than corners, where the maximum (minimum) of u is attained, the outward 
normal derivative is positive (negative). Let R = (0, &A) x (-h, 0). Since 6(x,0) = O(X)> 0 
on (0, +A)  and vanishes elsewhere on aR, the strong maximum principle gives (iv) and the result 
6,(x, -h) > 0, X E  (0, +A).  Since (2.9) ensures that 6,(x, 0) > 0 for all x E (0, *A), and since 
6, vanishes on the lines {(x, 7) : x = 0, Bh, 7 E [-h, 0]), part (v) follows from the maximum 
principle. The strong maximum principle for 6, then gives (vi). 

Theorem 2.3 (i) ensures that any properties proved for elements of 4may be translated into 
corresponding results for Wh.The next three theorems concern solutions of (2.8) with 0 < @(x)< 7c 
on (O,&i), and note that the results hold for all elements of gA\{(pA, O)), since such elements 
satisfy 0 < @(x)< &n on (0, &A)  by theorem 2.2 (ii). 

The following theorem ensures that non-trivial elements of &A satisfy xO1(x) < @(X)on (0, +A], 
and, equivalently, that x-l@(x)is monotone decreasing on (0, &A).  This property implies that 
@(x)< in, x E [0, &A], for all elements of &A, and, equivalently, that B(s) < Qn, s E [O, 7c], for all 
elements of 59,. 

THEOREM2.4.7 Assume that (p, 0 )  satisjies (2.8) and 0 < @(x)< n on (0,&A).  Then 

(9 x@'(x)< @(x) on (0, ah] 
and 

(ii) 0 < @(x) < in :  on (O,$A). 

Proof. (i) Assume that (i) is false, and let 6 be as in theorem 2.3 (iii). Since 6(x,- h) = 0, there 
follows &,(x, -h )  = 0, x E [0, ;A], and the use of this with theorem 2.3 (vi) ensures that 

6,(0,0) = 0'(0) > 0 and &,(&A, 0) = @'(&A) < 0. (2.10) 

Hence there exists X E  (0, &A)  such that x@,(x,0) 2 6(x,0). The use of this with (2.10) ensures 
that for some constant d 2 1 

26,  (x,0) < d6 (x,0) for all x E [0, ah], (2.11a) 

and $&,(f,0) = d&($,O) for some f E (0, & A ) .  (2.11b) 

Define a function Won R = (0, &A) x ( -h, 0) by 

I t  follows that W vanishes on the lines ( ( 0 , ~ )  :7 E ( -h, 0)) and {(x, - h) :x E (0, &A)); that W is 
negative on the line {(&A, 7) : 7 E ( - h, 0)) by theorem 2.3 (iv); and that W is non-positive on the 
line {(x,O) : x E (0, &A)) by (2.11 a). Hence W < 0 on aR. A calculation yields 

t That  this result might hold for periodic waves was suggested to us by J. B. McLeod, who attributed it to 
Professor T. B. Benjamin, F.R.S., in the case of solitary waves. Note that, in the periodic case, an even finer 
estimate may be established by the same method, namely 

sin (y) < 1- cos (?)@(XI, X (0, ~ A I .  

As h -t a,this reduces to Brnjamin's rcsu!t for solitary waves. 
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Standard theory (Protter et al. 1967, pp. 64, 67) applied to (2.12) ensures that W < 0 in R and 
that the normal derivative of W is positive at any point on aR (other than the line x = 0 since 
(2.12) is singular there) where W equals zero. By (2.11 6 ),W(2,O) = 0 for some 2E (0, &A) ,  and so 
W,(2, 0) must be positive. A calculation yields 

=2 -d -1 s i n @ ( ~ )  d sin @(X) d 0(2) cos 0(2)-sin 0(2)( 01 l x = i i  < '1 1'dx 3AF+i.sin i$+ssin 0) $+I fs in  0 

(2.13) 

where we have used the relation fO'(2) = d0(2)  from (2.11 b ) .  Since 0 < n, it follows that the 
right-hand side of (2.13) is negative, and this is the desired contradiction. 

(ii) The arguments for theorem 2.2 (ii) show that 0 < &n, and the use of this with (i) ensures 
that X-lsin @(X) is monotone decreasing on (0, ah). Hence, 

sin 0(s) sin 0(E) sin @(E) sin 0(s) 2
<7-< = - for all E E  (0, &A) .

4+IeGn,o - jesin@(w) sP 0 w 

The use of this estimate in (2.8) yields 

2 4" ')")l*B(X)< G-,S I ~ ~ ~ * ( ~ ~ ~ ( x ~for all X E  (0, &A),  
0 s*(2K,(x--s)l4 f3 

and making the transformation s = q,(t) and x = qA(s),S, t E ( n, 0)) gives in the notation of 
theorem 1.1, 

@(x)= -0(s) < SE(-n,O). 

Since 0 is an odd function, there results that 

Since qi (t) = -A h  (t) ,we have 

qi(t) f*(t) 


- I:h(w) dw ' 

I t  is noted in the proof of lemma 3.2 that fA(t)/f (t) is monotone decreasing on (O,n), where 
f (t) = 4 sec at, I t  follows that 

qi@J = f (t> 

( U J )  dw 1; (w) dw ' 

4 sec at 
and so 0(s) < -

310~''~' t, ~n (sec at + tan i t )  dt, s ~ ( 0 , n ) .
A simple calculation gives 

& sec at 
In (sec &t + tan i t )  

< &(tan$t+cot&t),  t ~ ( O , n ) ,  

and so 0(s) < :SoRG(S,t) (tan $t +cot at) dt = a(n- t) +at = in.  

The evaluation of the integral in the expression above is given by I ,  theorem 2.5 (d), ( e ) .  
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Remark. A more precise estimate using the right-hand side of (2.14) is not possible since one 
can show that this quantity approaches -in as s + 0. 

Obviously, part (ii) of theorem 2.3 follows from the abstract global bifurcation theory for 
positive operators (Dancer 1973) using the reproducing cone XoI0, *A] (see Keady et al. (1978)). 
The next results of this section (theorems 2.5 and 2.6) are a consequence of the observation that 
a smaller cone .?kis more appropriate in the study of equation (2.8). Here 2 = {u E&[O, $A]: 
for all 9~[ih, *A] and for all X* E [:A - f , f ] ,  u(9) < u(x*)). Note that if u E:K, 

A 

then u is non- 
increasing on [;A, :A], and hence X is not reproducing in C,[O, *A]. Our aim is to show that 
gAc (0, a)x 2,and hence that Of(x) < 0 on [ah, $A] for all non-trivial (p,O) ~ 8 ~ .  

THEOREM2.5. If (LA, O) is as in  tlrrorem 2.4, then 8 E 2. 
Proof. Let Q be as in theorem 2.3 (iii). Let 9~(ah, $A] and X* E (gh -9, i),and define & E(ah, *A) 

by & = :(9+ x*).  T o  prove the theorem, we claim that it suffices to show that for all a E (ah, &A) 

Q(X, 0) > @(2a-X, 0) for all x E [2a - ;A, a]  ; (2.16) 

indeed, since X* E [2&- l,h, &I, it follows from (2.15) that O(X*) = @(x*, 0) 2 @(2& -x*, 0) = 

@(9,0)= 0(f). 
Assume that (2.15) is false for some a E (:A, :A). For each number d 3 1, define the continuous 

function g by 
q ( d )  = min (d&(x, 0) -@(2a-X, 0)). 

X r  l2a-hh ,a l  

The function @(x,0) is strictly positive on [2a -+A, a] since this closed interval is contained in 
(0, *A). Hence, g(d) is positive for all sufficiently large d, and since y(1) < 0, there exists 1) > 1 

such that g(D) = 0. I t  follows that 

D @ ( ~ ,0) 3 @(2a-X, 0) for all x E [2a -$A, a], (2.16a) 

and ~ @ ( , f ,0) = @(2a-2 , O )  for some 2 E (2a- ih ,  a). (2.16b) 

Let Ra denote the region (2a -$A,a) x ( -h, 0), and define a harmonic function Vaon R" by 

for (x,q) E Ra. I t  follows with the use of (2.16a) that Va 2 0 on aRa,and the maximum principle 
then ensures that Va > 0 in RE.Since ifa(,i;,= 0 by (2.166), the strong maximum principle 0) 
gives 

0 > Vt(,t, 0) = ~ & , ( , f ,0) -0 , (2a - , f ,~ )  

-- D sin 0(2) - sin 0 ( 2 a  -2)  > D sin O(2) - sin 0 ( 2 a  -,f) . (2.17) 

3($+I,rsint)) a($+/r--'sinO) 3($+/;-'sin@) 

Equation (2.16 b )  yields 

U sin @(,a= D sin (0 (2a  -,t)/Il)> sin 0 ( 2 a  -j), 

since 1) > 1 and 0 < 7~ (indeed, 0 < An by theorem 2.4 (i)).The use of this inequality in (2.1 7) 

yields a contradiction, and so we conclude that (2.1 0 )  holds. 
The fbllowing theorem gives various properties o f 0  implied by mrrnbership in . f .

A 
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THEOREM2.6. Let (p, O) be as in theorem 2.4, and let 6 be as in theorem 2.3 (iii). If, in addition, 
2~ ($A, $A) and X* ~ [ i h-i,i),then 

(i) 6 (2 ,7 )  < Q(X*, 7) for all 7 E ( -h, 01 ;and, in particular, O(2) < O(X*). 
(ii) t?,(i, 7) < 6,(x*, 7) for all 17 E [-h, 01. Moreover, 
(iii) Ox(x,7) < 0 and Qx, (x,7) < 0 for all (x,7) E [$A, $A] x ( -h, 01 ;in particular, Of (x) < 0 for 

x E [$A, &A]. 
(iv) QX(O, 7) + Qx(&h, 7) > 0, and 6,,(0,7) + @,,(&A, 7) > 0 for all 7 E ( -h, 01 ;and, inparticular, 

O'(0) +@'(&A)> 0. 

Proof. (i) Since O # 0, we know from theorem 2.4 (i) that 0 < O(X)< +non (0, i h ) .  Combining 
rhis with the fact that O E ~ ,  yields that for 2, E ($A, $A] and x2E [&A-XI, XI), 

sin O(xl) < sin O (x2) 
A/p +/"sin o +/,'sin O'o ~ / p  o 

Now suppose 2 E ($A, $A) and X* E [$A- 2,g) ,  and put a = $(x* +2).Define a harmonic function 
Wa on Ra by putting 

for all (x,7) E Ra = (2a-$A, a) x ( -h, 0). Then 

W,"(x, 0) > 0, x E (2a-&A, a), 

by (2.9) and (2.18); and Wa = 0 elsewhere on aRa. By the maximum principle Wa > 0 on Ray 
and by the strong maximum principle W ~ ( X ,  0) > 0 for all x E (2a-$A, a). I n  particular, for 
x = X*E (2u -$A, a ) ,  there results that 

Q(x*, 7) -@(2,7) > 0 

for all 7 E ( -h, 01, and (i) has been established. 
(ii) We first prove (ii) for 7 = -h and 7 = 0. Since Wa > 0 on Ra and is zero on the line 

{(x, -h) :x E [2a- &A, a]), the strong maximum principle for Wa gives W;(X, -h) > 0, 
x E (2a- ih ,  a ) .  If we set x = X*E (2a-$A, a ) ,  then the case 7 = -h is proved. I t  was shown in 
the proof of (i) that W,"(X, 0) > 0, x E (2u-&A, a ) ,  and so the result for 7 = 0 follows upon setting 

= x*. 
We now show that W,"(X, 7) > 0 on Ra, so that the result for 7 E (-h, 0) in (ii) will follow upon 

setting x = x*. Because of the maximum principle for W,", it suffices to show that W," 2 0 on 
aRa; note that this has already been done for the horizontal portions of the boundary. For 
VE(-h ,O) ,  we have 

and W;(2a -&A, 7) = Q,(2a -&A, 7) -Q,(&h, 7) = Q,(2a -&A, 7) 2 0 

by theorem 2.3 (v). 
(iii) If u E [$A, ah), and Wa is the harmonic function defined on the region Ra as above, then it 

follows by the strong maximum principle that 

for all 7 E ( -h, O), whence, putting a = X, 
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(Although (2.19) only proves (2.20) for x < *A, the result for x = &A is due to theorem 2.3 (iv).) 
Differentiating (2.9) with respect to x yields that 

3@,,11x,O' = * Ox cos 0 - sin2 O 

-+joxsinP 0 ($+/oxsin~)2 '  

which, combined with (i) above, yields 

Hence, 6, does not attain its maximum on the line segment {(x, 0) : x E (ah, &A)), by the strong 
maximum principle. Combining (2.20), (2.22) and theorem 2.3 (vi) yields that @,(ah, 0), 
@,(*A, 0) < 0, and the first part of (iii) has been established. 

We now prove the second part of (iii). Since @,(&A, 0) < 0, equation (2.21) ensures that 
@,,(&A, 0) < 0, and the use of this with (2.22) proves the case 7 = 0. I t  was shown in the proofof 
(ii) that W; > 0 on Ru and that W,"(a, 7) = 0, E ( -h, O), for all a E [%A, &A). By the strong 
maximum principle, 

0 > Wt,(a, 7) = @,,(a, 7) + @,,(a, T), 

whence 6,,(x, 7) c 0 for all (x,7) E [ah, $A) x ( -?z,O). This, along with theorem 2.3 (vi) 
establishes (iii). 

(iv) The function WaX is a positive, harmonic function on Ra" and is zero on the line 
( ( 0 , ~ ): 7 E ( -h, 0)). Hence, by the strong maximum principle, 

Therefore 	 a x ( %  7) + @,(&A, 7) > 0, T E ( -h, 0) 3 

whence, by (iii), 6,(0,0) 2 -@,(&I, 0) > 0. 	 (2.23) 

However, by (2.21), 

Q,, (o,o) + a,, (+A, 0) = 
@,(0,0)-	A 

@,(&A, 0) 
> 0, by (2.23), (2.24) 

- 0 

IU P 

and the first part of (iv) has been established. 
I t  was shown in the proof of (ii) that W; > 0 on Ra for all U E  [ah, &A).  For the case a = ah, 

we have w$" 0 on the lines ((x, 7) : x = 0, ah, 7 E ( -h, 0)). By the strong maximum principle, 

which, together with (2.24), yields 

Our aim a t  the outset was to design a cone which was invariant under the operator in equation 
(2.8), and which was sufficiently sophisticated in its structure to give information about the shape 
of solutions O, at  least for large p. 

Our motivation comes from various numerical results (Cokelet 1977. p. 215; Schwartz 1974, 
p. 572; Thomas 1968, pp. 146-147) which make it seem plausible that O' should have a unique 
zero in (0,&A),  if (p,O) is in gA.Physically, all this says is that the wave has only one inflection 
point between crest and trough; theorem 2.6 says that there are none between ah and $A, but this 
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does not appear to help. The Serrin-Lavrentiev comparison theorems have been suggested as a 
:possible way to tackle the problem (Keady & Pritchard 1974, pp. 365-367) but there are 
(difficulties in applying them in this case (Toland 1978, p. 484). (However there are other 
indications (McLeod 1982) which suggest that the number of zeros of 0' approaches infinity as 

P +m.) 
From the point ofview of this section, a natural approach is to let JV be the set of all solutions 

in 8,which have the property that 0' vanishes only once in (0, Jh). One can use the local 
bifurcation theory to show that X i s  not empty and non-trivial, and it is clearly closed. We have 
been unable to show it to be open, but remark that it suffices to show that 0' and 0"cannot vanish 
rii~~lltaneouslyon [0, &A]. For the analogous problem in the theory of nonlinear Sturm-Liouville 
l~roblems (Rabinowitz 1971, pp. 500-503) this method works, since there 0' and 0" cannot 
vanish simultaneously (because of the uniqueness theorem for differential equations). 

Finally, we remark that numerical evidence suggests that the zeros of 0' approach 0 as p 
approaches infinity; 0' being negative on (0, &A)  in the limiting case of l / p  = 0, which means 
that the limiting wave is convex (Schwartz 1974, p. 576; Thomas 1968, p. 147). 

2.4. Firm conclusions about the periodic water-wave problem -a summary 

Roughly speaking, the following firm conclusions have been reached about the periodic water- 
waves under consideration (i.e. those which correspond to s~lutions in %', of Nekrasov's integral 
equation). The free surface I', is the graph of a real-analytic function of period h provided the 
solution (p,8) of Nekrasov's equation to which it corresponds has p < co.Moreover in this case 
the slope of the wave profile never exceeds 43, but there do exist waves whose slope exceeds 1/43. 
The mean velocity of all waves is bounded above by an absolute constant which is independent 
of A, and is bounded below by a constant which depends on h and which tends to 0 as h + 0. 
Apart from the a priori bound of J3 for the wave slope, the main conclusion of 5 2.3 is that the 
profile of a periodic wave is convex in the half wavelength centred about each trough. 

The unboundedness of V, ensures the existence of a sequence (p,, 8,) in V, with p, -t oo as 
n -t oo.This means that the speed of the flow at  the crest of the corresponding waves tends to 0 as 
n -t co.We know that there exists a subsequence of these waves for which the profiles tend to the 
profile of a periodic wave which has zero speed at  its crests (i.e. it has a stagnation point there). 
This wave corresponds to a solution of Nekrasov's equation with p = oo, and its profile is the 
graph of a real-analytic function except at  its crests. ( In  the light of the footnote on page 649, 
ii: is now known that the first derivative of the function describing the profile has a simple jump 
discontinuity at  each crest.) 

3. O N  T H E  C O N V E R G E N C E  OF P E R I O D I C  W A V E S  T O  S O L I T A R Y  W A V E S  

I N  T H E  L O N G - W A V E  L I M I T  

Throughout this section the mean depth h isfixed. The purpose here is to show the sense in 
which the sets %, of periodic water-waves converge to a set V' ofsolitary waves as the wavelength 
increases indefinitely. Recall from 5 1.2, that each set %', contains exactly one point corre- 
sponding to a uniform horizontal flow of depth h, and that this point (p,, 0) is the point at  which 
periodic waves ofwavelength h and mean depth h bifurcate. I n  other words, on a flow of depth h, 
periodic waves of wavelength h bifurcate from the horizontal ffow when the mean velocity of the 
flow is ((gh/2n) tanh (2nh/h))$. Moreover, the value ofp, converges to 6/n as h +oo (theorem 1 .3). 
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L e t  U b e  a n y  bounded ,  o p e n  set i n  R x Co[O, n ]  such tha t  ( 6 / n ,  0 )  E U .  T h e n ,  for all h sufficiently 
large, V, n 8U + 0.T h e  nex t  theorem is the  m a i n  result o f  this paper. (Further properties o f  the  
function 8 constructed below are given i n  the  remarks following theorem 3.5; i n  particular, 
part ( i )  m a y  b e  improved t o  0 < 8 ( s )  < &non (0,n ) . )  

THEOREM c n aU # 0 for each n. 3.1. Suppose {A,) R and A, t co as n + co, and suppose that 
If {(p,, On)} c (0,co) x .Xo is a sequence such that (p,, 8,) EV,, n i3U for each n, then the sequence 
{(p,, 8,)) is relatively compact in [ 6 / n ,  co) x X^,. I f { (pno) ,  is a subsequence of {(p,, 8,)) such that 

( i ~ n ( k ) ,  " ( P ,O )  L 6 / ~ ,  '%, (3.1)
then 

( i )  p > 6 / n ,  0 < 8 ( s )  < i n  on (0,n )  and ( p ,  8 )  E ~ U .  
( i i )  ( p ,  8 )  is a solution of the equation for solitary waves (1.47).  
( i i i)  The sequence {fhn,k,, converges in L,(O, n )  to f 8  as k -t m. 
(iv) I f ~ ( p , ( ~ ) ,  instead of h in expression (1 .34))  then On(,)) is calculated using 

( v )  For each k ,  the free surface may be denoted by { ( x ,  H k ( x ) )  : x E ( - where Hk depends 
on / c , ( ~ )  and Onm according to the formulae (1.37) and (1 .38) .  As k -t oo, 

unijbrmly on compact intervals, where { ( x ,  H ( x ) )  : x E R) is the projle of the solitary wave corresponding to 
the solution ( p ,  8 )  of (1 .47) .  The function H may be calculated from ( p ,  8 )  by the formulae (1 .48) ,  (1 .49) .  

A proo fo f  this theorem m a y  be  obtained b y  modi fy ing the  arguments of  I ,  theorem 3.8. T h e  
following l emmas  facilitate this procedure. 

LEMMA3.2. For any non-negative, bounded function u on [0 ,  n ] ,  whose support has full measure, and for 
any a 2 0 ,  

i f h  2 v > 0 ,  and f,, f,are dtfined by the expression (1 .22) .  

ProoJ Since f , ( t)  2 f , ( t )  for all t E [ O ,  n ]  w h e n  h >, v, i t  will suffice t o  show that  

for all t E [ O ,  X I .  I n  other words, i t  will suffice t o  show that  

= 1;f " ( t ) f , ( w )  u ( w )  dw. 
" t )  L ( w )  

However,  a simple calculation yields thatf,/f,is increasing o n  (0,n ) ,  and the  proof is complete.  
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LEMMA3.3. For each A > 1/z, let g,denote the function d@ned on [O, n] by kutting 

O,SE(X-l/A,tr] .  

Then there exists a unique solution (y,, @ A )  of 

with (y, @) €10, co) x Toand I@1,,~,,,1 = 1. Moreover y, J. 6/71 as A -t co. 

Proof. The proof is similar to that of I, theorem 3.2. Existence and uniqueness follow im- 
mediately from the general theory of u,-positive linear operators, and that y, 46/n follows by 
exactly the same argument as was used to show that yn J. 6/tr in I, theorem 3.2. 

The proof of theorem 3.1 consists of a number of steps. Since 'iE, n aU # 0 we can find certain 
elements of this intersection which converge (in a sense to be made precise) to an element (/I, 8) as 
h + m. We then show that 8 is non-trivial, and that various physical quantities such as the mean 
velocity converge as A +-a.Then, as a consequence of theorem 1.5, the convergence of the wave 
profile to that of a solitary wave may be inferred. 

Proof of theorem 3.1. Because of the obvious similarity between the problem here and that of 
proving theorem 3.9 of I we shall limit ourselves to giving an outline of the proof. The letters (A'), 
(B'), (C'),etc., when used below, refer to the points in the proof of theorem 3.9 of I so labelled, 

Since {(pn,On)) c aU c W x COIO,x] is a bounded sequence, .there exists a subsequence 
((pnw, On(,,)) and a corresponding sequence {An(,)) c W, such that 

Pdk)+P in W, 
8n1k128 weakly in L,(O, a), 

sin A u weakly in L,(O, a) 

and An(,) li. 03 in IW 
ask -t co. We shall show that the conclusions (i)-(v) of the theorem hold for this subsequence. For 
the sake of having a convenient notation, we shall henceforth use {p,), {On), {A,) to denote the 
subsequence for which (3.3) holds. 

(i), (ii), (iii) An obvious adaptation of (A1)-(D') yields that 8, +- 8 and sin 8, -t sin 8 in 
L,(O, 71) as n + m; that 8, + 8 in C[O, 61 for each B E  ( 0 , ~ ) ;  and that (p, 8) E [6/tr, co) x Tois 
a solution of (1;47). The next step is to prove that 8 is non-trivial. To  do this we first show that 
if 8 = 0, then^ = 6/x. 

Now for each n, 
8n(s) = yon1) 1 

hn(t) sin e n  (t) dt~ ( 9  
-+ C hn(w) sin 8,(w) dw
kn 

hl(t) sin e n(t) 

-+ 50'f,,(w) sin 8, (w) dw 
Pn 

for all n a 1(by lemma 3.2 and the fact that An 1\ m), 



662 C.J. A M I C K  A N D  J. F. T O L A N D  

where g,, is defined by (3.2). Therefore 

(w) sin en(w)  dwI 
for all s E [0, n], where An, 1 = inf --. sin 8, (s) 

s e  [o,n-l/.\ll on($) 

Now multiplying this inequality by g,,$,,, whose existence is guaranteed by lemma 3.3, and 
integrating gives 

g*,(t) vh,(t) Bn(t) dt 
f i l  en ($1 ($1 gAl (s) ds 2 An, [ i:i-

dw-+ fhl(w) sin o n ( ~ )
P n  

Thus 

for all n 2 I. If  0% -+ 0 in L,(O, n) as n -+ co, then 8, -+ 0 in C[O, 61 for each SE (0,n) ,  and so 
A,,,  -+ 1 as n -+ co for each fixed I. There results that 

l/p = lim l/pn 2 yn,l 
n - t m  

for each I. Since y,, j, 6/n, as 1 fa, it follows that p < 6/n. Since pn > pA,4 6 / ~as n -+ co 
(theorems 2.2 (ii) and 1.3) i t  follows that ,u 2 6/n. We have shown that if (p,, B,,) -+ (p,0) 
in R x L,(O, n),  then ,u = 6/n. 

From this observation, the method of (F')yields that fhnOn converges to f0 in L,(O, n),  and then 
the method of (GI) may be used to prove that 8, -+ 0 in Co[O, n]. The function B must therefore be 
non-zero, for otherwise, as we have seen, (pn,0,) -+ (6/n, 0) in R x Co[O, n]. This contradicts the 
fact that Uis an open set which contains (6/n, 0) in its interior. That  0 < B(s) < $n on (0, n), and 
,u > 6/n is proved in I, theorem 3.7. This completes the proof of (i), (ii), (iii). 

(iv) By (1.23) and (1.34) 

c(Pn, o n )  = 

From (1.24) it follows that 
2K,,(1 +k,,) 143g) 3-n%'(3g) (3.5)

2hA m  

as n -+ co.Now for any LY E (0, n), 
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For any s > 0, choose a(&) E (0, X) such that for all n sufficiently large lcos$,(t) -11 < s for all 
t E [a(€),x]. This can be done since 0, -t 8ETouniformly on [0, z] .Moreover, by (3.3 a) and (iii), 
a(&) can be chosen so that 

for all t E [a(&),X] and for all n sufficiently large. From (3.6) it follows that 

lim 2jOE h n ( t >cos e n  (t) *dt = lim -2 " h,(t)  cos en(t> 
"+"' ( ~ + ~ f r n ( w ) ~ i n $ n ( w ) d w  n*w"L') (i:;+J-:a(w) sin6Jndw 

< lim 21" h,( t> dt. (3.7) 
"'"I\" " " ( ~ + ~ ~f(w)sin$(w)dw 

However, by (1.24) and (1.25), 

zlim 21" fA,(t) dt = lim - fAn(t) dt = lim - qi, (t) dt = lim A;' = - (3.8)
n- a An o(c) n + a  2h,' 

Also, from (iii), 

1im (' +I:hn(w) sin $.(w) dw)'= (:+I: f(w)sin~(w)dw 
n + w  CLn 

Collecting (3.5)-(3.9), we find that 

and since 6 is arbitrary, it follows that 

lim c(,un, 8,) = J(? (;+I: (w) sin ~ ( w )  dw1)", 
n + a  

That this last quantity lies in an interval (J(gh), 2J(gh) has been established in I (theorems 3.9, 
4.12, and the footnote to theorem 3.7 (c)). 

(v) An analogous calculation to that just given yields (v). 

3.4. For each B, 0 < 
symmetric water-wave ofwavelength A, the free surface of which subtends an angle B with the horizontal at its 
steepest point. If h is jxed and An f co as n +co, then a subsequence of the periodic wave proJiles converge 
uniformlyon compact subsets of R to theprojle of a steady solitary water-wave whose free surface subtends a 
maximum angle ofp with the horizontal, and whose asymptotic depth is h. 

COROLLARY < in, and h, h > 0 there exists on ajow of mean depth h, aperiodic, 
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Proof.By theorem 2.2, there exists (p,, 8,) E VAn such that 18\coro, = /3, for any PE[O,n/6). 
The result will follow by the method used in the proof of Theorem 3.1, once it is established that 
the sequence {p,) is bounded. However 

f ~ , ( ~ )sin 
dt, 

fA,(w) sin 8, (w)  dw 

if n 2 m, by lemma 3.2. Without loss of generality suppose that p, + co. Then, as in the proof 
of theorem 2 .2  (iv), it can be shown that there exists B > 0 such that B,(s) 2 Bsins, for all 
s E [0, x]. But this estimate is enough to guarantee (by a routine adaptation of the methods of 
( I ;$ 5 ) ) that a subsequence {19,(~,) of (8,) converges in C[6, n], for each 6~ (0, x), to a non-trivial 
solution 8 of the eauation 

O(s) = ; /o=~(s ,  t) 
f (t) sin 8(t) 

dt.1;(w) sin ~ ( w )  dw 

However, we know from I, theorem 5.2 that for such a function 8, lim sup 8(s) 2 +n. This 
contradicts the fact that ~ 8 n ~ c o r o , n l  S - + O f  

= P < in.  

Finally, we have the following result. Let Y = {(p, 8) E (0, co) x Xo: (p,8) solves (1.47) and 
8 f 0). For all (p, 8) E 9,the product f8 EL,(0, n) (I,  theorem 4.1). Let Y' = {(p,0) E 9:(p,8) 
is the limit, as h -t co, in R x Co[O, n] of a sequence (pA, 8,)) where (pA,Oh) E VA). 

THEOREM3.5. If V' is the maximal connected subset of 9" which contains (6/x, 0)) then V' is closed, 
unbounded, and has all the properties attributed to V in I, theorem 3.9. Clearly %' c V. 

Proof. This is immediate, since it has been shown that the boundary aU of every bounded, 
open set U c R x C,[O, n] which contains (6/x, 0), contains a point of V'. Since the set Y' is 
obviously a closed subset of Y, and it has the property that bounded subsets of it are relatively 
compact (I,  theorem 3.8)) the result is immediate from I, theorem A 6. 

Remarks. (a) Section 4 of I gives further properties of the elements of V. In  particular, the 
function 8 is real-analytic on [0, n), and so the wave profile is an analytic curve in R2, and the 
rate at which the free-surface approaches its asymptotic level is estimated. I n  $ 5  of I, it is shown 
that if {(p,, 0,)) c V' and p, -+co as n -t co, then a subsequence converges to a non-trivial 
'solitary wave of extreme form' which satisfies (1.47) with ,u = co. The behaviour of this wave 
at its crest is similar to that given in theorem 2.2 (vi). 

Clearly the results of McLeod (1982), quoted in theorem 2.2 (vii) for periodic waves, hold also 
for solitary waves corresponding to V', or V. This agrees with numerical results (Longuet-Higgins 
& FOX 1977, p. 738). 

( 6 )  Since periodic waves converge to solitary waves on compact sets as the wavelength goes 
to infinity, it is reasonable to hope that the limiting solitary wave will inherit some ofthe properties 
of periodic waves given in 5 2.3. Unfortunately, this has not been proved for the conclusions of 
theorem 2.5; only some parts of theorem 2.3  hold in the solitary wave case. The difficulty lies in 
the fact that R ,  -+ R,, while the uniform convergence of periodic waves to solitary waves is only 
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on compact intervals. If, however, the plan outlined in the remark following theorem 2.6 could 
be implemented, then conclusions would follow which would be compatible with the numerical 
results on solitary waves (Byatt-Smith & Longuet-Higgins 1976, p. 185)) on the convergence of 
periodic waves to solitary waves (Cokelet 1977), and on the solitary wave of extreme form 
(Longuet-Higgins 1974, p. 10). 

The  results of theorem 2.4 do go over in the limit as h -+ co,and one can show that elements 
of V' satisfy x@'(x)< @(x)and O(X) < an on (0, a). 

A P P E N D I X .O N  P E R I O D I C  F L O W S  O F  I N F I N I T E  D E P T H  

THEOREM.Suppose that O is an odd, continuous function on [ - n, n] with 0 < O(s) < n on (0, n), which 
satisfies the integral equation 

1 1 s in$(s+t)  sin 8(t)  
e(s) = -

6 " -,n
- l n l  

sin$(s-
t ) lL+J : s in~(w)dw 

d t 
P 

for some ,u > 0. Then 8 is real-analytic on [ -n, n] and 0 < B(s) < i n  on (0, n). Moreover, p > 3, and if 
h and c are positive real numbers such that 

cos 8(t) 

then there exists aperiodic wave of wavelength h on ajow of injnite depth. The velocity of thejhw at injnite 
depth is then c, and its speed at the crest is given by 

The free surface may be parametrized by (x, HA(x)) ,where x E ( - +A, $A) and for x E [0, +A] 


$ sin 8(t)  
($+I:+sin ~ ( w )  dw 


g cos 8(t)
where for s E [ -n, 01 f dt. 

Proof. The  proof that 8 is real-analytic and bounded by +n follows as in theorems 2.2 and 2.4. 
T o  show that ,u > 3, multiply (A 1) by sins and integrate over ( -n, n), using (1.27). 

As before, there exists a harmonic function 8 on the unit disc such that 8 ( e i ~ )  = 8(s) for all 
SE( -n ,n ] ,  and 

a81 1 sin B(s) 

Using the expansion of G given in (1.27), it follows from (A 1) that for all s E ( - n, n], 



666 C.J. rZMlCI< A N D  J. F. T O L A N D  

From this and Fubini's theorem there results that the Fourier series for 0 is 

C a,sin Is, 
1 - l 

where 

a, 


I t  follo\vs that putting ~ ( 5 )+iB([) = ~-;ralCE 
1-1 

defines an analytic function on the unit disc, arid 

t 
for all s E [-n, n], where a, = &Ir,lo ( i + j o s i n  O(W) dw) dt. 

-

Let c and A be positive real numbers chosen so that (A2) holds. Then an analytic function 
- i& can be defined on R, = (X+ i~ j :- 4 A  < x < +A,7 < 0) by putting 

?(<) - i&i<)= ? (exp ( -27ci</A)) +io(exp ( -2niClh)). 

Hence &(X + iO) = -O (  -Pnxlh) and so 

tvllere O(X) = 6 ( x-tiO). Since 101 < & 7 ~on 1-n,n], it fbllows by the maximum principle that  
161< an in 21,. 

Now define an analytic function f i  on I-?,, by putting 

c(() == exp (p(cf)-i@(C1))dC'. 
So' 

Since 6(& +iv) = 0 for all 7 < 0, and since IT({)-i@(<)1-) 0 as I < [  -+ co,{ER*,it follows 
that f i  is a conformal mapping from R, onto an infinite region in the z-plane of he form 
S, = (X +iy: -hh < x < A, y < I / , ( .%)) ,and Hi(x)= - tan @(%-1(x -1 iJl,(.%))). Since f i  is invertible, 
we can define a complex potential (3 = 6+ i$ on S, by putting 

where r was chosen when h was chosen so that (A 2) holds. Then for z E: S,, 

and it follo~rs that c exp ( -T ( f i - ' ( z ) ) ) is the speed of the flow and - 0(1%-l(z)) is the angle which 

tlte negativc velocity vector makes with the x-asis at a point z r  SA. hlor*cover u(z) - iv(z)+ - - c  
as jz[ -t z E S,. Prom the clcfinitiori of 6,it fo1lo.c~~ -t -m as 111 -.m, z E S,, and $ = 0a, that 6 
011 the free surfact. F A= ( jx, ti,(x)) :x t- ( - $A,  $A)). 
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Finally to show that the free surface condition is satisfied, we proceed as follows. By (A 8), (A 9) 
and Cauchy's formula there results that 

exp (7"(eit) + i8(eit)) ieit 	 cos 8( t )
dt = ---

e i l  	 texp (a,) Sn2a - n ( ~ + S o s i n 8 ( a ) d a  

and so, by our choice of h and c, 
exp (a,) = ( 2 x ~ ~ / 3 ~ h ) f .  	 (A 1 1) 

Hence 

,., 	 2nc2 1 2n x 
and so T(x+iO) = fin(-) ‘Jgh - f  ln(l l+h/o sinO(w) da). 

Therefore 

- 2x c2 exp ( -2'T(x+ iO)) sin O(X) 
- g  exp (Fix+ iO)) sin 6(X+ iO) 

3h 	 ;+X2 n ~ X s i n 9 ( w ) d w  

2nc2 3gh 
= exp (T(x  + i ~ ) )  -,sin -g sin o ( ~ ) )  = 0.(- @(x)

3h 2xc 

T o  complete the proof of the theorem we must verify that (A 3), (A 4) give the wave profile. This 
is a routine calculation based on the method used in the p r o ~ f  of theorem 1.5. 

Results similar to those in theorems 2.4-2.6 hold if one replaces O by 0 and +A by x. 

Though the proofof this last theorem is in many respects similar to that of theorem 1.5, we have 
included it in order to obtain the following corollary. We need the notion of a conjugate function 
which is defined as follows. If u is an  L2-function whose Fourier series is a, + Cf2,(a, cos Is + 
b,sinls), then the function conjugate to u is denoted by Cu and is the L,-function whose Fourier 
series is Cgl(al  sin Is -b, cos Is) (Bary 1964). 

COROLLARY.If8  satisjies (A I )for some ,u > 0, then 8 satisjies the equation 

Proof. By (A 6)-(A 9) 

-CO(t) = 7(eit) = a, - .& ln 

2xc2 1
whence by (A 11) exp ( -3CO(t)) = -

(i+s:sinO(a) da]'  

Substituting this last expression into (A 1) gives the required result. 

Remark. In  the previous sections, the mean depth was held fixed as h -+ co.If we now fix A, 
and let h + co, then one can prove a result analogous to theorem 3.1, but the proof is essentially 
simpler, because the limiting equation is non-singular. A word of caution is necessary however; 

58-2 



668 C. J. A M I C K  A N D  J. F. T O L A N D  

if ((p,, 0,)) is a sequence of solutions of (1.31) corresponding to waves of the same fixed wave- 
length A, but of different mean depths h, -+ co,and if {(p,, 8,)) c c?U,where U is an open set in 
R x C,[O,+A] containing (6, O) ,  then a subsequence converges to (p,8 ) ,where (+p, 8 ) is a solution 
of (A 1). This may be seen from (1.31), since (1.17) and (1.22) together give fA(t) + 4uniformly 
forte[-n,n],  a s h - t m .  
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