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Abstract

The estimation of extreme significant wave heights Hs using altimeter observations is investigated. Data from the following three satellite

missions are used: Geosat, ERS-1 and Topex/Poseidon. Practical methods of estimating extreme Hs are described and limitations of their

application to altimeter data are highlighted. Extreme Hs are estimated using the three-parameter Weibull distribution, with maxima selected

via the peaks over threshold method, and the Fisher-Tippet type I distribution, using data selected via the initial distribution method.

Altimeter estimates are compared to extreme Hs calculated from deep water buoy data. A comparative analysis of global estimates of

satellite-derived extreme Hs based on standard statistics investigates time-space undersampling and how it affects the reliability of long-term

extreme wave estimates made using satellite altimeter data.

q 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Extreme values of significant wave height Hs with long

term return periods are fundamental parameters in several

ocean engineering and oceanographic applications. These

include coastal management, naval architecture, navigation

and several issues related to coastal and offshore structures.

As a consequence of the large concentration of human

settlements along the coastline and of economic activities

there and across the oceans, extreme events generated

within the oceanic environment are among the most

hazardous. Consequently, the development of tools to assist

in their prediction is an important scientific challenge with a

wide range of applications.

The determination of extreme Hs in the oceanic

environment usually involves the statistical analysis of

historical time series of wave heights derived from surface

buoy measurements. The usual practice consists of a

number of steps starting with the choice of a statistical

model fitting observations of storm Hs or other parameters

representative of Hs maxima. The statistical model best

fitting the data is then extrapolated beyond the period

covered by the observations at a chosen probability level,

which is associated with the occurrence of an extreme event

with a return period of N years (typically, N ¼ 50 or 100).

Except for areas in the northern Atlantic and Pacific

oceans, buoy networks generally do not provide adequate

resolution or historical coverage of wave data for the

purpose of estimating extreme Hs: Either time series are not

long enough or the number of existing buoys is too small or

both. Engineering applications usually require knowledge

of extreme Hs with 50 and 100 year return periods. The

reliability of these estimates is thus significantly reduced

due to the short time length of the available buoy

measurements.

The relatively short period covered by buoy measure-

ments also allows large freedom in selecting the distri-

bution functions that fit the observed data properly, often

resulting in several estimated values at a single location that

differ significantly. If the short length of the data series

obstructs the efforts of estimating extremes in some

locations, in others it is not possible at all to make

estimates due to the poor spatial coverage and the

unavailability of in situ measurements on a global basis.

These limitations affect mostly the determination of

extreme Hs in oceanic areas adjacent to developing

countries in the Southern Hemisphere.
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Recent advances in atmospheric and wind-wave model-

ing technology have made it possible to build long-term

databases of hindcast wind speeds and wave heights with

global coverage [18,23]. The alternative of using these long-

term hindcast sea states to calculate global extreme Hs is

very attractive, as demonstrated recently by Wang and

Swail [31,32]. However, atmospheric and wind-wave

models still lack the skill to make accurate predictions or

reconstitutions of extreme events, as shown by Cardone et al.

and Swail and Cox [2,24].

An attractive alternative to obtaining global estimates of

extreme Hs is to use satellite measurements of the sea

surface. Since the Seasat experiment in 1978, satellite

missions have proved the feasibility of using satellite-borne

radar altimeters to obtain reliable wind and wave climatol-

ogy with global coverage. Although the time span of

remotely sensed measurements is still not long enough to

overcome problems related to statistical confidence and

consistency of statistical extrapolations needed for estimat-

ing extreme values, the lack of spatial coverage associated

with buoy data is not a major problem when using satellite

data. As a consequence, recent studies using altimeter data

have developed a preliminary framework for determining

extreme Hs on a global basis [3,9,21].

In this study we investigate the adequacy of obtaining

global estimates of extreme Hs made with satellite altimeter

data, using two methods commonly used to estimate buoy-

derived extreme sea states. We calculate long-term extreme

Hs using a global satellite altimeter database, consisting of

measurements made during the missions of Geosat, ERS-1

and TOPEX/Poseidon, covering a 10-year period. We

highlight some difficulties that arise from the sampling

characteristics of altimeter data and investigate simple

alternatives to reduce this limitation. In this way, we provide

a potentially useful approach to obtain information for

engineering and oceanographic applications in locations

where buoy data are presently unavailable.

This manuscript is structured as follows. In Section 2 we

provide a brief description of the combined altimeter

database. Commonly used methods for estimating extreme

values of environmental variables are outlined in Section 3.

Our validation strategy based on comparisons between

extreme Hs calculated with satellite data and ocean surface

buoy measurements is summarized in Section 4. Results are

presented in Section 5, which is followed by a discussion of

how these results relate to previous studies in Section 6.

Finally, our main conclusions are summarized in Section 7.

2. Combined altimeter database

The combined satellite altimeter database used in our

study covers a 10-year period (1986–1995), including

Geosat’s Exact Repeat Mission (November 1986 to January

1990) and parts of the ERS-1 (August 1991 to August 1995)

and the TOPEX/Poseidon (September 1992 to October 1995)

missions, totaling 78 months (6.5 years) of effective

observations. Young and Holland [29,30] provide details

of the methodology used to inter-calibrate, quality-control

and merge these data into a single database composed

initially of mesh elements covering 28 £ 28 in latitude and

longitude.

The initial size of mesh elements at 28 £ 28 was a

compromise between spatial resolution and statistical

reliability, based on investigations of the consequences of

using different mesh sizes to the consistency of associated

wave climate parameters. These investigations [9,26] have

indicated that the choice of 28 £ 28 mesh elements is close to

optimal for wave climatology studies. This data structure

has been successfully used by several authors to investigate

wave climate using satellite altimeter data [1,3,4,30]. In our

study, we investigate the effects on estimates of extreme Hs

and the statistical reliability for both 28 £ 28 and larger

48 £ 48 mesh elements.

The choice of a regular mesh resolution in all locations

over the globe, as made in the present study, seems to reflect

the current practice and is convenient for generating a global

climatology of extremes. However, the adequacy of such an

approach and the chosen mesh-element size may not be

appropriate for some local applications, particularly in areas

where the spatial variability of the wave climate is high due

to the proximity of land or other environmental factors. In

these cases, local measurements would provide a more

reliable source of data for estimating extremes. Studies for

determining the local correlation length scales of wave

fields, such as that reported in Ref. [16], may lead in the

future to a more appropriate selection of location-dependent

mesh-element sizes for estimating global extremes con-

sidering local wave climatology.

3. Methods for estimating extreme Hs

The N-year extreme value of an environmental variable

is a threshold quantity that is exceded on average every N

years. In coastal and ocean engineering applications N is

usually equal to 50 or 100 years. Our interest is, therefore,

on estimating extreme Hs with an average recurrence of 50

or 100 years from a much shorter, 10-year-long database.

Thus, the estimates of extreme Hs depend heavily on an

approach based on statistical analysis and extrapolation.

Within this framework, the usual procedure for estima-

ting extreme values through statistical extrapolation consists

of the following steps:

1. extract from the database of Hs a series representing

observed maxima;

2. rank the series of maxima;

3. assign cumulative distribution functions (CDFs) to

individual maxima;

4. fit statistical distributions or models to the series of

maxima and their CDFs;

J.H.G.M. Alves, I.R. Young / Applied Ocean Research 25 (2003) 167–186168



5. apply tests to assess goodness of fit;

6. compute the extreme Hs values with a prescribed return

period.

Other than the availability of good quality data with a

suitable historic coverage, two other factors are critical to

obtaining reliable estimates of extreme Hs: One is obviously

the choice of statistical distribution used to extrapolate the

data to the chosen probability level. The other important

factor is the selection of a sub-set of the original database

that is representative of the observed maxima.

The selection of a representative series of maxima is very

important because it allows the fitting of the chosen

statistical model to actual observed maxima. This will

generally bring more confidence that the extrapolation to a

chosen probability level will be a reliable estimate of

a longer-term extreme Hs: On the other hand, fitting a

statistical model to all measurements of Hs; for example,

may lead to unreliable estimates of longer-term extremes,

since the probability distribution of Hs maxima does not

necessarily follow a distribution that fits well all obser-

vations of Hs: Further discussion on this topic is found in

Refs. [17,20,25], for example.

In this context, the three most commonly used techniques

to produce sub-sets of data for investigating extreme waves

are the initial distribution method (IDM), the annual

maxima method (AM) and the peaks over threshold method

(POT). A brief description of their main characteristics is

provided below.

(a) IDM

In the IDM all available measurements, whether

associated or not with storm events, are binned into

ascending classes of wave heights. This means that IDM

data using one- to three-hourly measurements, common for

buoy data, are likely to include multiple values generated by

the same storm. Consequently, the estimates of extreme Hs

will be made using a statistical model adjusted to a

distribution of Hs that does not necessarily describe properly

the distribution of maxima. Although in principle this can

lead to biased and/or unreliable estimates of extreme Hs,

studies using both buoy and satellite observations from the

North Sea [6] have shown that the IDM can be used to

provide acceptable estimates of environmental extremes.

(b) AM

In the AM method only the highest Hs observed in

any particular year is chosen, thus providing a series of

uncorrelated observations. A shortcoming of the appli-

cation of this method to estimating extreme wave heights

is that the period covered by measurements of Hs is

generally limited to a relatively small number of years,

which not surprisingly leads to series of annual maxima

that are too short to yield reliable results. In addition,

when satellite data are considered, the existence of large

time lags between consecutive satellite passes over any

given location, results in undersampling of sea-state

maxima, leading to an underestimation of AM values

relative to buoy data. An example of the effects of this

limitation and a discussion of its consequences for

obtaining representative series of storm Hs using POT

data are presented in Section 5.

(c) POT

The POT method has been nominated by a working

group on extreme waves associated with the International

Association for Hydraulic Research (IAHR) as the rec-

ommended choice for estimating extreme Hs [15,19,28].

This method consists of extracting from a database

containing measurements of Hs; values that exceed a

given threshold. Such values should also be separated by

time lags large enough to guarantee the selection of

independent observations, i.e. maximum Hs observed

during different storm events.

The choice of thresholds for censoring data in the POT

method can be somewhat subjective. For the purposes of

automation of the analysis, a common but rather arbitrary

approach is to adjust the threshold to increase or decrease

the number of extracted maxima until the best fit between

observations and a chosen statistical model is achieved. A

more objective method that is also consistent with the

physics of the generation of extremes consists of first

estimating the number of expected local maxima for a given

location. The threshold Hs is then selected so that the

resulting number of observed maxima does not exceed the

number of storms per year at the site. This number may be

determined in many different ways (e.g. through the analysis

of weather charts or storm databases).

The IAHR recommended practice may be summarized

by the following steps:

1. select from a database a subset of Hs maxima using the

POT method;

2. separate the subset of Hs maxima into new subsets with

data from different storm populations;

3. fit the three-parameter Weibull distribution to the POT

data from each subset;

4. compute the desired extreme Hs values associated

with each storm population.

Modifications of this methodology are required when

using a large global database composed of satellite

observations. The analysis of individual storm events

necessary to satisfy the POT criterion would be prohibitive

on this global scale. In our case, a practical approach is to

use a storm database [10] giving the average annual

numbers of storms at the center of each 28 £ 28 (48 £ 48)

mesh element. If an automated procedure is to be used,

separating storms from different populations is also not

viable. Thus, at any given 28 £ 28 mesh element all data are

taken as belonging to the same storm population, which may

limit the reliability of estimated extreme Hs in areas exposed

to more than one type of storm (e.g. tropical and

extratropical storms).
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4. Validation strategy

An investigation of the compatibility between wave

measurements made by satellite altimeters and ocean-

surface buoys was made by Cooper and Forristall [9],

through the analysis of simulated storm winds and waves

generated with simple parametric models. They conclude

that satellite measurements made within a radius between

100 and 300 km centered at a given point generally provide

equivalent information to hourly buoy measurements made

at the central point. Thus, the results of Cooper and

Forristall [9] suggest that, in principle, single-point buoy

data and satellite measurements made within areas roughly

the size of 28 £ 28 and up to 48 £ 48 mesh elements should

all provide similar estimates of extreme Hs: Consequently, it

would be reasonable to expect that a global database of

satellite altimeter measurements of Hs; such as the one used

in this study, would potentially address the objectives of

obtaining reliable global estimates of long-term extreme Hs;

given a proper choice of statistical model is made for the

purposes of extrapolation.

To verify if these assumptions, based on the findings of

Cooper and Forristall [9], are valid to our combined satellite

database, we compare extreme Hs calculated from altimeter

data and deep water in situ wave measurements made with

ocean surface buoys. A total of 11 buoys deployed in the

northern Pacific and Atlantic oceans are used. Data from 10

buoys were obtained from the National Data Buoy Center

(NDBC) of the US National Oceanic and Atmospheric

Administration (NOAA). Data from the eleventh buoy

location, Haltenbanken, near the coast of Norway, was

obtained from the IAHR working group on extreme waves.

The chosen buoys and their locations are shown in Fig. 1.

Identification codes, regional and geographical location,

measurement periods and total number of years covered by

the data for each buoy are given in Table 1.

Buoy measurements of Hs were prepared according to

the IAHR recommended practice. Since the measurement

period covered by data from the NDBC/NOAA buoys

much exceeded the period covered by the altimeter

database, two subsets from these buoys were created to

assess the sensitivity of estimated extremes to the length of

the originating database of measured Hs: The first subset

consisted of all available data from each buoy within the

corresponding measurement period indicated in Table 1.

The second subset included data truncated to the period

covered by the altimeter database (1986–1995). Hs maxima

were selected from these two subsets using the POT method.

The number of POT points was chosen to closely match the

number of storms at each buoy location, which was

estimated from a storm database described in Ref. [10].

This approach was considered convenient for automation of

procedures having in mind the need of applying identical

techniques for the intended global analysis of extreme Hs:

To ensure independence of the data, consecutive Hs

exceeding the chosen threshold wave height were required

to be separated by time lags greater or equal to 72 h.

Extreme Hs with a 100-year return period (henceforth

Hs100) were estimated through an extrapolation of the

three-Parameter Weibull distribution at the appropriate

probability level, with parameters fitted to the data by

maximum likelihood. The three-Parameter Weibull distri-

bution (henceforth 3PW) is given by:

F̂ðhiÞ ¼ 1 2 exp 2
hi 2 aw

bw

� �
kw

� �
ð1Þ

where h is the independent variable (significant wave

height) and aw; bw and kw are the location, scale and shape

parameters, respectively. The distribution function FðhiÞ;

which represents the probability of non-exceedence of h; is

equal to zero whenever hi , a:

The differences between buoy-derived Hs100 calculated

from the two subsets described above at each site were all

smaller than 10% (under 5% in all but one case). This was

an encouraging result, as it indicated that the shorter time

length of the altimeter database could, in principle, provide

consistent estimates of Hs100: It also reassured us in using

the data available from the eleventh buoy, Haltenbanken,

despite its shorter coverage period relative to other buoy

sites. Finally, we assumed that the estimates of Hs100 made

using the entire measurement period at each buoy were

representative of the true Hs100: These values, which are

given in Table 2, were thus taken as the target for the

purposes of validation of satellite-based Hs100:

Fig. 1. Location of selected buoys: 41002, 42001, 42002, 44004, 46001, 46002, 46003, 46005, 46006, 51001 and Haltenbanken.
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The IAHR procedure was then used to obtain estimates

of Hs100 using altimeter data from 28 £ 28 and 48 £ 48 mesh

elements centered at each buoy site. We also examined a

simple alternative method to estimate Hs100 using the

altimeter database, which consisted of extrapolating a

Fisher-Tippet type 1 distribution fitted by maximum like-

lihood to data selected using the IDM. Following Carter [3],

IDM data points consisted of the calculated median value of

observations from each individual satellite pass within

28 £ 28 (48 £ 48) mesh elements. This approach was also

tested to verify if weighting the IDM data to compensate for

undersampling affected the estimates of Hs100; as discussed

in Section 5.

The Fisher-Tippet type 1 distribution (henceforth FT1) is

given by:

F̂ðhiÞ ¼ exp 2exp 2
hi 2 af

bf

� �� �
; ð2Þ

where af and bf are the location and scale parameters,

respectively.

Following Goda and Mathisen et al. [13,19], values

of Hs100 estimated from POT data were associated

with a probability level given by PðHs , Hs100Þ ¼

1 2 NY=ð100NPOTÞ, where NPOT is the number of selected

POT points and NY is the number of years covered by the

POT series. In the case of IDM data, values of Hs100 were

estimated by extrapolating the chosen distribution functions

to a probability level given by PðHs , Hs100Þ ¼ 1 2

D=T100; where D is a decorrelation time scale in hours for

observations of Hs and T100 is the number of hours in 100

years. Consistent with the decorrelation time scales for Hs

used in other studies [9,25,27], we chose D ¼ 3 h:

Confidence intervals for all estimates of Hs100 were

calculated using empirical formulae proposed by Goda [13]

for the 3PW and the FT1 distributions. The goodness of fit of

statistical distributions to series of Hs maxima were

measured in terms of the Cramer Von Mises test (C), a

modified Kolmogorov–Smirnov test (T) proposed in Ref.

[8], for when distribution parameters are estimated from the

data, and a criterion based on the correlation coefficient ðRÞ

proposed by Goda and Kobune [14]. Failures and passes

were determined considering a 95% confidence level.

5. Results

Results are presented in two subsections dedicated to (i)

the validation of Hs100 relative to reference values

estimated from buoy data and (ii) the results of applying

two methodologies for computing global estimates of Hs100

using the combined altimeter database. In Section 5.1 we

also examine some issues related to undersampling and to

seasonal observation bias in satellite observations of Hs;

focusing on their consequences for estimates of Hs100 and

alternatives for minimizing these effects.

5.1. Satellite- vs. buoy-derived Hs100

Table 3 summarizes the estimates of Hs100 made

using 28 £ 28 altimeter data and three alternative

Table 1

Identification codes, nominal and geographical location, measurement periods and total number of years covered by the data from ocean surface buoys used in

our study

Buoy Region Location (mean) Measurement period No of years

41002 SW North Atlantic 32.38N, 75.38W 1976–1998 22

42001 Gulf of Mexico 25.98N, 89.78W 1976–1998 22

42002 Gulf of Mexico 26.08N, 93.58W 1976–1997 21

44004 SW North Atlantic 38.68N, 70.58W 1977–1998 21

46001 Gulf of Alaska 56.28N, 148.18W 1976–1998 22

46002 NE North Pacific 42.58N, 130.28W 1976–1998 22

46003 Aleutian Islands 51.98N, 155.88W 1976–1998 22

46005 NE North Pacific 46.18N, 131.08W 1976–1998 22

46006 NE North Pacific 40.88N, 137.68W 1977–1998 21

51001 Hawaiian Islands 23.48N, 162.38W 1981–1998 17

Hbken North Sea 65.18N, 7.38E 1980–1988 8

Table 2

Estimates of Hs100 made using buoy data and the IAHR recommended

practice

Buoy Hs100 (m) IAHR/buoy NP C/R/T

41002 12.83 ^ 2.15 244 P/P/P

42001 9.08 ^ 1.50 246 F/P/F

42002 8.70 ^ 1.30 237 F/P/P

44004 12.94 ^ 1.63 250 P/P/P

46001 15.74 ^ 1.81 476 P/P/P

46002 15.85 ^ 2.14 247 P/P/P

46003 17.89 ^ 2.53 357 P/P/P

46005 15.05 ^ 1.76 266 P/P/P

46006 15.86 ^ 2.05 229 P/P/P

51001 11.55 ^ 1.57 186 F/P/P

Hbken 14.95 ^ 1.56 118 P/P/P

Also indicated are the confidence intervals, the number of POT points

NP and scores for goodness of fit in terms of the following tests: Cramer

Von Mises test (C), Kolmogorov–Smirnov (T) and the REC criterion (R) of

Goda and Kobune [14]. Failures (F) and passes (P) are given at a 95%

confidence level.
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statistical extrapolation methods based on: the IAHR

recommended practice, the FT1 model using IDM data

and a variation of this latter technique using a weighted

method of moments for estimation of distribution

parameters. These several altimeter-based estimates

of Hs100 and their associated confidence intervals

are compared to buoy-IAHR Hs100 in Fig. 2. Table 3

also indicates the percentage bias of the estimates of

altimeter Hs100 relative to the buoy-IAHR Hs100 given

in Table 2.

Table 3

Estimates of Hs100 made using 28 £ 28 altimeter data and the IAHR recommended practice (IAHR), the FT1 model with IDM data (FT1) and the weighted FT1

model (WFT1)

Site Hs100 (m) IAHR/alt NP C/R/T D% Hs100 (m) FT1/alt NI C/R/T ðD%Þ Hs100 (m) WFT1/alt NI C/R/T D%

41002 13.52 ^ 6.25 98 F/P/P 5.38 11.66 ^ 1.08 464 F/P/F 29.12 13.67 ^ 1.08 464 F/P/F 6.53

42001 8.22 ^ 2.90 122 F/P/P 29.39 8.58 ^ 0.68 412 P/P/P 25.42 8.87 ^ 0.68 412 F/P/F 22.22

42002 5.50 ^ 0.92 128 P/P/P 236.83 7.78 ^ 0.61 435 P/P/P 210.58 8.38 ^ 0.61 435 F/P/F 23.62

44004 13.05 ^ 4.31 109 P/P/P 0.81 14.63 ^ 1.24 575 F/P/F 13.02 13.25 ^ 1.24 575 F/F/F 2.33

46001 11.86 ^ 2.52 258 F/P/P 224.64 15.79 ^ 1.41 830 F/P/P 0.27 16.20 ^ 1.41 830 F/P/P 2.92

46002 10.25 ^ 1.76 106 P/P/P 235.30 15.12 ^ 1.15 671 F/P/F 24.59 15.07 ^ 1.15 671 F/P/F 24.91

46003 13.38 ^ 2.20 188 F/P/P 225.19 18.24 ^ 1.45 842 P/P/P 1.95 17.74 ^ 1.45 842 F/P/F 20.82

46005 12.15 ^ 2.12 133 F/P/P 219.23 15.93 ^ 1.24 757 F/P/F 5.89 15.92 ^ 1.24 757 F/P/F 5.80

46006 12.79 ^ 2.47 99 P/P/P 219.38 16.55 ^ 1.33 561 F/P/P 4.35 17.17 ^ 1.33 561 F/P/P 8.26

51001 8.33 ^ 2.39 108 F/P/P 227.89 9.82 ^ 0.69 582 P/P/P 214.96 10.05 ^ 0.69 582 P/P/P 212.98

Hbken 13.17 ^ 3.91 150 P/P/P 211.91 17.34 ^ 1.49 261 F/P/P 15.99 17.20 ^ 1.49 261 F/P/P 15.01

lD%l 19.63 7.83 7.39

D% 218.51 20.29 1.48

Also indicated are the percentage bias of altimeter Hs100 relative to the buoy-derived estimates ðD%Þ, the mean bias D% and the mean absolute bias ðlD%lÞ:
A definition of other indicated parameters is given in Table 2.

Fig. 2. 28 £ 28 Estimates of Hs100 made with buoy data using the IAHR recommended practice are indicated in all panels by squares. Associated 95%

confidence intervals are indicated by the shaded regions. Triangles indicate estimates of Hs100 made with altimeter data using (a) the IAHR recommended

practice, (b) the FT1 distribution with IDM data using the method of moments (MOM) and (c) the FT1 distribution with IDM data using a weighted method of

moments (WMOM). The 95% confidence limits for the altimeter results are shown by the vertical solid lines.

J.H.G.M. Alves, I.R. Young / Applied Ocean Research 25 (2003) 167–186172



A comparison of Hs100 estimated using buoy and

altimeter data and the IAHR recommended practice is

presented in Fig. 2(a). This figure shows that the altimeter-

IAHR Hs100 generally underestimates the buoy values,

with most altimeter-based estimates falling below the 95%

confidence intervals of buoy estimates. This is consistent

with the large negative values for relative bias seen in Table

3. The differences between buoy and altimeter-IAHR Hs100

were generally larger at buoys located in the higher latitudes

of both the North Atlantic and the North Pacific oceans

(from around 220 to 235%), although the largest bias

(238.83%) was associated with buoy 42002, in the Gulf of

Mexico. The mean absolute bias was 19.63%.

We note that despite these large discrepancies

between buoy and satellite estimates of Hs100; the

results for goodness of fit given in Table 3 indicate that

the 3PW distribution fits successfully the POT maxima

from both buoy and altimeter data in the vast majority of

locations. On the other hand, this may be a result of the

relatively small number of POT points used in parameter

fitting, which allow broader tolerance limits at a given

statistical confidence level relative to cases using IDM

data (see below).

Altimeter-based estimates of Hs100 made using the FT1

distribution and IDM data, on the other hand, agreed

remarkably well with the buoy-IAHR Hs100: This good

agreement is clearly verified in Fig. 2(b), which also shows

that most altimeter-based estimates of Hs100 fell within the

95% confidence intervals associated with buoy-IAHR

Hs100: Again, the larger discrepancies of satellite Hs100

relative to buoy estimates were observed in the higher

latitudes of both the North Atlantic and the North Pacific

Oceans (from around 10 to 15%). The mean absolute bias

was 7.83%.

Despite the good match between the altimeter-FT1

Hs100 and the buoy-IAHR estimates, goodness-of-fit

criteria indicated that the FT1 model does not provide a

good description of IDM data from the combined altimeter

database in nearly half of the buoy locations, contrasting the

generally good fit of the 3PW model to POT data in most

validation sites. This, however, may be due to the fact that

the much larger number of data points used in the IDM,

relative to POT data, leads to relatively narrower tolerance

limits at a given statistical confidence level. This, in turn,

may explain the larger number of failures associated with

the FT1 model. Support for this idea is provided by Fig. 3,

which shows empirical and model CDFs associated with

buoy 46006, in the NE North Pacific. This figure indicates

that both statistical models seem to provide a visually

acceptable fit to both POT and IDM data.

In objective terms, it is only possible to say that

goodness-of-fit tests applied to our results and evidence

presented in previous studies [15,19,28] seem to indicate

that the FT1 model is not as appropriate as the 3PW model

for estimating extreme Hs: On the other hand, the results

above reveal large discrepancies between buoy- and

satellite-IAHR (3PW) Hs100; indicating differences

between altimeter data and in situ measurements that are

significant for estimating extreme Hs: Our results also show

that these discrepancies are significantly reduced when

estimates of Hs100 made using altimeter data are obtained

with a FT1 distribution fitted to IDM data.

The fact that a series of altimeter Hs maxima, selected

using the POT method to represent storm events, provides

estimates of Hs100 that systematically underestimate the

target buoy-derived Hs100; suggests that some degree of

undersampling of storm maxima by altimeters on board

Earth-orbiting satellites is occurring. Support for this

hypothesis is provided in Fig. 4(a), which shows a

scatter-plot of co-located satellite- and buoy-derived

monthly Hs maxima at selected validation sites. This

figure reveals that monthly Hs maxima extracted from

the altimeter database systematically underestimate the

corresponding monthly buoy maxima, thus indicating that

the satellite measurements missed or misrepresented a

significant number of severe sea states during the period

covered by the combined altimeter database. This issue and

its effects on the altimeter-IAHR estimates of Hs100 are

examined next.

5.1.1. Satellite undersampling and POT data

Several factors may cause altimeters on board satellites

to undersample storm Hs: The most conspicuous is the

satellite orbital cycle, which determines the time interval

between two consecutive passes over the same point (i.e. the

sampling rate). Two other important factors are the

geometrical properties of the orbit and the development of

gaps during certain periods of time or at particular locations.

The first factor leads to different spatial coverage or

resolution of the ocean surface as a function of geographical

location. The second factor arises as a consequence of

characteristics of satellite missions, malfunctioning or

spurious radar returns due to proximity of land or other

obstacles, such as pack ice. The effects of gaps in the

available time series will be examined in a following

subsection. In this subsection we examine the under-

sampling resulting from the satellite orbital cycle and its

effects on estimates of Hs100 made using the IAHR

recommended practice.

We begin by estimating the average sampling intervals

associated with the merged database of altimeter measure-

ments used presently, defined as the mean time between

consecutive passes within 28 £ 28 mesh elements centered at

NODC/NOAA buoy sites. These average sampling intervals

are as follows: 71 h at 41002, 71 h at 42001, 72 h at 42002,

57 h at 44004, 56 h at 46001, 69 h at 46002, 56 h at 46003,

56 h at 46005 and 69 h at 51001. These values reflect a

global average of all satellite missions. Furthermore, they

represent the time interval between consecutive satellite

passes over any point within a mesh element, which is

consistent with the assumption that measurements made

anywhere within a mesh element are representative of
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the center-point. Therefore, the average sampling intervals

mentioned here should not be mistaken for the repeat or

revisit time interval of the satellite footprint over any given

point, which is of the order of four to eight times larger.

A global view of sampling averages in hours is provided

in Fig. 5, which also gives an impression of the spatial

coverage of data from the combined altimeter database

(higher pass densities are found along preferential tracks of

the three satellite missions). Regions of higher pass density

occur in higher latitudes and are, therefore, associated with

higher spatial resolution relative to areas near the Equator.

This zonal dependence of sampling intervals and, conse-

quently, of spatial resolutions may seem a problem in a

global climatology of extreme Hs; which may also have

been amplified by the use of a grid consisting of regular

mesh elements. Fig. 5 reflects the overall density of satellite

passes within mesh elements for the combined database.

A mission-specific description of track density and spatial

resolution may be found in Refs. [7,11,12] for Geosat, ERS-

1 and Topex/Poseidon, respectively.

Nevertheless, some investigations [16,26] support the

idea that, on a global scale, the wave climate has larger

decorrelation scales near the Equator, which is signifi-

cantly reduced toward higher latitudes. We assume

presently that this effect counteracts the zonal depen-

dence of sampling intervals seen in Fig. 5, noting that

biases of altimeter-derived Hs100 computed so far do not

seem to reflect any dependence on latitude. Although this

assumption may be reasonable for the present analysis,

which focuses on the climatology of extremes on a

global scale, some potential limitations in terms of

impacts on local wave climatology of extremes warrant

further research.

These average sampling intervals are clearly much

larger than the common measurement intervals of in situ

buoy data, typically 1 or 3 h. To investigate how these

long sampling intervals affect the estimation of extreme

Hs; buoy data were resampled at times corresponding to

^30 min from satellite passes within 28 £ 28 mesh

elements centered at each buoy location. These

resampled, co-located data were then used to provide

estimates of IAHR Hs100:

Results are summarized in Table 4, which also indicates

the bias of resampled buoy-IAHR Hs100 to the target

values ðDB%Þ from Table 2 and to the altimeter-IAHR

Hs100ðDS%Þ from Table 3. The impact of resampling buoy

data at times co-located with measurements from the

altimeter database is dramatic. The bias of Hs100

calculated from resampled buoy data indicates a systematic

Fig. 3. Diagram showing observations (black circles) and model estimates (continuous lines) of the distribution function FðhiÞ; i.e. the probability of non-

exceedence of h; against values of Hs at buoy 46006, as follows: (a) 3PW model fitted to buoy-POT data using maximum likelihood, (b) 3PW model fitted to

altimeter-POT data using maximum likelihood, (c) FT1 model fitted to IDM data using maximum likelihood and (d) FT1 model fitted to IDM data using a

weighted method of moments.

Fig. 4. Scatterplot of monthly maximum Hs values from the combined

satellite altimeter database (Altimeter Hs) against in situ observations

(Buoy Hs) at 10 NOAA deep water buoy locations. Results for (a) 28 £ 28

and (b) 48 £ 48 mesh elements are shown.
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underestimation of 30.50% relative to the original buoy-

IAHR Hs100: On the other hand, altimeter-IAHR Hs100

are now closer to resampled buoy-IAHR Hs100 than to

the original buoy-IAHR Hs100 estimates, as indicated by a

mean absolute bias of 13.37%.

It is also noteworthy that the largest discrepancies

between resampled buoy-derived Hs100 and satellite-

derived estimates (around 20%) now occur at buoy locations

exposed to both mid-latitude storms and hurricanes, in the

Gulf of Mexico (buoys 42001 and 42002) and near the east

coast of the United States (buoys 41002 and 44004).

Estimates of Hs100 made with resampled data from buoys

located in the Pacific Ocean, which are usually exposed only

to mid-latitude storms, have smaller discrepancies.

A closer look at time-series of measured Hs allows the

identification of possible causes for these larger discrepan-

cies between satellite-derived Hs100 and estimates made

with resampled buoy data in areas exposed to hurricanes.

Fig. 6 shows segments of hourly buoy measurements of Hs;

along with co-located resampled-buoy and satellite obser-

vations made at buoys 41002, 42001 and 42002. Fig. 6(a)

illustrates a case in which both satellite and buoy sampled

maximum waves associated with the event that became

knows as the ‘storm of the century’. This event developed

after wind fields from a hurricane and from an extratropical

storm collided, generating extreme winds and waves around

March 14th 1993 near NDBC buoy 42001.

Situations in which the highest of all significant wave

heights associated with an extreme event are captured fully

are relatively rare, because extreme events tend to be short-

lived and highly localized in a relatively small spatial

domain. Consequently, more often the most severe

conditions are missed altogether by buoys and/or satellite-

borne devices alike. An example of the latter in which

altimeter measurements missed the highest waves from a

severe sea-state event recorded by buoy data is shown in

Fig. 6(b). Peak waves recorded by NDBC buoy 42002 in

this event were generated during hurricane Gilbert’s

passage through the Gulf of Mexico on September 1988.

Note that when buoy data are resampled at the average

altimeter pass time the peak waves are also not recorded. In

Fig. 6(c) the reverse situation is illustrated. The highest

waves generated by hurricane Allison near NDBC buoy

42001 on June 1995 in the Gulf of Mexico, were well

captured in the altimeter data series and almost completely

missed by both hourly and resampled buoy data.

Other than the straightforward conclusion that satellite

observations undersample Hs relative to hourly buoy data,

as a consequence of the large time lags between passes

occurring from the satellite’s orbital cycle, Fig. 6 shows that

on some occasions the satellite captures intense storms that

are not recorded accurately in buoy data. This problem was

often intensified by increasing the buoy sampling interval to

match mean altimeter sampling intervals. As noted in

previous studies [9,26], the larger area swept by the orbiting

Fig. 5. Global plot of satellite pass densities in hours at 28 £ 28 mesh elements. The shaded values represent the average time (hours) between satellite passes.

Table 4

Estimates of IAHR (3PW) Hs100 made using buoy data co-located in time

with altimeter observations centered at each buoy site

Buoy Hs100 (m) IAHR/buoy NP C/R/T DB% DS%

41002 10.59 ^ 5.05 101 F/P/P 217.42 221.04

42001 5.82 ^ 1.47 126 F/P/F 235.88 229.17

42002 4.39 ^ 1.19 128 P/P/P 249.55 220.20

440044 10.86 ^ 2.80 115 P/P/P 216.11 216.81

46001 11.20 ^ 1.74 249 P/P/P 228.5 25.58

46002 10.21 ^ 2.10 118 F/P/P 235.55 20.34

46003 14.10 ^ 2.89 175 P/P/P 221.19 5.38

46005 10.62 ^ 3.11 139 F/P/P 229.47 212.63

46006 10.66 ^ 3.09 116 P/P/P 232.78 216.65

51001 7.14 ^ 1.51 111 F/P/P 238.16 214.26

lD%l 30.50 13.37

D% 230.50 212.29

The last two columns of this table indicate the bias of resampled buoy-

IAHR Hs100 to the target buoy-IAHR values ðDB%Þ and to the altimeter-

IAHR Hs100ðDS%Þ: A description of other associated parameters is given

in Tables 2 and 3.
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satellite is more effective than the single-point buoy

observations in capturing some storm events, in this special

case in which buoy and altimeter sampling rates are

comparable. This ‘compensation effect’ explains the larger

discrepancies of resampled buoy data seen in Table 4.

Although somewhat beneficial, the larger spatial

coverage is not enough to overcome storm undersampling

by the satellite-borne altimeter and its effects on

estimating Hs100: In other words: these results indicate

that the sampling rate is critical given the temporal and

spatial scales of orbital cycles from satellite missions

considered presently. Consequently, satellite-derived

Hs100 estimated using POT data and the 3PW distri-

bution are negatively biased relative to estimates made

from hourly buoy data. These roles are inverted by

resampling buoy data at times co-located with the times

of the satellite within a 28 £ 28 mesh element around the

buoy site. Most estimates of Hs100 made with resampled

buoy observations using POT data and the 3PW model

present a negative bias relative to altimeter-derived

IAHR/POT Hs100: This is a likely consequence of the

larger spatial coverage of satellite track relative to the

single-point buoy observation, as supported by Fig. 6.

The spatial compensation for time undersampling in

satellite observations seems less effective for the purposes

of estimating Hs100 in areas exposed to both extratropical

and tropical storms relative to areas where only extra-

tropical storms occur. There are at least two reasons for this.

One is that the difference between average and storm Hs

values in areas exposed only to extratropical storm events

Fig. 6. Time series of Hs measured during (a) the ‘storm of the century’ at buoy 42001, (b) hurricane Gilbert at buoy 42002 and (c) hurricane Allison near buoy

42001. In panel (a) both satellite and buoy made consistent samples of maximum waves associated with the event. Panel (b) shows a case in which the altimeter

missed the storm peak, whereas panel (c) shows a case in which buoy measurements underestimated significantly the maximum waves sampled by the

altimeter. Hourly buoy data appear as continuous lines; symbols represent median (O) and maximum (L) altimeter values and buoy values resampled at the

mean altimeter track time (W).
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is not as large as this relative difference when areas exposed

to tropical storms or hurricanes are considered. Conse-

quently, the undersampling of storms has a relatively larger

impact in areas exposed to hurricanes.

The second reason for a greater effectiveness of this

spatial compensation in areas exposed only to extratropical

storms has to do with the relatively larger size of these

storms. Typical sizes of wave-generating wind fields in

extratropical storms are of the order of magnitude of the

28 £ 28 mesh elements. Hence, the probability that both co-

located buoy and satellite data will capture the same event is

high. Also, since the satellite will sample across a larger

area, the chances that it will capture the sector with stronger

winds and higher waves is also greater. Therefore, satellite-

derived Hs100 will tend to be less-biased than estimates

made with resampled buoy data, as seen in Table 4.

This effect is even greater in areas exposed to tropical

storms or hurricanes, which have sizes typically of the order

of tens of kilometers. In this case, not only will the satellite

track have a larger chance of recording the highest waves

sector, but it will capture storms that are completely missed

not only by the point-resampled buoy data, but even by

hourly buoy records, as seen in Fig. 6(c). This explains why

the estimates of Hs100 made with resampled buoy data

discussed previously present a larger negative bias relative

to hourly-buoy-derived Hs100 than the altimeter-derived

estimates of Hs100:

The empirical evidence presented in this section

indicates that the superior spatial coverage of satellite

measurements relative to point in situ observations partly

compensates for time undersampling resulting from proper-

ties inherent to satellite orbital cycles. Although this

provides some insight into the nature of measurements

made by satellite altimeters, from the practical point of

view, temporal undersampling is still a predominant source

of error for the purposes of calculating Hs100 using the POT

method. This leads to POT-based estimates of extreme

values that are generally much smaller than those obtained

using hourly buoy data. A potential alternative to reduce this

effect by using data from larger, 48 £ 48 mesh elements is

examined in the next section.

5.1.2. Altimeter data from 48 £ 48 mesh elements

The effect of increasing the satellite database mesh

element size to areas covering 48 £ 48 in latitude and

longitude is illustrated in Fig. 4(b), which presents a

scatterplot of monthly altimeter-derived Hs maxima against

buoy-derived monthly maxima. A comparison of this figure

with Fig. 4(a) suggests that these larger mesh elements

provide series of altimeter-derived monthly Hs maxima that

are more consistent with buoy data.

We may speculate that estimates of Hs100 with reduced

bias may also be obtained by using larger 48 £ 48 mesh

elements. This approach, however, may have a drawback,

since the expanded area relative to 28 £ 28 mesh elements

may be so large that observations belonging to areas with

different wave climatology are combined into time series

that should be representative of the same point. This, in turn,

would compromise the statistical reliability of estimated

Hs100: To examine more closely these issues we compare

estimates of Hs100 made from altimeter data extracted from

48 £ 48 mesh elements with the buoy-derived IAHR Hs100

from Table 2. Statistical reliability of these new estimates of

Hs100 is measured in terms of the three goodness-of-fit tests

previously defined. Results of this comparison are presented

in Table 5.

A comparison between Tables 3 and 5 reveals that the

larger mesh elements had little overall impact on estimates

of Hs100 made using IDM data and the FT1 distribution,

except for a poorer performance of 48 £ 48 elements in terms

of goodness-of-fit scores. On the other hand, the bias of

estimates made with POT data and the 3PW distribution was

significantly reduced, whereas the statistical reliability of

these new estimates remained unchanged. This improve-

ment in estimates of Hs100 made with POT data is illustrated

in Fig. 7, which should be compared to Fig. 2(a). FT1 model

Table 5

Estimates of Hs100 made using 48 £ 48 altimeter data

Site Hs100 (m) IAHR/alt NP C/R/T D% Hs100 (m) FT1/alt NI C/R/T D% Hs100 (m) WFT1/alt NI C/R/T D%

41002 15.81 ^ 5.53 104 F/P/P 23.20 10.74 ^ 0.97 970 F/P/F 216.33 12.21 ^ 0.97 970 F/P/F 24.88

42001 8.60 ^ 3.42 125 F/P/F 25.26 8.07 ^ 0.62 811 F/P/F 211.10 8.20 ^ 0.62 811 F/P/F 29.65

42002 7.04 ^ 1.24 116 P/P/P 219.02 8.09 ^ 0.60 882 F/P/F 27.00 8.21 ^ 0.60 882 F/P/P 25.61

44004 14.95 ^ 2.96 123 P/P/P 15.53 13.20 ^ 1.17 1069 F/F/F 1.96 14.23 ^ 1.17 1069 F/F/F 9.97

46001 13.85 ^ 2.42 234 F/P/P 212.05 15.87 ^ 1.34 1779 F/P/F 0.81 15.75 ^ 1.34 1779 F/P/F 0.04

46002 10.83 ^ 1.49 125 P/P/P 231.66 14.91 ^ 1.14 1269 F/P/F 25.89 15.21 ^ 1.14 1269 F/P/F 24.01

46003 15.00 ^ 2.33 185 P/P/P 216.13 17.82 ^ 1.44 1528 F/P/P 20.36 17.78 ^ 1.44 1528 F/P/F 20.61

46005 13.46 ^ 2.27 138 F/P/P 210.56 16.05 ^ 1.24 1471 F/P/F 6.68 16.25 ^ 1.24 1471 F/P/F 7.97

46006 13.02 ^ 2.06 129 P/P/P 27.91 16.77 ^ 1.32 1177 F/P/F 5.68 17.18 ^ 1.32 1177 F/P/F 8.32

51001 9.41 ^ 1.44 125 F/P/P 218.51 10.05 ^ 0.72 1212 P/P/P 212.93 10.30 ^ 0.72 1213 F/P/P 210.82

Hbken 13.74 ^ 2.25 141 P/P/P 28.11 16.89 ^ 1.43 446 F/P/P 12.98 17.55 ^ 1.43 446 F/P/F 17.36

lD%l 16.18 7.43 7.20

D% 29.13 22.32 0.73

A description of other indicated parameters is given in Tables 2 and 3.
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estimates were not included in Fig. 7 as they were nearly

identical to those plotted in Fig. 2(b) and (c).

Parameters of the FT1 model are estimated to provide a

best fit to IDM data, i.e. the entire collection of

measurements made at a particular location. An initial

assessment of how the properties of IDM data from 28 £ 28

and 48 £ 48 mesh elements differ may be made by testing

their statistical equivalence. Using a two-sample t-test [22]

we conclude that the two samples are statistically equivalent

at a 90% confidence level. This equivalence is illustrated in

Fig. 8, which shows a scatter-plot of monthly mean Hs

derived from 28 £ 28 and 48 £ 48 mesh elements.

Tables 3 and 5 reveal that estimates of Hs100 made using

POT data extracted from 48 £ 48 mesh elements are, in all

cases, higher than Hs100 computed using 28 £ 28 data. As

discussed previously, Fig. 4 indicates that increasing the

mesh-element size also increases the chances of the satellite

track encountering a larger number of storms and/or storm

sectors of stronger winds not ‘seen’ by 28 £ 28 mesh

elements. Consequently, estimates of Hs100 made using

POT data from 48 £ 48 mesh elements are relatively higher

and closer to the target buoy-derived IAHR/POT Hs100:

Results presented in this section indicate that an increase

in the mesh-element size from 28 £ 28 sectors to 48 £ 48 may

be beneficial to the estimation of Hs100 using POT data and

the 3PW distribution. However, the increased mesh-element

size had little or no impact on estimates of Hs100 made

using IDM data and the FT1 model. Considering the

positive impact to the former, our global analysis of Hs100;

presented below, is based on outcomes from databases

composed of both 28 £ 28 and 48 £ 48 mesh elements.

Before advancing that far, we examine next the effects of the

‘seasonal’ signal in the altimeter data, on the estimates of

Hs100:

5.1.3. Weighted FT1

Seasonal fluctuations in the number of satellite passes per

month (monthly measurement density) within mesh

elements of the altimeter database may affect the estimates

of Hs100; particularly when IDM data are used. These

seasonal fluctuations result from a combination of factors

inherent to satellite missions, such as periods of malfunc-

tioning or maneuvering and, more importantly, the time of

year in which these satellite missions were initiated and

concluded. Coincidentally, Geosat observations became

available on December 1986, while ERS-1 data were

collected from August 1991 and TOPEX/Poseidon

measurements were obtained from November 1992. The

combination of the three data sets resulted in a greater

proportion of observations being made during the northern

hemisphere winter. This is illustrated in Table 6, which

shows the monthly measurement densities of the altimeter

database at selected buoys sites.

The effects of non-uniform distribution of passes may be

reduced by extending the database to include earlier Geosat

data recently made available and ERS-2, TOPEX/Poseidon

and data from other altimeter-carrying satellites collected

since 1995. However, this larger database is not yet

available. Therefore, we assess the impact of this limitation

to estimates of Hs100 made using the combined database

presently available using a simple but effective approach to

reduce the non-uniform monthly measurement density.

Following Carter [3], this approach consisted of recalculat-

ing the parameters of the FT1 distribution using a weighted

method of moments (henceforth WFT1), which is based on

the following two steps:

1. Eliminate the non-uniform distribution by recomputing

the sample mean and variance, as follows:

^̂m ¼

P
pi=ni

12
ð3Þ

^̂s ¼

P
qi=ni

12
2 ^̂m2

where p is the sum of Hs; q is the sum of squares of Hs

and n is the number of observations within each month

i ¼ ½1; 12�:

2. Recalculate af and bf ; the location and scale parameters

of the FT1 distribution (Eq. (2)), using the following

Fig. 7. Estimates of Hs100 made with data from 48 £ 48 mesh elements. Shown are values computed using buoy data and the IAHR recommended practice

(squares) with associated 95% confidence intervals (shaded regions) and estimates of Hs100 made with altimeter data using the IAHR recommended practice

(triangles).

Fig. 8. Scatterplot of monthly mean satellite observations of Hs comparing

data from 28 £ 28 and 48 £ 48 mesh elements.
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expressions, which equate the weighted estimates of the

sample mean and variance to the population mean and

variance of the FT1 model:

^̂m ¼ af þ gbf

^̂s2 ¼
p2b2

f

6
;

where g ¼ 0:5772 is the Euler number.

Estimates of Hs100 made with the WFT1 using 28 £ 28

data are presented in Table 3. Fig. 2(c) shows these

estimates plotted against the buoy-derived IAHR Hs100:

The WFT1 provides estimates of Hs100 that are very close

to buoy-derived Hs100 (the mean absolute bias was 7.39%),

repeating the agreement obtained with estimates of Hs100

made with the FT1 distribution with unweighted parameters

(see Table 3). Also, in the majority of locations altimeter

estimates again fell within the 95% confidence limits of

buoy-derived Hs100: We conclude that both weighted and

unweighted FT1 models produce estimates of Hs100 that are

very similar, which confirms results previously reported by

Carter [3].

Tables 3 and 5 also indicate the results of goodness-of-fit

for WFT1 Hs100 based on the same tests applied to the

unweighted FT1 estimates. A noticeable reduction in the

number of pass levels relative to the latter is likely

associated with the fact that the WFT1 model is being

compared to uncorrected IDM data. Since this IDM data

remains contaminated by the seasonal bias eliminated in the

WFT1 model, the resulting weighted model distribution will

fit less-well the biased empirical distribution when com-

pared to the performance of the unweighted FT1 model.

Consequently, whenever the WFT1 model is used, the

goodness-of-fit tests chosen become useless as a statistical

inference tool.

It is, thus, fortunate that the unweighted FT1 model

provides estimates of Hs100 that are coherent with the

unbiased WFT1 model, as they are associated with

statistical models that can be assessed properly in terms of

goodness-of-fit. Assuming that this coherency may be

extrapolated for other sites around the globe, the next

section presents an assessment of global estimates of Hs100

made with the FT1 model using the complete combined

altimeter database, with data from both 28 £ 28 and 48 £ 48

mesh elements. Goodness-of-fit tests provide a statistical

basis for comparison of these estimates with global values

of Hs100 computed using POT data and the 3PW

distribution, which are also presented below.

5.2. Global estimates of Hs100

In this section we present the results of a global analysis

of extreme wave height using the database of combined

Geosat, Topex/Poseidon and ERS-1 altimeter measure-

ments of Young [29]. As mentioned above, the two

techniques used in our analysis are the method rec-

ommended by the IAHR, consisting of using POT data

and the 3PW model, and an approach based on the FT1

model fitted to IDM data. The choice of these two methods

for our analysis of global extreme Hs is based on the results

and discussions presented above.

In brief, the IAHR method was chosen because it has

been proposed and used as a standard for the analysis of

extremes computed using buoy data. Although our vali-

dation analysis indicated its application to altimeter data

does not provide estimates of Hs100 consistent with buoy-

derived extremes, it is interesting to assess its behavior on a

global basis in terms of spatial coherency and statistical

reliability. On the other hand, the FT1 model applied to the

altimeter database delivers estimates of Hs100 that are in

very good agreement with buoy-derived estimates, but have

a relatively poor statistical reliability in terms of goodness-

of-fit tests. Thus, it is also interesting to examine its

behavior on a global basis.

Considering the validation analysis presented above,

estimates of Hs100 made using POT data and the 3PW

model were made with satellite observations from both

28 £ 28 and 48 £ 48 mesh elements. Global estimates of

Hs100 made using IDM data and the FT1 model were also

made with observations at the 28 £ 28 and 48 £ 48

resolutions. The statistical reliability of all global estimates

Table 6

Density of satellite passes throughout the year at each buoy location

Buoy Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

41002 35 37 38 39 38 29 28 38 35 42 51 54

42001 51 45 46 38 26 24 18 21 24 35 38 46

42002 55 47 45 41 36 26 16 26 20 31 40 42

44004 62 55 65 50 48 33 34 39 35 38 52 64

46001 70 63 67 82 76 63 65 75 57 66 66 80

46002 59 63 63 59 57 44 44 58 44 52 61 67

46003 87 84 83 81 73 58 60 65 47 60 70 74

46005 67 71 54 67 61 50 43 72 61 60 73 78

46006 43 40 38 49 52 37 41 54 46 50 53 58

51001 43 34 44 4‘5 55 39 51 63 43 51 59 55

Hbken 38 43 51 45 20 12 8 10 5 6 15 27
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of Hs100 is assessed briefly in terms of the three goodness-

of-fit tests described previously. To assist in our interpre-

tation, the global ocean is divided in six areas as illustrated

in Fig. 9.

5.2.1. POT/3PW approach

Global values of Hs100 computed using POT data from

28 £ 28 mesh-elements and the 3PW model are shown in

Fig. 10. The most striking feature of this figure is a high level

of spatial variability between adjacent mesh elements,

which contrasts with a smooth spatial distribution of Hs100

that would be expected from a purely intuitive viewpoint.

Fig. 11 shows the distribution of associated goodness-of-fit

scores, which are organized into four categories based on

passes or failures at the 95% confidence level of the three

statistical test previously defined. These categories are: pass

three tests, pass any two of three tests, fail any two tests and

fail all tests.

Table 7 provides the percentage of 28 £ 28 mesh

elements falling into the four score categories for

goodness-of-fit mentioned above. Results are indicated

for regions identified in Fig. 9. Confirming the relatively

good results of the POT/3PW approach described in

Section 4 in terms of the goodness-of-fit tests chosen for

this study, the 3PW model seems to fit well the satellite-

derived POT data in most areas, as seen in the global

distribution of goodness-of-fit scores shown in Fig. 11.

Table 7 indicates that the percentage of mesh elements in

which the 3PW model fit to POT data passed at least two or

all three tests was over 80% in all areas. This performance

was particularly good within the Indian Ocean, the Northern

and Tropical Pacific and the Northern Atlantic Oceans,

where the model fit passed at least two or all three tests in

90% of the cases. Slightly poorer performance was recorded

in the Southern Ocean and in the Tropical Atlantic Ocean,

where the percentage of points passing two or three tests

was approximately 85%.

The success of the 3PW model in fitting altimeter-

derived POT data in terms of the chosen goodness-of-fit

tests is encouraging. However, a successful fit of a statistical

Fig. 9. Representative areas of the world’s oceans used for analysis. I: Northern Pacific Ocean, II: Northern Atlantic Ocean, III: Indian Ocean, IV: Tropical

Pacific Ocean, V: Tropical Atlantic Ocean, VI: Southern Ocean.

Fig. 10. Global values of Hs100 computed using POT data from 28 £ 28 mesh-elements and the 3PW model.
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model to a chosen dataset does not necessarily represent a

successful estimation of the desired parameter, as demon-

strated in the validation of altimeter-derived Hs100

computed using the POT/3PW approach presented in

Section 4. These validated altimeter-derived values of

Hs100 were systematically lower than the associated buoy-

derived target values. Thus, it is reasonable to assume that

the altimeter-based global Hs100 may also be under-

estimations of the true values. A possible strategy to verify

this assumption is to simulate the ‘flight’ of a satellite

collecting data from long-term simulations of wave fields

generated by wind-wave models, following the guidelines

set by Cooper and Forristall [9], but using more sophisti-

cated wind and wave hindcast techniques instead of simple

parametric models. This is left for a future study.

A reason for greater concern is the high short-scale

spatial variability of Hs100 (of the order of the 28 £ 28

mesh-element size) seen in Fig. 10. We examine a potential

way of overcoming this intuitively-incorrect spatial distri-

bution of Hs100 by using POT data extracted from larger,

48 £ 48 mesh elements. Results presented in Section 4

indicated that this may also be a potential way of obtaining

estimated Hs100 in closer agreement with those obtained

using in situ data. Results are shown in Fig. 12. Although the

short-scale spatial variability of Hs100 is significantly

reduced compared to Fig. 10, the result is still counter-

intuitive. Further, Table 7 indicates that the use of data from

48 £ 48 mesh elements leads to a systematic increase in the

percentage of locations where the 3PW fails to fit well the

POT data.

Table 7 indicates that the goodness-of-fit remains fairly

high (above 80% of locations passing two or three tests) in

the Southern Ocean and the northern latitudes of the Pacific

and Atlantic Oceans, although some reduction in perform-

ance is observed. On the other hand, the tropical regions of

the Pacific and Atlantic Oceans and the Indian Ocean show a

substantial decrease in performance, which is also observed

in the overall scores for the entire globe.

The poorer statistical performance due to the use of

larger mesh elements may be a consequence of using data

from a region that is so large, that it includes observations

from areas with different wave climatology. According to

Tournadre [5], it is not possible to determine precisely the

optimal sizes of areas within which the wave climatology

Fig. 11. Goodness of fit scores associated with the values of Hs100 of Fig. 10. The shading levels reflect the number of tests passed/failed at the 95% confidence

level.

Table 7

Percentage of mesh elements satisfying each of the four categories used for assessing goodness-of-fit POT data to the 3PW model

Region 28 £ 28 48 £ 48

Pass all Pass 2 Fail 2 Fail all Pass all Pass 2 Fail 2 Fail all

SO 53.2 29.5 14.9 2.4 49.0 29.1 19.1 2.8

IO 59.4 32.3 5.9 2.4 37.0 29.9 25.8 7.3

NP 75.3 19.4 4.7 0.6 63.5 25.4 9.6 1.5

TP 59.3 31.2 6.3 3.2 36.4 30.5 23.9 9.2

NA 69.8 24.5 5.4 0.3 58.5 31.4 9.1 1.0

TA 53.6 30.8 12.6 3.0 35.9 30.1 26.7 7.3

ALL 59.5 28.9 9.3 2.3 45.3 29.3 20.2 5.2

Results for 28 £ 28 and 48 £ 48 mesh elements are indicated. Regions are defined according to Fig. 9 and named as follows: Southern Ocean (SO), Indian

Ocean (IO), Northern Pacific (NP), Tropical Pacific (TP), Northern Atlantic (NA), Tropical Atlantic (TP) and overall or global (ALL).
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could be considered homogeneous. On a first approxi-

mation, however, these areas could be related to circular

regions with diameters consistent with the spatial scale of

decorrelation for observations of Hs. Based on the results of

Tournadre [5], these would be approximately 200 km for the

equator and 60 km at higher latitudes, which lead to regions

with sizes of the same order of magnitude of 28 £ 28 mesh

elements, but much smaller than 48 £ 48 areas.

5.2.2. IDM/FT1 approach

Fig. 13 shows the resulting global values of Hs100

computed using IDM data from 28 £ 28 mesh-elements and

the FT1 model. In contrast to the marked short-scale spatial

variability seen in Fig. 10, the global distribution of IDM/

FT1 Hs100 is relatively smooth as would be expected from

an intuitive perspective. Goodness-of-fit scores associated

with the estimates shown in Fig. 13 are shown in Fig. 14.

These scores are organized into four categories based on

passes or failures at the 95% confidence level of the three

statistical tests previously defined (see above).

The percentages of 28 £ 28 mesh elements falling into the

four score categories for goodness-of-fit (pass three tests,

pass any two of three tests, fail any two tests and fail all

tests) are summarized in Table 8 within the regions

identified in Fig. 9. This table indicates that the IDM data/

FT1 model combination provides estimates of Hs100

extrapolated from a statistical model that fails to fit the

IDM data in nearly 50% of locations around the globe.

Fig. 14 illustrates the global distribution of goodness-of-fit

scores associated with the values listed in Table 8.

Despite a generally disappointing performance on a

global basis, the IDM/FT1 approach performs very well in

terms of goodness-of-fit within the Southern Ocean. The

performance is acceptable in most locations in the Tropical

Atlantic and Pacific Ocean regions. In northern latitudes of

the Pacific and Atlantic the goodness of fit of the IDM/FT1

Fig. 12. Global vales of Hs100 computed using POT data from 48 £ 48 mesh-elements and the 3PW model.

Fig. 13. Global values of Hs100 computed using IDM data from 28 £ 28 mesh-elements and the FT1 model.
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approach is poor, with locations failing two or three tests in

approximately 70% of the cases. The worst goodness-of-fit

scores occur in the Indian Ocean, where failure in two or

three tests occur in nearly 80% of locations. Within the

Indian Ocean region, the Arabian Sea is identified as an area

where the IDM/FT1 approach fails all three tests in more

than 90% of the locations.

The results of our global analysis once more confirm the

validation of satellite-derived Hs100 presented in Section 4,

where the goodness-of-fit of long-term extremes passed two

or three tests in nearly 50% of the validation sites. We

should, however, bear in mind that despite the poor

performance in terms of goodness-of-fit, the IDM/FT1

approach provided the satellite-derived estimates of Hs100

best matching the target buoy-derived POT/3PW Hs100

(Section 4). Assuming that these results may be extrapolated

to other locations around the globe and considering that the

POT/3PW estimates of Hs100 from either 28 £ 28 or 48 £ 48

generally underestimated the target buoy-derived values, we

conclude that the IDM/FT1 approach would be the best

choice for determining extreme values of Hs100 computed

using satellite altimeter measurements of Hs:

Our validation analysis showed that IDM/FT1 Hs100

computed using data from 28 £ 28 or 48 £ 48 mesh

elements are nearly identical. Again, these outcomes

were confirmed by a comparison of global Hs100 at both

these resolutions. Although the global distribution of

values from 48 £ 48 data was slightly smoother than in

Fig. 13, the bias was negligible at all locations.

Consequently, a global plot of these estimates is not

shown.

Goodness-of-fit statistics for Hs100 estimated using the

IDM/FT1 approach and 48 £ 48 data within the regions

identified in Fig. 9 are given in Table 8. Repeating the trend

identified for estimates made with the POT/3PW approach,

the larger mesh-element size caused a general relative

degradation of goodness-of-fit which was even greater than

that of the POT/3PW analysis. We believe that this may

have resulted from a combination of using data from a

region including areas with slightly different wave clima-

tology with the fact that for larger areas the number of IDM

points increases accordingly, inducing a decrease of

statistical tolerance for differences between the model and

empirical CDFs.

Fig. 14. Goodness of fit scores associated with the values of Hs100 of Fig. 13. The shading levels reflect the number of tests passed/failed at the 95% confidence

level.

Table 8

Percentage of mesh elements satisfying each of the four categories used for assessing goodness-of-fit of IDM data to the FT1 model

Region 28 £ 28 48 £ 48

Pass all Pass 2 Fail 2 Fail all Pass all Pass 2 Fail 2 Fail all

SO 37.6 25.0 35.6 1.8 18.0 16.8 58.3 6.9

IO 11.3 13.1 65.7 9.9 4.5 5.7 67.5 22.1

NP 9.3 21.2 65.8 3.6 3.1 6.9 76.2 13.9

TP 20.4 18.5 53.2 7.9 8.3 7.6 63.9 20.2

NA 10.5 24.4 62.6 2.5 3.2 6.5 76.2 14.1

TA 25.5 20.8 46.5 6.6 10.0 12.7 60.3 17.0

ALL 22.9 20.5 50.9 5.7 9.8 15.8 68.5 5.9

Results for 28 £ 28 and 48 £ 48 mesh elements are indicated. Regions are defined according to Fig. 9 and named as follows: Southern Ocean (SO), Indian

Ocean (IO), Northern Pacific (NP), Tropical Pacific (TP), Northern Atlantic (NA), Tropical Atlantic (TP) and overall or global (ALL).
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5.2.3. Climatic properties of Extreme Hs

Despite differences between global Hs100 fields shown

in Figs. 12 and 13, these figures also show some features that

are robust enough to allow a qualitative description of a

global climatology of extremes. Consistent with other

descriptions of the general properties of the global wave

climate [1,3,4,30], among others), the first and most striking

feature is the zonal (latitudinal) variation of maxima. Three

‘belts’ are clearly identified in both hemispheres, as follows:

† A higher latitude region above 408 of latitude toward the

poles, where values of Hs100 are typically large;

† An equatorial belt located approximately within the

region extending from 208S to 208N, dominated by low

Hs100; and

† A subtropical or mid-latitude transitional zone between

20 and 408.

The largest values of computed Hs100; ranging from

approximately 15 to 25 m, occur in the high latitude zone,

where intense winds develop in association with mid-

latitude storm systems or long westerly fetches. Except in

areas exposed to hurricanes, the equatorial zone is

dominated by persistent trade winds that are, however,

not intense enough to generate severe sea states. Conse-

quently, swell generated in higher latitudes are the

predominant wave systems within the equatorial belt,

which results in Hs100 ranging typically from approxi-

mately 5 to 10 m. Subtropical regions form a transitional

belt dominated by large atmospheric gyres surrounding

semi-permanent high atmospheric pressure areas. Severe

sea-states in these regions are usually associated with the

propagation of cold fronts and/or the penetration of storms

formed in higher latitudes. Values of Hs100 range typically

from 8 to 14 m.

However well defined, these zonal belts do not allow the

highlighting of some well-marked regional characteristics

that are evident after a closer examination of Figs. 12 and

13. A more satisfactory approach is provided by Young [4],

who describes regional variations of wind and wave climate

over the global ocean within seven climatic zones: northern

latitudes, northern sub-tropics, equatorial regions, southern

sub-tropics, southern latitudes, Eastern Pacific and Arabian

Sea. Excluding the Eastern Pacific region, the remaining

zones are also useful for characterizing the distribution of

Hs100 on a synoptic scale.

Within the northern latitude region, both North Atlantic

and North Pacific basins present similar extreme Hs

conditions registering the highest Hs100 on the globe.

However, larger areas with Hs100 in excess of 20 m occur

within the North Atlantic basin, particularly near the North

Sea, suggesting this region is the roughest on the globe.

Comparable in roughness to the North Atlantic basin are the

southern latitudes, where high Hs100 values are found in the

Indian-Southern basin within the ‘triple-A triangle’ formed

by Africa, Australia and Antarctica.

Young [4] considered global mean monthly conditions

and argued that sea-states found in the sub-tropical regions,

particularly within the Indian, the Pacific and the South

Atlantic Oceans, are largely associated with the penetration

of swell generated by severe storms in the Southern Ocean

and at higher northern latitudes. A milder wave climate in

the relatively narrow North Atlantic basin may result from

the distribution of land masses that blocks the penetration of

swell from higher latitudes.

The extreme conditions represented by the values of

Hs100 in the present analysis are more likely associated

with local storms, rather than remotely generated swell. The

mean monthly global distributions of Young [4] showed

‘tongues’ of wave height extending from the high latitude

storm regions into the sub-tropics and tropics. These

features are not evident in the Hs100 fields of Fig. 13.

Mean monthly statistics also reveal a more globally uniform

wave field than does Hs100: The results of Young [4]

showed that, typically, minimum and maximum mean

monthly Hs ranged between 1.5 and 5.5 m, a variation of a

factor of approximately 3.7. In contrast, Hs100 values vary

between 5 and 25 m, a factor of 5.0. Again, these results

support the conclusion that mean global values of Hs are

largely determined by high latitude storms and the resulting

swell propagation, whereas extreme values are largely

determined by local storm events.

It should be remembered that the, already highlighted,

deficiencies in sampling density of the satellites will have a

significant impact on tropical and sub-tropical regions,

where tropical cyclones are a dominant forcing event.

In these regions, values of Hs100 are likely to be

underestimated.

Values of Hs100 seem unusually high within the Arabian

Sea, as seen clearly in both Figs. 12 and 13. This region

owes its distinctive climatic characteristics to the Asian

monsoon. According to Young [4], during the summer

monsoon a strong south-westerly jet develops close to the

African coast with monthly-mean surface winds exceeding

15 ms21, which generate severe sea-states associated with

values of Hs100 exceeding 14 m.

6. Discussion

The study of Cooper and Forristall [9] concluded that:

(A) combining satellite measurements over a radius

between 100 and 300 km around the site of interest yields

equivalent information to hourly (buoy) measurements at

that site, and (B) 100-year (extreme) wave heights can be

estimated from satellite data using exactly the same CDF

techniques that are used for (buoy) measurements at a site.

Considering the aim of determining long-term extreme

values of Hs; the present results, which consider not

synthetic but actual satellite and buoy measurements,

indicate that statement ‘A’ may be true or false depending

on the chosen approach. In the case of the IDM/FT1
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combination, which is very similar to the approach for

estimating extremes followed by Cooper and Forristall [9],

then this result is valid. However, when the POT/3PW

approach is considered it is no longer applicable. In other

words, our results indicate that although the satellite may

sample Hs from a similar number of storms detected by an in

situ device, as indicated by Cooper and Forristall [9] and

also by our results when using the IDM/FT1 approach, the

satellite database seems to have missed either a larger

number of more severe sea states or their periods of stronger

intensity, which are ultimately associated with the gener-

ation of extremes. This might have led to systematically

underestimated satellite-derived Hs100 relative to buoy-

derived values.

Our results also show that statement ‘B’ is applicable

exclusively to the IDM/FT1 approach and, in this sense, the

results of Cooper and Forristall [9] are totally supported by

our analysis. However, they refrain from using POT data

claiming that ‘it is not yet clear how to apply it to satellite

data’, since this method depends on knowing a priori the

number of storms per year at a given point of interest. In

using a deterministic approach to determine yearly storm

rates at given oceanic sites, our study extends the analysis of

Cooper and Forristall [9] by indicating that undersampling

of storm peaks makes approaches using satellite-derived

POT data invalid for the purposes of estimating long-term

extreme Hs:

The results presented above support the idea that unless

the number of satellites orbiting the earth and carrying wave

measuring devices is greatly increased, the best approach

for computing long-term extremes from satellite data is to

evaluate the accuracy and statistical reliability of methods

using IDM data. A next step in that direction, which was not

pursued in this study, would be to use statistical models

other than the FT1 distribution with IDM data.

The conceptual framework justifying the use of IDM

data and seeking more reliable statistical distributions fitting

the entire observational database may also be extended to

the determination of extreme Hs using wind-wave model

data. Recent studies of the skill of commonly used

operational wind-wave models [2,23,24,31,32] have

revealed excellent performance of model outcomes in

reproducing near-average sea-state conditions, but signifi-

cantly poor performance in simulating storm peak Hs in

severe forcing conditions. In this sense, Hs data from wind-

wave model hindcasts have similar general properties to

satellite altimeter measurements. Thus, we may expect that

using IDM data to estimate long-term extreme Hs would be

a potentially useful path to be followed.

There are many other relevant contributions to the field

of investigation concerning the determination of long-term

extreme Hs: One important issue that warrants further

discussion in the light of the results presented above refers

to the time-length in consecutive years needed for producing

a statistically-sound time series of Hs: Results of Panchang

et al. [21] indicate that values estimated from time series 5

or 14 years long are nearly identical. This result is also

supported by our validation analysis presented in Section 4,

where nearly identical values of Hs100 were computed from

buoy data truncated at the combined satellite database

measurement period (nearly 10 years) and the full-length of

in situ data (generally over 20 years).

An extensive analysis of this topic is presented in

Labeyrie [33], who shows that parameters from models used

in extreme analysis vary by much less than 10% when

determined from 10- or 100-year-long in situ data sets. He

suggests that ‘the uncertainty due to the extrapolation step

becomes quite negligible; the main difficulty is to establish

the limiting law properly’. We conclude this discussion by

stressing that our results strongly-support this statement, as

these results indicate, in agreement with the final con-

clusions of Labeyrie [33], that non-standard statistical

procedures should be developed for assessing practical

approaches for computing long-term extreme wave heights

and the associated statistical reliability, given the present

limitation inherent to satellite altimeter data.

7. Concluding remarks

The present analysis has considered a 10-year combined

database of satellite altimeter observations of Hs: This

analysis has shown that such data can be used to obtain

reasonable estimates of extreme wave conditions, such as

Hs100:

The following conclusions can be drawn:

1. With only a single satellite operational at any one time,

the sampling density is such, that not all extreme events

will be sampled. Therefore, methods such as POT, which

require accurate observations of extremes, will result in

an underestimation of Hs100;

2. Methods which use all observed data to estimate

extremes, such as IDM, will yield more reliable results

in cases where Hs has been underestimated;

3. If IDM is to be used, it is essential that a statistical

extrapolation CDF can be fitted to the IDM data and still

yield results applicable to extremes. That is, the CDF

must not only fit the body of the probability data

accurately, but also, critically, the extreme tail;

4. Comparisons with buoy data indicate that IDM data

extrapolated using the Fisher-Tippet type I distribution

yields acceptable results. There is, however, scope to

investigate more appropriate distributions;

5. In order to use satellite data for the prediction of

extremes, it is necessary to bin all data from satellite

passes through a region around the point of interest. The

present results indicate that a square of size 28 £ 28 gives

acceptable results for this purpose. Larger 48 £ 48

squares seem to be so large that they may include data

from regions of different climatology;

6. Consistent with previous studies, our results indicate

that a satellite database of 10 years duration seems
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sufficiently long to obtain consistent extreme value

estimates, given the appropriate methodology is chosen.

7. The conceptual framework for estimating extreme Hs

from altimeter observations using the FT1 model, in

association with IDM data, may also be useful for

estimating extremes from wave model data.
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