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Abstract. We study the well-posedness of the initial value problem for a
wide class of singular evolution equations. We prove a general well-posedness

theorem under three assumptions easy to check: the first controls the singular

part of the equation, the second the behavior of the nonlinearities, and the
third one assumes that an energy estimate can be found for the linearized

system. We allow losses of derivatives in this energy estimate and therefore

construct a solution by a Nash-Moser iterative scheme. As an application
to this general theorem, we prove the well-posedness of the Serre and Green-

Naghdi equation and discuss the problem of their validity as asymptotic models

for the water-waves equations.

1. Introduction

1.1. General setting. We investigate in this paper the local in time well-posedness
of singular evolution equations of the form

(1)

 ∂tu
ε +

1
ε
Lε(t)uε + Fε[t, uε] = hε

uε
|t=0

= uε
0,

where ε ∈ (0, ε0) is a parameter, Lε(t) is a linear operator, while Fε[t, ·] is nonlinear.
Under appropriate assumptions, we prove that the initial value problems (IVP)
(1)0<ε<ε0 admit a solution on a time interval [0, T ], with T > 0 independent of ε.

Such a result is known in the case of quasilinear symmetric hyperbolic systems,
and provided that the linear (and singular) part 1

εL
ε(t) is, say, a constant coefficient

anti-adjoint differential operator (see e.g. [19] for the case of classical symmetric
system, and [6] for an extension of these results).
In the quasilinear case for instance, an essential step is the study of the IVP associ-
ated to the linearization of (1) around any reference function u belonging to some
functional space X: if a solution v to this IVP can be found in X, and if an energy
estimate controls the norm of v in terms of the norm of u, then a solution to (1)
can be constructed by a standard Picard iterative scheme.
Our goal here is to investigate situations where this general approach fails. In
particular, it sometimes happens that the energy estimate associated to the lin-
earized problem only controls v in a space strictly larger than X; when such a loss
of information occurs, the standard Picard iterative scheme cannot converge. It is
however possible, under certain assumptions, to use the iterative scheme developed
by Nash and Moser and used for the first time to solve the embedding problem for
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Riemannian manifolds [15]. There exists now an extensive literature (e.g. [7, 1])
showing that the technique of Nash and Moser can be used to prove an abstract
implicit function theorem.
The implementation of a Nash-Moser iterative scheme is however very technical,
and is only used as a last recourse to solve nonlinear evolution equations, though
some recent works show that it is a useful tool (e.g. [16, 17, 14, 13, 10, 8]). We
develop here a Nash-Moser theorem specific to the general class of IVP (1), which al-
lows us to greatly simplify the general theory (at the cost, sometimes, of optimality
– see also [18] for a simplified general Nash-Moser implicit function theorem). The
interest of these simplifications is twofold: i) we can state a general well-posedness
theorem for (1) under three assumptions easy to check on Lε(t), Fε and the lin-
earization of (1); ii) we can also handle the presence in the equation of parameters
and singular terms. We also show how these results can be used for the justification
of asymptotic systems.
As an illustration, we solve the Serre and Green-Naghdi equations which are two
of the most widely used models in coastal oceanography ([4, 5, 3] and, for instance,
[20, 9]). We also address the problem of the relevance of these models as asymptotic
models for the exact water-waves equations.

1.2. Organization of the paper. We start by giving the three assumptions of
our general well-posedness theorem for (1) in Section 1.4. Section 2 is devoted to
the main theorem: it is stated in Section 2.1 and proved in Sections 2.2 and 2.3.
In Section 3, we give some generalizations and a corollary of the theorem. The
three main assumptions are weakened in Section 3.1 where we allow a more com-
plex dependence of the energy estimate on time derivatives. In Section 3.2, some
useful and easy generalizations are given: a slight weakening of the three main as-
sumptions (3.2.2), the possibility of handling other parameters than ε (3.2.1) and of
replacing the linearization of (1) by an approximate linearization (3.2.3). Finally,
a corollary is given in Section 3.3, which gives a stability property very useful for
the justification of asymptotics to (1).
An application of the main theorem is given in Section 4 where the Serre and
Green-Naghdi equations are solved uniformly with respect to the so-called shallow-
ness parameter (Section 4.2). The results of Section 4 are then used in Section 4.3
to address the justification of the Serre and Green-Naghdi models as asymptotic
models for the full water-waves equations.

1.3. Notations. - We generically denote by C(λ1, λ2, . . . ) a constant depending
on the parameters λ1, λ2, . . . ; the dependence on the λj is always assumed to be
nondecreasing.
- If X1 and X2 are two Banach spaces, we denote by L(X1, X2) the set of all
continuous linear mappings defined on X1 and with values in X2.
- If X is a Banach space and T > 0, then XT stands for C([0, T ];X), and we denote
by | · |XT

its canonical norm.
- If X1 and X2 are two Banach spaces and F ∈ C([0, T ];Cj(X1;X2)), we denote
by Fu, Fuu and F(j) the first, second and j-th order derivatives of the mapping
u 7→ F [·, u].
- If X1 and X2 are two Banach spaces and F ∈ Cj([0, T ];C(X1;X2)), we denote
by F (j) the j-th order derivative of the mapping t 7→ F [t, ·].
- We denote Λ := (1−∆)1/2 and Hs(Rd) (s ∈ R) the usual Sobolev space Hs(Rd) =
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{u ∈ S ′(Rd), |u|Hs < ∞}, where |u|Hs = |Λsu|L2 . We keep this notation if u is a
vector or matrix with coefficients in Hs(Rd).
- We use the condensed notation

(2) As = Bs + 〈Cs〉s>s

to say that As = Bs if s ≤ s and As = Bs + Cs if s > s.

- By convention, we take
0∑

j=1

= 0 and
0∏

j=1

= 1.

1.4. Main assumptions. We state here three assumptions which imply the well-
posedness of (1). The first one deals with the linear operator Lε, the second one with
the nonlinear term Fε, and the last one with the well-posedness of the linearization
of (1). Throughout this article, we assume that (Xs)s∈R is a Banach scale in the
following sense:

Definition 1. We say that a family of Banach spaces ((Xs), | · |s)s∈R is a Banach
scale if:

• For all s ≤ s′, one has Xs′ ⊂ Xs and | · |s ≤ | · |s′ ;
• There exists a family of smoothing operators Sθ (θ ≥ 1) such that

∀s < s′, ∀u ∈ Xs′ , |(1− Sθ)u|s ≤ Cs,s′θ
s−s′ |u|s′

and

∀s ≤ s′, ∀u ∈ Xs, Sθu ∈ Xs′ and |Sθu|s′ ≤ Cs,s′θ
s′−s|u|s;

• The norms satisfy a convexity property:

∀s ≤ s′′ ≤ s′, ∀u ∈ Xs′ , |u|s′′ ≤ Cs,s′,s′′ |u|µs |u|
1−µ
s′ ,

where µ is given by the relation µs + (1− µ)s′ = s′′.

The assumption made on the linear operator Lε is the following:

Assumption 1. There exist T > 0, s0 ∈ R and m ≥ 0 such that:
(1) For all s ≥ s0, one has Lε ∈ C(R;L(Xs+m;Xs)) and (Lε(·))0<ε<ε0 is

bounded in C([0, T ];L(Xs+m;Xs));
(2) One can define an evolution operator Uε(·) ∈ C(R;L(Xs, Xs)) (s ≥ s0) as

∀g ∈ Xs, Uε(t)g := uε(t), where ∂tu
ε +

1
ε
Lε(t)uε = 0, uε

|t=0
= g,

and (Uε(·))0<ε<ε0 is bounded in C([−T, T ];L(Xs, Xs)).

We can now state our assumption on the nonlinear operator Fε:

Assumption 2. There exist m ≥ 0, T > 0, and s0 ∈ R such that for all s ≥ s0,
F ∈ C([0, T ];C2(Xs+m, Xs)) and:

(1) For all u ∈ Xs+m,

sup
t∈[0,T ]

|Fε[t, u]|s ≤ C(s, T, |u|s0+m)|u|s+m;

(2) For all u, v ∈ Xs+m one has

sup
t∈[0,T ]

|Fε
u[t, u]v|s ≤ C(s, T, |u|s0+m)

(
|v|s+m + |u|s+m|v|s0+m

)
;
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(3) For all u, v1, v2 ∈ Xs+m one has

sup
t∈[0,T ]

|Fε
uu[t, u](v1, v2)|s ≤ C(s, T, |u|s0+m)

(
|v1|s+m|v2|s0+m + |v1|s0+m|v2|s+m

+|u|s+m|v1|s0+m|v2|s0+m

)
.

Remark 1. The estimates of the assumption are uniform with respect to ε ∈ (0, ε0)
and called tame estimates after Hamilton [7]: the dependence of the r.h.s. on the
norms involving the index s is linear.

Before stating the assumption made on the linearization of (1), let us define the
space Xs

(j) (j ∈ N) and F s as

Xs
(j) :=

j⋂
k=0

Ck([0, T ];Xs−km), |u|Xs
(j)

:=
j∑

k=0

|(ε∂t)ku|Xs−km
T

,(3)

F s := C([0, T ];Xs)×Xs+m, |(f, g)|F s := |f |Xs
T

+ |g|s+m(4)

and, for all (f, g) ∈ F s and t ∈ [0, T ],

(5) Is(t, f, g) := |g|s +
∫ t

0

sup
0≤t′′≤t′

|f(t′′)|sdt′.

Assumption 3. Let s0,m and T be as in Assumption 2. There exist d1, d
′
1 ≥ 0

such that for all s ≥ s0 + m, uε ∈ Xs+d1
(1) and (fε, gε) ∈ F s+d′1 , the IVP

(6) ∂tv
ε +

1
ε
Lε(t)vε + Fε

u[t, uε]vε = fε, vε
|t=0

= gε,

admits a unique solution vε ∈ C([0, T ];Xs) for all ε ∈ (0, ε0), and

|vε|Xs
T

≤ C(ε0, s, T, |uε|
X

s0+m+d1
(1)

)

×
(
Is+d′1(t, fε, gε) + |uε|

X
s+d1
(1)

Is0+m+d′1(t, fε, gε)
)
.

Remark 2. The above energy estimate exhibits a loss of d1 derivatives with respect
to the reference state uε (and of d′1 derivatives with respect to the source term
and initial data) in the sense that a control of vε in Xs

T requires a control of uε in
Xs+d1

T . This loss of information makes a standard Picard iterative scheme useless
to find a solution to (1). However, since the energy estimate is tame, one can
perform a Nash-Moser type iterative scheme. The fact that the energy estimate is
also uniform with respect to ε ∈ (0, ε0) is essential to obtain an existence time T
independent of ε.

2. A Nash-Moser type theorem

2.1. Statement of the theorem. We state here the main theorem of this article
(a generalization is also given in Theorem 1’ below). In the following statement,
we use the notations

δ := max{d1, d
′
1+m}, q := D−m−d′1 and Pmin := δ+

D

q

(√
δ+

√
2(δ + q)

)2
,

and we also recall that F s+P = C([0, T ];Xs+P )×Xs+P+m.
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Theorem 1. Let T > 0, s0, m, d1 and d′1 be such that Assumptions 1-3 are satis-
fied. Let also D > δ, P > Pmin, s ≥ s0+m and (hε, uε

0)0<ε<ε0 be bounded in F s+P .
Then there exists 0 < T ≤ T and a unique family (uε)0<ε<ε0 bounded in C([0, T ];Xs+D)
and solving the IVPs (1)0<ε<ε0 .

2.2. Proof of the theorem. With the evolution operator Uε(·) defined in As-
sumption 1, one can define a nonlinear operator Gε[t, ·] as

∀t ∈ [−T, T ], ∀u ∈ Xs0+m, Gε[t, u] := Uε(−t)Fε[t, Uε(t)u].

The next lemma shows that one can reduce the study of (1) to the study of

(7)
{

∂tũ
ε + Gε[t, ũε] = Uε(−t)hε

ũε
|t=0

= uε
0

and also states that Gε has the same properties as Fε.

Lemma 1. i. If ũε ∈ C([0, T ];Xs) solves (7) then uε ∈ C([0, T ];Xs) solves (1),
where uε(t) := Uε(t)ũε(t).
ii. Assumption 2 still holds if one replaces Fε by Gε.

Proof. Assumption 1 shows that if ũε ∈ C([0, T ];Xs) then uε ∈ C([0, T ];Xs).
Remark now that if ũε solves (7), then

∂t

(
Uε(t)ũε

)
= −1

ε
Lε(t)Uε(t)ũε − Uε(t)Gε[t, ũε] + hε;

since Uε(t)Gε[t, ũε] = Fε[t, Uε(t)ũε], the first point of the lemma follows. The
second point is a direct consequence of Assumptions 1 and 2. �

Defining the space F s as in (4) and Es as C([0, T ];Xs) ∩ C1([0, T ];Xs−m) en-
dowed with its canonical norm (which makes Es different from Xs

(1)), we can use
Lemma 1, to check that finding a solution uε to (1) is equivalent to finding a root
ũε of the equation Φε(ũε) = 0, where

Φε :
Es → F s−m

u 7→ (∂tu + Gε[·, u]− h̃ε︸ ︷︷ ︸
:=Φ1(u)

, u|t=0 − uε
0),

for all s ≥ s0 + m and ε ∈ (0, ε0), and with h̃ε(t) := Uε(−t)hε(t).
We seek a root ũε to the equation Φε(ũε) = 0 as the limit of a Nash-Moser type

iterative scheme, namely,

(8) uε
k+1 = uε

k + Skvε
k,

with Sk := Sθk
, for some θk > 0 to be determined, and where vε

k solves

(9)
{

∂tv
ε
k + Gε

u[t, uε
k]vε

k = −Φ1(uε
k),

vε
k |t=0 = uε

0 − uε
k |t=0 .

The following lemma shows that the above IVP can be solved and that the knowl-
edge of uε

k thus determines vε
k.

Lemma 2. Suppose that Assumptions 1-3 are satisfied, and let s ≥ s0+m. Assume
also that uε

k ∈ Es+d1 and Φε(uε
k) ∈ F s+d′1 .

Then there exists a unique solution vε
k ∈ Es to (9) and

|vε
k|Es ≤ C(ε0, s, T, |uε

k|Es0+m+d1 )
(
|Φε(uε

k)|
F s+d′1

+ |Φε(uε
k)|

F s0+m+d′1
|uε

k|Es+d1

)
.



6 BORYS ALVAREZ-SAMANIEGO AND DAVID LANNES

Proof. From Assumption 3, we know that there is a unique solution wε
k of the IVP{

∂tw
ε
k + 1

εL
ε(t)wε

k + Fε
u[t, Uε(t)uε

k]wε
k = −Uε(t)Φ1(uε

k),
wε

k |t=0 = uε
0 − uε

k |t=0 ;

as in the proof of Lemma 1, it is easy to check that vε
k := Uε(−t)wε

k solves (9).
Since Assumption 1 implies that |Uε(·)uε

k|Xr
(1)
≤ C(ε0)|uε

k|Er (r ≥ s0 +m), one can
deduce from the estimate of Assumption 3 and Assumption 1 that
(10)
|vε

k|Xr
T
≤ C(ε0, r, T, |uε

k|Es0+m+d1 )
(
|Φε(uε

k)|
F r+d′1

+ |Φε(uε
k)|

F s0+m+d′1
|uε

k|Er+d1

)
;

with r = s, this is the control we need on |vε
k|Xs

T
; to conclude the proof, we must

therefore show that the same bound holds for |∂tv
ε
k|Xs−m

T
. From the equation one

has ∂tv
ε
k = −Gε

u[t, uε
k]vε

k − Φ1(uε
k), so that using Lemma 1.ii, one gets

|∂tv
ε
k|Xs−m

T
≤ C(s, T, |uε

k|Xs0+m

T
)
(
|vε

k|Xs
T

+ |vε
k|Xs0+m

T
|uε

k|Xs
T

)
+ |Φ1(uε

k)|Xs−m
T

.

and one can conclude with (10) (with r = s and r = s0 + m). �

Let us now state the three lemmas which form the heart of the proof, and whose
proof is postponed to the next subsections for the sake of clarity.

Lemma 3. Let D ≥ m + d′1 and s ≥ s0 + m. If, for some M > 0, one has
|uε

j |Es+D ≤ M (j = k, k + 1), then

|Φε(uε
k+1)|F s+d′1

≤ C(s, T,M)
(
θ

m+d′1−D
k + |vε

k|Es+D

)
|vε

k|Es+D ,

with C(s, T,M) independent of ε.

Lemma 4. Let D ≥ d1 and s ≥ s0 +m. If, for some M > 0, one has |uε
k+1|Es+D ≤

M , then
|vε

k+1|Es ≤ C(ε0, s, T, M)|Φε(uε
k+1)|F s+d′1

,

with C(ε0, s, T, M) independent of ε.

Lemma 5. Let δ := max{d1, (d′1 + m)}, P ≥ D ≥ δ and s ≥ s0 + m. If, for some
M > 0, one has |uε

k|Es+D ≤ M and |(hε, uε
0)|F s+P−m ≤ M , then

|uε
k+1|Es+P ≤ C(ε0, s, T, M)(1 + θδ

k)(1 + |uε
k|Es+P ).

If moreover |uε
k+1|Es+D ≤ M , then one also has

|vε
k+1|Es+P−δ ≤ C(ε0, s, T, M)(1 + |uε

k+1|Es+P ).

We can now proceed with the proof of the theorem, which is a typical Nash-Moser
iterative scheme : Lemmas 3 and 4 provide a control of |vε

k+1|Es in terms of |vε
k|Es+D ,

thus exhibiting a loss of D derivatives but providing a rapid decay of |vε
k+1|Es ,

while Lemma 5 control the growth of |vε
k+1|Es+P−δ . A control of |vε

k+1|Es+D is then
recovered by the interpolation formula

(11) |vε
k+1|Es+D ≤ Cst |vε

k+1|
µ
Es |vε

k+1|
1−µ
Es+P−δ ,

with µ = 1− D
P−δ .

Before entering the heart of the proof, let us define the sequence (θk)k used for
the smoothing operators as θk+1 = θr

k (k ∈ N), for some r > 1 defined below.

Remark 3. One has θk = θrk

0 , so that (if r > 1),
∑

k∈N θ−q
k =: θ converges if and

only if θ0 > 1. Moreover, θ can be made arbitrarily small provided that θ0 is chosen
large enough.
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We are now set to control the sequences (uε
k)k∈N and (vε

k)k∈N by induction. For
some M > 0 such that

(12) |(hε, uε
0)|F s+P−m ≤ M and |uε

0|Es+D ≤ M/2,

we define the properties (i)k -(iii)k as
• (i)k : |uε

k|Es+P ≤ θα
k ;

• (ii)k : |uε
k|Es+D ≤ M ;

• (iii)k : |vε
k|Es+D ≤ θ−q

k , with q = D −m− d′1 > 0.
Proof of (i)k+1-(iii)k+1 assuming (i)k -(iii)k . Since one has |uε

k|Es+D ≤ M by (ii)k ,
|uε

k|Es+P ≤ θα
k by (i)k and |(hε, uε

0)|F s+P−m ≤ M by definition of M , one can apply
Lemma 5 to obtain

|uε
k+1|Es+P ≤ C(ε0, s, T, M)(1 + θδ

k)(1 + θα
k )

= f(ε0, s, T, M, k)θα
k+1,

with
f(ε0, s, T, M, k) = C(ε0, s, T, M)(1 + θδ

k)(1 + θα
k )θ−αr

k .

Assuming that

(13) δ − α(r − 1) < 0,

it follows from the explicit expression of f(ε0, s, T, M, k) that f(ε0, s, T, M, k) ≤ 1
for all k ∈ N provided that θ0 is chosen large enough. This proves (i)k+1 .
Recalling that uε

k+1 = uε
k + Skvε

k, one has uε
k+1 = uε

0 +
∑k

j=0 Sjv
ε
j , and thus

|uε
k+1|Es+D ≤ M/2+

∑k
j=0 θ−q

k . As seen in Remark 3, one then gets (ii)k+1 provided
that θ0 is chosen large enough.
In order to prove (iii)k+1 , remark first that it follows from Lemmas 3 and 4 and
the choice of the sequence (θk)k∈N that

(14) |vε
k+1|Es ≤ C(ε0, s, T, M)θ−2q/r

k+1 .

We can also use the second assertion of Lemma 5 to obtain

(15) |vε
k+1|Es+P−δ ≤ C(ε0, s, T, M)(1 + θα

k+1).

It follows therefore from (11), (14) and (15) that

|vε
k+1|Es+D ≤ C(ε0, s, T, M)θ−2µq/r

k+1 (1 + θα
k+1)

1−µ

= g(ε0, s, T, M, k)θ−q
k+1,

with g(ε0, s, T, M, k) := C(ε0, s, T, M)θ−2µq/r
k+1 (1 + θα

k+1)
1−µθq

k+1. Choosing r such
that

(16) 1 < r <
2µq

q + α(1− µ)
,

one gets that g(ε0, s, T, M, k) ≤ 1 for all k ∈ N, provided that θ0 is chosen large
enough.
It follows from the lines above that in order to complete the proof of the heredity of
the induction property, we just have to take θ0 large enough, and to prove that one
can choose α, r and P such that the conditions (13) and (16) are satisfied. This is
done in the following lemma:

Lemma 6. Let α = δ +
√

2δ(δ + q); if P > δ + D
q (
√

δ +
√

2(δ + q))2, there exists
r > 1 such that conditions (13) and (16) are satisfied.
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Proof. Let us denote r := 2µq
q+α(1−µ) . Quite obviously, (13) and (16) are satisfied

with r = r − ε (ε > 0 small enough), provided that r − 1 > δ/α, that is,

(2q + α)µ− (q + α)
q + α(1− µ)

>
δ

α
,

or equivalently, if

µ > 1− q(1− δ/α)
2q + α + δ

=: µmin(α).

The value of α given in the statement of the lemma corresponds to the minimum
of µmin(α). One then computes that µmin(α) = 1− q

(
√

δ+
√

2(δ+q))2
, and the lemma

then follows from the observation that µ > µmin(α) is equivalent to P > δ +
D

1−µmin
. �

Proof of (i)0-(iii)0. We have to construct here the first term of the sequence uε
0 in

such a way that (i)0-(iii)0 and (12) are satisfied for some M > 0 and θ0 > 0. We
need the following lemma:

Lemma 7. For all s ≥ s0 + m and (hε, uε
0) ∈ F s+P , there exists uε

0 ∈ Es+P such
that uε

0 |t=0 = uε
0 and such that

|uε
0|Es+D ≤ C(s, T, |(hε, uε

0)|F s+D ) and |uε
0|Es+P ≤ C(s, T, |(hε, uε

0)|F s+P ),

and
|Φε(uε

0)|F s+D+d′1
≤ TC(s, T, |(hε, uε

0)|F s+D+d′1+m).

Proof. Let us define uε
0 ∈ C([0, T ];Xs+P ) as

uε
0(t) = uε

0 +
∫ t

0

(
h̃ε(t′)− Gε[t′, uε

0]
)
dt′.

From Lemma 1 and the definition of | · |Es , one gets for all r ≥ 0,

(17) |uε
0|Es+r ≤ |uε

0|s+r + C(s, T, |uε
0|s0+m)

(
|hε|Xs+r

T
+ |uε

0|s+r+m

)
;

the estimates on uε
0 given in the lemma are thus a consequence of (17), with r = D

and r = P .
By definition of Φε, one also has

Φε(uε
0) =

(
Gε[·, uε

0]− Gε[·, uε
0], 0

)
=

( ∫ 1

0

Gε
u[·, uε

0 + z(uε
0 − uε

0)](u
ε
0 − uε

0)dz, 0
)
,

so that one deduces from Assumptions 1 and 2 that

|Φε(uε
0)|F s+D+d′1

≤ C(s, T, |uε
0|Xs+D+d′1+m

T

, |uε
0|s+D+d′1+m)|uε

0 − uε
0|Xs+D+d′1+m

T

,

and the estimate on Φε(uε
0) of the lemma follows easily. �

Thanks to the lemma, taking M = M(s, T, |(hε, uε
0)|F s+D ) large enough, one gets

|uε
0|Es+D ≤ M/2, which proves (ii)0. Choosing θ0 = θ0(s, T, |(hε, uε

0)|F s+P ) large
enough, one also gets (i)0 from Lemma 7. In order to prove (iii)0, remark first
that Lemma 2 yields |vε

0|Es+D ≤ C(ε0, s, T, M)|Φε(uε
0)|F s+D+d′1

(1 + θα
0 ). It follows

therefore from the lemma that, taking a smaller T if necessary, (iii)0 is satisfied,
which ends the induction proof of properties (i)k, (ii)k and (iii)k.
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The end of the existence part of the proof of the theorem is now straightforward:
it follows from (i)k, (ii)k and (iii)k that the series uε

0 +
∑

k Skvε
k converges to some

uε ∈ Es+D and taking the limit k →∞ in Lemma 3 shows that Φε(uε) = 0.
In order to conclude the proof of the theorem, we must now prove that the

solution constructed above is unique. Assuming that uε,j ∈ Es+D (j = 1, 2) are
both solutions to (1), we show that w := uε,2 − uε,1 is identically 0. Let us remark
that w solves the IVP{

∂tw + 1
εL

ε(t)w + Fε
u[t, uε,2]w = H,

w|t=0 = 0,

with H := Fε[t, uε,1]−Fε[t, uε,2]−Fε
u[t, uε,2](uε,1 − uε,2).

A direct application of Assumption 3 yields

|w(t)|s0+m ≤ C(ε0, T, |uε,1|
X

s0+m+δ

(1)
)
∫ t

0

sup
0≤t′′≤t′

|H(t′′)|s0+m+d′1
dt′,

and since |H(t′)|s0+m+d′1
≤ C(s, T, |uε,2|

X
s0+m+δ

T

)|w(t′)|s0+m by Assumption 2(3),
a Gronwall argument shows that w=0.

2.3. Proof of Lemmas 3, 4, 5.

2.3.1. Proof of Lemma 3. In order to give an upper bound for |Φε(uε
k+1)|F s+d′1

, we

need to control Φ1(uε
k+1) in X

s+d′1
T and |uε

k+1 |t=0 − uε
0|s+d′1+m.

First remark that a second order Taylor expansion of Φ1(uε
k+1) yields

Φ1(uε
k+1) = Φ1(uε

k) + Φ′
1(u

ε
k)(uε

k+1 − uε
k)

+
∫ 1

0

(1− z)Φ′′
1(uε

k + z(uε
k+1 − uε

k))(uε
k+1 − uε

k, uε
k+1 − uε

k)dz.

Since by (8), one has uε
k+1 − uε

k = Skvε
k, and since by definition Φ1(uε

k) = ∂tu
ε
k +

Gε[·, uε
k]− h̃ε, it follows that

(18) Φ1(uε
k+1) = E1 + E2,

with

E1 = Φ1(uε
k) + ∂tv

ε
k + Gε

u[·, uε
k]vε

k

+
∫ 1

0

(1− z)Gε
uu[·, uε

k + z(uε
k+1 − uε

k)](Skvε
k, Skvε

k)dz

=
∫ 1

0

(1− z)Gε
uu[·, uε

k + z(uε
k+1 − uε

k)](Skvε
k, Skvε

k)dz(19)

(the last equality stemming from the fact that vε
k solves (9)), and

(20) E2 = (Sk − 1)∂tv
ε
k + Gε

u[·, uε
k]

(
(Sk − 1)vε

k

)
.

Since by Lemma 1.ii, Gε satisfies Assumption 2(3), and since s + d′1 + m ≤ s + D,
one can control E1 as

|E1|
X

s+d′1
T

≤ C(s, T, |uε
k|Xs+D

T
, |uε

k+1|Xs+D
T

)|Skvε
k|2Xs+D

T

≤ C(s, T,M)|vε
k|2Xs+D

T

.(21)
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Since Lemma 1.ii also ensures that Gε satisfies Assumption 2(2), one gets

|Gε
u[·, uε

k]
(
(Sk − 1)vε

k

)
|
X

s+d′1
T

≤ C(s, T,M) sup
t∈[0,T ]

|(Sk − 1)vε
k(t)|s+m+d′1

.

It is then a consequence of the properties of the regularizing operators (recall that
Sk = Sθk

), that

|E2|
X

s+d′1
T

≤ Cst θ
m+d′1−D
k

(
|∂tv

ε
k|Xs+D−m

T
+ C(s, T,M)|vε

k|Xs+D
T

)
≤ C(s, T,M)θm+d′1−D

k |vε
k|Es+D .(22)

It is then a simple consequence of (18), (21) and (22) to conclude that

(23) |Φ1(uε
k+1)|Xs+d′1

T

≤ C(s, T,M)
(
θ

m+d′1−D
k + |vε

k|Es+D

)
|vε

k|Es+D .

We now turn to control |uε
k+1 |t=0−uε

0|s+d′1+m. Since uε
k+1 |t=0−uε

0 = (Sk−1)vε
k |t=0 ,

one gets

|uε
k+1 |t=0 − uε

0|s+d′1+m ≤ Cst θ
m+d′1−D
k sup

t∈[0,T ]

|vε
k(t)|s+D

≤ Cst θ
m+d′1−D
k |vε

k|Es+D .(24)

The lemma follows directly from (23) and (24).

2.3.2. Proof of Lemma 4. Since |uε
k+1|Es+d1 ≤ M , one gets therefore from Lemma

2 (at step k + 1),

(25) |vε
k+1|Es ≤ C(ε0, s, T, M)|Φε(uε

k+1)|F s+d′1
,

and the lemma is proved.

2.3.3. Proof of Lemma 5. Thanks to Lemma 1.ii, one has, for all r ≥ s0,

(26) |Φε(u)|F r ≤ C(|u|Es0+m)|u|Er+m + Cst |(hε, uε
0)|F r ;

remark also that since uε
k+1 = uε

k + Skvε
k, one can use the properties of the regu-

larizing operator Sk = Sθk
to obtain

(27) |uε
k+1|Es+P ≤ |uε

k|Es+P + Cst θδ
k|vε

k|Es+P−δ .

From Lemma 2, one deduces

|vε
k|Es+P−δ ≤ C(ε0, s, T, M)

(
|Φε(uε

k)|
F s0+m+d′1

|uε
k|Es+P + |Φε(uε

k)|F s+P−m

)
so that, using (26) with r = s0 + m + d′1 and r = s + P −m, and the assumption
made on (hε, uε

0), one obtains

(28) |vε
k|Es+P−δ ≤ C(ε0, s, T, M)(1 + |uε

k|Es+P ).

Together with (27), this last estimate shows that

|uε
k+1|Es+P ≤ C(ε0, s, T, M)(1 + θδ

k)(1 + |uε
k|Es+P ),

so that the proof of the first assertion is complete.
The last part of the lemma is exactly (28) with the index k replaced by k + 1.

3. Further results

We propose in this section a more general version of Theorem 1 and some remarks
extending its range of validity. We also a stability property very useful for the
justification of asymptotic models for instance.
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3.1. A more general version of Theorem 1. The aim of this section is to prove
a result similar to Theorem 1 when the energy estimates of Assumption 3 involve
p + 1 (p ≥ 1) time derivatives of the reference solution uε (such a situation occurs
for instance with the water-waves equations). With this goal in mind, we replace
the three assumptions 1-3 by generalizations to the case p 6= 0. We first generalize
the spaces Es and F s used in the proof of Theorem 1 as follows:

Es
(p+1) :=

p+1⋂
i=0

Ci([0, T ];Xs−im), F s
(p) :=

p⋂
i=0

Ci([0, T ];Xs−im)×Xs+m

endowed with the norms

|u|Es
(p+1)

= |u|Xs
T

+ |∂tu|Xs−m
T

+
p∑

i=1

|(ε∂t)i∂tu|Xs−(i+1)m
T

,

|(f, g)|F s
(p)

= |f |Xs
T

+ |g|s+m +
p∑

i=1

|(ε∂t)if |Xs−im
T

and we also define for all (f, g) ∈ F s
(p) and t ∈ [0, T ],

Is
(p)(t, f, g) = |g|s+m +

∫ t

0

p∑
i=0

sup
0≤t′′≤t′

|(ε∂t)if(t′′)|s−imdt′

(so that Es
(1), F s

(0) and Is
(0) coincide with Es, F s and Is respectively).

Assumption 1’. Assumption 1 holds with (1) replaced by the stronger condition
(when p ≥ 1):

(1)’ For all s ≥ s0, one has Lε ∈ Cp(R;L(Xs+m;Xs)) and for all i = 0, . . . , p,
(εi di

(dt)iLε(·))0<ε<ε0 is bounded in C([0, T ];L(Xs+m;Xs)).

Assumption 2’. Assumption 2 holds with (1)-(3) replaced replaced by the stronger
conditions: For all 0 ≤ i ≤ p and 0 ≤ i + j ≤ p + 2, and for all s ≥ s0 + im, one
has Fε ∈ Ci([0, T ];Cj(Xs+m, Xs−im)) and

sup
t∈[0,T ]

|εiFε(i)
(j) [t, u](v1, . . . , vj)|s−im ≤ C(s, T, |u|s0+(i+1)m)

×
( j∑

k=1

|vk|s+m

∏
l 6=k

|vl|s0+(i+1)m + |u|s+m

j∏
k=1

|vk|s0+(i+1)m

)
.

Assumption 3’. There exists p ∈ N such that for all s ≥ s0 +m, uε ∈ Xs+d1
(p+1) and

(fε, gε) ∈ F
s+d′1
(p) , the IVPs (6)0<ε<ε0 admit a unique solution vε ∈ C([0, T ];Xs),

and

∀t ∈ [0, T ], |vε|Xs
T

≤ C(ε0, s, T, |uε|
X

s0+m+d1
(p+1)

)

×
(
Is+d′1

(p) (t, fε, gε) + |uε|
X

s+d1
(p+1)

Is0+m+d′1
(p) (t, fε, gε)

)
.

Theorem 1 then admits the following generalization (with δ and Pmin as defined
in Theorem 1):
Theorem 1’. Let p ∈ N, T > 0, s0, m, d1 and d′1 be such that Assumptions 1’-3’
are satisfied. Let also D > δ, P > Pmin, s ≥ s0 + (p + 1)m and (hε, uε

0)0<ε<ε0 be
bounded in F s+P

(p) .
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Then there exists 0 < T ≤ T and a unique family (uε)0<ε<ε0 bounded in C([0, T ];Xs+D)
and solving the IVPs (1)0<ε<ε0 .

Proof. The proof is a generalization of the proof of Theorem 1, and we just sketch
the adaptations to be done.

The second property of Lemma 1 can be generalized as follows:
Lemma 1’. Assumption 2’ still holds if one replaces Fε by Gε.

Proof. Let us first prove the following fact (recalling that the normed space Xs
(i) is

defined in (3)): for 0 ≤ i ≤ p and s ≥ s0 + im,

(29) ∀f ∈ Xs
(i), Uε(·)f ∈ Xs

(i) and |Uε(·)f |Xs
(i)
≤ C(s, T )|f |Xs

(i)
;

indeed, from the definition of the evolution operator Uε(·), one can check that
(ε∂t)i

(
Uε(·)f(·)

)
is a sum of terms of the form

(Lε)α0(ε∂tLε)α1 . . . (εi−1∂i−1
t Lε)αi−1Uε(·)

(
(ε∂t)βf

)
,

with α0+2α1+· · ·+iαi−1+β = i, so that (29) is a direct consequence of Assumption
1’.
From the definition of Gε, one has, for all 0 ≤ i + j ≤ p + 2,

εiGε(i)
(j) [·, u](v1, . . . , vj) = (ε∂t)i

(
Uε(−·)f(·)

)
,

with f(t) = Fε
(j)[t, U

ε(t)u](Uε(t)v1, . . . , U
ε(t)vj) so that one deduces directly from

(29) that for all s ≥ s0 + im,

(30) |(ε∂t)iGε
(j)[·, u](v1, . . . , vj)|Xs−im

T
≤ C(s, T )|f |Xs

(i)
.

Writing u := Uε(·)u and vq := Uε(·)vq, one has f = Fε
(j)[t, u](v1, . . . , vj) and for

all 0 ≤ l ≤ i, (ε∂t)lf is a sum of terms of the form

εl0Fε(l0)
(j+γ1+···+γl)

[t, u]((ε∂t)l1v1, . . . , (ε∂t)lj vj , [ε∂tu]γ1 , . . . , [(ε∂t)lu]γl),

with l0 + l1 + · · ·+ lj + γ1 + 2γ2 + · · ·+ lγl = l, and where [(ε∂t)lu]γl stands for the
γl-uplet with (ε∂t)lu on each component. It follows therefore from Assumption 2’
that

|(ε∂t)lf |Xs−lm
T

≤ C(s, T, |u|
X

s0+(l+1)m

(l)
)

×
( j∑

q=1

|vq|Xs+m
(l)

∏
q′ 6=q

|vq′ |Xs0+(l+1)m

(l)
+ |u|Xs+m

(l)

j∏
q=1

|vq|Xs0+(l+1)m

(l)

)
(31)

and since (29) implies that for all r ≥ s0 + lm, |u|Xr
(l)
≤ C(r, T )|u|Xr

T
= C(r, T )|u|r

and |vq|Xr
(l)
≤ C(r, T )|vq|Xr

T
= C(r, T )|vq|r (q = 1, . . . , j), one deduces

∀0 ≤ l ≤ i, |(ε∂t)lf |Xs−lm
T

≤ C(s, T, |u|s0+(l+1)m)

×
( j∑

q=1

|vq|s+m

∏
q′ 6=q

|vq′ |s0+(l+1)m + |u|s+m

j∏
q=1

|vq|s0+(l+1)m

)
.

Together with (30), this shows that Gε satisfies Assumption 2’. �

Lemma 2 can then be generalized as follows:
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Lemma 2’. Suppose that Assumptions 1’-3’ are satisfied, and let s ≥ s0+(p+1)m.
Assume also that uε

k ∈ Es+d1
(p+1) and Φε(uε

k) ∈ F
s+d′1
(p) .

Then there exists a unique solution vε
k ∈ Es

(p+1) to (9) and

|vε
k|Es

(p+1)
≤ C(ε0, s, T, |uε

k|Es0+(p+1)m+d1
(p+1)

)
(
|Φε(uε

k)|
F

s+d′1
(p)

+|Φε(uε
k)|

F
s0+m+d′1
(p)

|uε
k|Es+d1

(p+1)

)
.

Proof. Following the same steps as in the proof of Lemma 2, one can prove that
|vε

k|Es
(1)

is bounded from above by the r.h.s. of the estimate given in the statement
of the lemma. The lemma thus follows by finite induction: we just have to prove
that the desired estimate on vε

k holds in Es
(l+1) (1 ≤ l ≤ p) if it holds in Es

(l′+1), for
all l′ < l. Since moreover |vε

k|Es
(l+1)

≤ |vε
k|Es

(l)
+ |(ε∂t)l∂tv

ε
k|Xs−(l+1)m

T

, we are reduced
to prove that this latter term is bounded from above by the r.h.s. of the estimate
given in the lemma. From the equation one gets
(32)
|(ε∂t)l∂tv

ε
k|Xs−(l+1)m

T

≤ |(ε∂t)l(Gε
u[t, uε

k]vε
k)|

X
s−(l+1)m
T

+ |(ε∂t)lΦ1(uε
k)|

X
s−(l+1)m
T

.

Proceeding exactly as for the obtention of (31) (with j = 1) – but replacing Fε by
Gε (which is possible thanks to Lemma 1), u by uε

k and v1 by vε
k – one gets

(33)
|(ε∂t)l(Gε

u[t, uε
k]vε

k)|
X

s−(l+1)m
T

≤ C(s, T, |uε
k|Xs0+(l+1)m

(l)
)
(
|vε

k|Xs
(l)

+|uε
k|Xs

(l)
|vε

k|Xs0+(l+1)m

(l)

)
.

It follows therefore from (32) and (33) that |(ε∂t)l∂tv
ε
k|Xs−(l+1)m

T

is bounded from
above by

C(ε0, s, T, |uε
k|Es0+(l+1)m

(l)
)
(
|vε

k|Es
(l)

+ |uε
k|Es

(l)
|vε

k|Es0+(l+1)m

(l)

)
+ |Φ1(uε

k)|Xs−m
(l)

.

and using the induction property thus gives the result. �

Similarly, Lemmas 3-5 must be replaced by the following generalizations to the
case p > 0; for Lemma 3, this is done in the following lemma.
Lemma 3’. Let D ≥ m + d′1 and s ≥ s0 + m. If, for some M > 0, one has
|uε

j |Es+D
(p+1)

≤ M (j = k, k + 1), then

|Φε(uε
k+1)|F s+d′1

(p)

≤ C(ε0, s, T, M)
(
θ

m+d′1−D
k + |vε

k|Es+D
(p+1)

)
|vε

k|Es+D
(p+1)

.

Proof. One must add to the proof of Lemma 3 a control of |(ε∂t)iφ1(uε
k+1)|Xs+d′1−im

T

(i ≤ p). Owing to (18), we are reduced to control εi∂i
tE1 and εi∂i

tE2 in X
s+d′1−im
T .

From the explicit expression of E1 given in (19) and since Lemma 1’ allows us to
use Assumption 2’ with Fε replaced by Gε, one gets

|(ε∂t)iE1|
X

s+d′1−im

T

≤ C(ε0, s, T, M)|vk|2Es+D
(i)

;

similarly, one gets from (20) that

|(ε∂t)iE2|
X

s+d′1−im

T

≤ C(ε0, s, T, M)θm+d′1−D
k |vε

k|Es+D
(i+1)

,

and the lemma follows. �

The generalization of Lemma 4 is straightforward thanks to Lemma 2’:
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Lemma 4’. Let D ≥ d1 and s ≥ s0 + (p + 1)m. If, for some M > 0, one has
|uε

k+1|Es+D
(p+1)

≤ M , then

|vε
k+1|Es

(p+1)
≤ C(ε0, s, T, M)|Φε(uε

k+1)|F s+d′1
(p)

.

Finally, Lemma 5 is generalized as follows:

Lemma 5’. Let P ≥ D ≥ δ and s ≥ s0 + (p + 1)m. If, for some M > 0, one has
|uε

k|Es+D
(p+1)

≤ M and |(hε, uε
0)|F s+P−m

(p)
≤ M , then,

|uε
k+1|Es+P

(p+1)
≤ C(ε0, s, T, M)(1 + θδ

k)(1 + |uε
k|Es+P

(p+1)
).

If moreover |uε
k+1|Es+D

(p+1)
≤ M , then one also has

|vε
k+1|Es+P−δ

(p+1)
≤ C(ε0, s, T, M)(1 + |uε

k+1|Es+P
(p+1)

).

Proof. Thanks to Lemma 2’ one can generalize (26) for all r ≥ s0 + pm as

|Φε(u)|F r
(p)
≤ C(|u|

E
s0+m

(p+1)
)|u|Er+m

(p+1)
+ Cst |(hε, uε

0)|F r
(p)

while (27) can be straightforwardly replaced by

|uε
k+1|Es+P

(p+1)
≤ |uε

k|Es+P
(p+1)

+ Cst θδ
k|vε

k|Es+P−δ
(p+1)

.

Using Lemma 2’ instead of Lemma 2, one concludes as in the proof of Lemma 5. �

The rest of the proof of the theorem is similar to the proof of Theorem 1. �

3.2. A few remarks.

3.2.1. Dependence on other parameters. The mappings Lε and Fε which appear in
the IVP (1) may also depend on other parameters than ε. Theorems 1 (or 1’) still
hold, with an existence time independent of all these parameters as soon as all the
constants which appear in Assumptions 1-3 (or 1’-3’) are uniform with respect to
these parameters (see Remark 7 below for such an example).

3.2.2. Restricting the range of the assumptions. It sometimes occurs that Assump-
tions 2’ (resp. 3’ ) does not hold for all u ∈ Xs+m (resp. u ∈ Xs+d1

(p+1)) but only
for u ∈ Ω0, with Ω0 an open subset of Xs+D (resp. Xs+D

(p+1)). If for all θ0 one
can find uε

0 ∈ Ω0 such that conditions (i)0, (ii)0 and (iii)0 of the induction proof
of Theorems 1 and 1’ are satisfied, then these theorems remain true. Indeed, by
choosing θ0 large enough, one can make |vε

k|Es+D
(p+1)

(k ∈ N) small enough to have

uε
k := uε

0 +
∑k−1

l=0 Slv
ε
l ∈ Ω0.

In particular, the theorems still hold if the uε
0 provided by Lemma 7 belongs to Ω0.

Example 1. For the Serre and Green-Naghdi equations below, such restrictions on
the range of validity of Assumptions 2 and 3 are imposed by the “nonzero depth
condition” (36). The comment above shows that these restrictions are without
consequence provided that (36) is initially satisfied.
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3.2.3. Approximate linearization. The linear initial value problem (6) considered
in Assumption 3 is the exact linearization of (1). One could replace it by an
approximate linearization in the following sense (using the same notations as in
Theorem 1, and with R[t, u] := ∂tu + 1

εL
ε(t)u + Fε[t, u]− hε):

Proposition 1. Let L ∈ C([0, T ]×Xs+D;L(Xs+m, Xs)) (s ≥ s0 +m) be such that
for all t ∈ [0, T ] and u, v ∈ Xs+D, one has∣∣Fε

u[t, u]v − L[t, u]v
∣∣
X

s+d′1
T

≤ C(s, T, |u|s+D)|R[t, u]|Xs+D
T

|v|Xs+D
T

.

Then Theorem 1 still holds if the IVP (6) is replaced in Assumption 3 by

∂tv
ε +

1
ε
Lε(t)vε + L[t, uε]vε = fε, vε

|t=0
= gε.

Remark 4. In other words, the proposition states that one can replace the derivative
of Fε in Assumption 3 by another linear operator, provided that the difference
between both operators vanishes on the set of solutions of (1). This trick can
sometimes simplify the computations (see for instance [8] and Remark 9 below).

Proof. In the proof of Theorem 1, we only use once the fact that the IVP (6) is
the exact linearization of (1): in the derivation of (19) (otherwise, we only use the
estimate provided by Assumption 1). Replacing Fε

u[t, uε] by L[t, uε] in Assumption
3 thus implies the following modification of (18):

Φ1(uε
k+1) = E1 + E2 + E3,

where E1 and E2 are the same as in (18), while E3 is given by

E3 := Gε
u[·, uε

k]vε
k −G[·, uε

k]vε
k, with G[·, uε

k] := Uε(−t)L[·, Uε(t)uε
k].

From Assumption 1 and the assumption made on L, one gets

|E3|
X

s+d′1
T

≤ C(s, T,M)|Φ1(uε
k)|Xs+D

T
|vε

k|Xs+D
T

,

where M is as in Lemma 3. Therefore, the result given in Lemma 3 remains valid
provided that |Φ1(uε

k)|F s+D ≤ C(s, T,M)θ−q
k , with q = D−m−d′1. This point can

be added without difficulty to the induction proof of Theorem 1:
• The property is true for k = 0 if T is small enough (Lemma 7);
• If the property is true for some k ∈ N, then we just saw that Lemma 3

remains true, so that |Φ1(uε
k)|

X
s+d′1
T

≤ C(s, T,M)θ−2q
k = C(s, T,m)θ−2q/r

k+1 ;

• We also get that |Φ1(uε
k+1)|Xs+P−m

T
≤ C(s, T,M)θα

k+1 (from (i)k+1);

• The estimate |Φ1(uε
k+1)|Xs+D

T
≤ C(s, T,M)θ−q

k+1 is then recovered by inter-
polation between the two estimates above.

It follows therefore that the proof is not affected by replacing Fε
u by its approxima-

tion L in (6), which proves the proposition. �

3.3. A stability property. We prove here a stability property for the IVP (1)
which is very useful for the justification of asymptotic approximations of the exact
solution. More precisely, assume that there exists an approximate solution uε

app to
(1) in the sense that

(34)

{
∂tu

ε
app +

1
ε
Lε(t)uε

app + Fε[t, uε
app] = hε + ιεR

ε

uε
app |t=0 = uε

0 + ιεr
ε,
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with ιε > 0 and (Rε, rε)0<ε<ε0 bounded in some appropriate space. Our goal here
is to prove that there exists an exact solution uε to (1) and that the error made
by the approximation, namely uε − uε

app, remains “small”. An application of the
following corollary is given in Theorem 3 below.

Corollary 1. Let the assumptions of Theorem 1’ be satisfied and s ≥ s0+(p+1)m.
Assume moreover that (uε

app)0<ε<ε0 and (Rε, rε)0<ε<ε0 are bounded in Xs+P
(p) and

F s+P
(p) respectively.

There exist 0 < T ≤ T and a unique family (uε)0<ε<ε0 bounded in C([0, T ];Xs+D)
and solving the IVPs (1)0<ε<ε0 . Moreover, one has

|uε − uε
app|Xs+D

T
≤ Cst ιε,

and one can take T = T if ιε is small enough.

Proof. Let us seek an exact solution uε under the form uε = uε
app + ιεe

ε, which is
equivalent to solving the IVP{

∂te
ε + 1

εL
ε(t)eε + Fε[t, eε] = −Rε

eε
|t=0

= −rε,

with
Fε[t, u] := ι−1

ε

(
Fε[t, uε

app + ιεu]−Fε[t, uε
app]

)
.

Lemma 8. The mapping Fε satisfies Assumption 2’ for all s such that the family
(|uε

app|Xs+(i+1)m

(p)
)0<ε<ε0 is bounded.

Proof. Let us first prove that Fε satisfies the estimates given in Assumption 2’
when j = 0. For all 0 ≤ i ≤ p, one computes that εiFε(i)[t, u] is a sum of terms of
the form

ι−1
ε

(
εkFε(k)

(j′) [t, uε
app + ιεu]− εkFε(k)

(j′) [t, uε
app]

)
([(ε∂t)uε

app]
α1 , . . . , [(ε∂t)iuε

app]
αi),

with k + α1 + · · ·+ iαi = i and j′ = α1 + · · ·+ αi, so that we can use Assumption
2’ to get

sup
t∈[0,T ]

|εiFε(i)[t, u]|s−im ≤ C(s, t, |uε
app|Xs+(i+1)m

(p)
)|u|s+m,

which proves the case j = 0 since we assumed that (|uε
app|Xs+(i+1)m

(p)
)0<ε<ε0 is

bounded.
Since for all j ≥ 1 one has

Fε
(j)[t, u](v1, . . . , vj) = ι(j−1)

ε Fε
(j)[t, u

ε
app + ιεu](v1, . . . , vj),

the case j ≥ 1 of the Assumption follows easily. �

Thanks to the lemma and to the assumptions made in the statement of the
corollary, one can use Theorem 1’ with Fε replaced by Fε, and the first part of the
corollary is proved.
We now prove that it is possible to take T = T when ιε is small enough. Instead
of taking the first iterate uε

0 of the converging sequence (uε
k)k as given by Lemma

7, we can take uε
0 = uε

app. Instead of shrinking T to prove the first step of the
induction as in the proof of Theorem 1, one must restrict to ιε small enough. This
shows that an exact solution to (1) exists over [0, T ]. In order to prove the error
estimate, one proceeds as for the uniqueness part of Theorem 1. �
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4. Application to the Green-Naghdi and Serre equations

This section is devoted to the proof of a well-posedness and stability result for
the Green-Naghdi and Serre equations, which are among the most commonly used
models in coastal oceanography.

4.1. The equations. The Green-Naghdi and Serre equations describe the motion
of a layer of incompressible and irrotational fluid under the influence of gravity and
under some assumptions on the physical regime considered. Defining the dimen-
sionless parameters µ and ε as

√
µ :=

mean depth
typical wave-length

and ε :=
surface and bottom variations

mean depth
,

the Green-Naghdi and Serre regimes can be characterized as follows:
• Green-Naghdi regime: µ � 1 and ε ∼ 1;
• Serre regime: µ � 1 and ε ∼ √

µ.
A rigorous derivation of the Green-Naghdi and Serre models is performed in [2],
to which we refer for more details. In nondimensionalized variables, the surface is
parameterized at time t by ζ(t, X) (X ∈ R2), while the bottom is parameterized
by b(X). Denoting by V (t, X) ∈ R2 the vertically averaged horizontal component
of the velocity field at time t, the equations read (with ε = 1 for the Green-Naghdi
equations and ε =

√
µ for the Serre equations):

(35)


(h + µT [h, εb])∂tV + h∇ζ + hε(V · ∇)V

+µε
[

1
3∇

(
h3DV div(V )

)
+Q[h, εb](V )

]
= 0

∂tζ +∇ · (hV ) = 0,

where h := 1+ ε(ζ− b) while the linear operators T [h, b] and DV and the quadratic
form Q[h, b](·) are defined as

T [h, b]V := −1
3
∇(h3∇ · V ) +

1
2
[
∇(h2∇b · V )− h2∇b∇ · V

]
+ h∇b∇b · V,

DV := −(V · ∇) + div(V )

Q[h, b](V ) :=
1
2
∇

(
h2(V · ∇)2b

)
+ h

(h

2
DV div(V ) + (V · ∇)2b

)
∇b.

4.2. Well-posedness of the Serre and Green-Naghdi equations. Under the
“nonzero depth condition”

(36) ∃h0 > 0, inf
R2

h ≥ h0, (h = 1 + ε(ζ − b))

and after defining the spaces

(37) Xs := {(V, ζ) ∈ Hs(R2)2 ×Hs(R2), such that |∇ · V |Hs < ∞},
endowed with the norm

(38) |(V, ζ)|Xs := ‖V ‖s + |ζ|Hs , with ‖V ‖s := |V |Hs +
√

µ|∇ · V |Hs ,

one can prove the following well-posedness result on the Serre (ε =
√

µ) and Green-
Naghdi (ε = 1) equations:

Theorem 2 (Well-Posedness of the Serre and Green-Naghdi equations). Let t0 > 1,
ε =

√
µ (Serre) or ε = 1 (Green-Naghdi), and s ≥ t0 + 2.

Let also (V µ
0 , ζµ

0 )0<µ<1 be bounded in Xs+38 and satisfy (36).
Then there exists T > 0 such that the Serre or Green-Naghdi equations (35) admit
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a unique family of solutions (V µ, ζµ)0<µ<1 bounded in C([0, T
ε ];Xs+4) and with

initial condition (V0, ζ0)0<µ<1.

Remark 5. The spaces Xs+38 and Xs+4 correspond to the spaces Xs+P and Xs+D

of Theorem 1 (one can check that D = 4, P = 38 is an admissible choice when
m = d1 = 2 and d′1 = 0).

Remark 6. For 1D surface waves, flat bottoms (b = 0) and in the Green-Naghdi
scaling (ε = 1), Y. A. Li [12] uses precise estimates on the inverse operator (h +
µT [h, εb])−1 to obtain a well-posedness result in Hs+1(R)2 ×Hs(R), with s > 3/2
by a standard fixed point technique. It is not clear whether these techniques can
be adapted to the 2DH case: the identity Xs = Hs+1(Rd)d×Hs(Rd) is false when
d = 2, and the smoothing properties of (h+µT [h, εb])−1 can only be used to control
the derivatives of V which are in divergence form.

Proof. We only prove the theorem in the Serre scaling (ε =
√

µ), which is the most
difficult one because the existence time provided by the theorem is “large” (of order
O(1/ε)). The modifications to prove the theorem in the Green-Naghdi scaling are
straightforward.
For the sake of simplicity, we write T instead of h+µT [h, εb] when no confusion is
possible. It can be remarked that the operator T is L2 self-adjoint; since moreover,
one has

(h + µT [h, εb])V, V ) = (hV, V )

+ µ
(
h(

h√
3
∇ · V −

√
3

2
∇b · V ),

h√
3
∇ · V −

√
3

2
∇b · V

)
+

µ

4
(h∇b · V,∇b · V ),

and using the assumption that infR2 h ≥ h0, one deduces that

(39) (TV, V ) ≥ E[εb](V )2,

with E[b](V )2 := h0|V |2L2 + µh0

∣∣ h√
3
∇ · V −

√
3

2 ∇b · V
∣∣2
L2 + µh0

4

∣∣∇b · V
∣∣2
L2 .

It follows that T has a self-adjoint, positive, inverse bounded on L2(R2)2 and
the equations (35) can be recast under the form

(40) ∂tu + Lu + εFε[u] = 0,

with u = (V, ζ)T , L =
(

0 ∇
div 0

)
, Fε[·] = (Fε

1 [·],Fε
2 [·])T and

Fε
1 [u] =

1
ε

(
T−1h− 1

)
∇ζ + T−1h(V · ∇)V

+ µT−1
[1
3
∇

(
h3DV div(V )

)
+Q[h, εb](V )

]
,

Fε
2 [u] = ∇ ·

(
(ζ − b)V

)
.

The existence result stated by the theorem gives a time interval [0, T
ε ] for (40).

Rescaling time as t t/ε, this is equivalent to solve the following equation on the
time interval [0, T ]:

(41) ∂tu +
1
ε
Lu + Fε[u] = 0;

this latter formulation is of the form (1), and the result thus follows from Theorem
1, provided that Assumptions 1-3 are satisfied. The rest of the proof is devoted to
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check that these assumptions are satisfied in the Banach scale Xs defined in (37),
with s0 = t0, m = d1 = 2, and d′1 = 0.

Remark 7. In the Green-Naghdi scaling (ε = 1), the parameter µ cannot be ex-
pressed in terms of ε. As seen in Section 3.2.1, in order for the theorem to be
valid uniformly with respect to µ ∈ (0, 1), we must check that Assumptions 1-3 are
satisfied uniformly in µ ∈ (0, 1).

Remark 8. We always assume implicitly that the nonzero depth condition (36) is
satisfied. As explained in Section 3.2.2, this is implied by the assumption that (36)
is satisfied at t = 0.

It follows immediately from the definition of L (independent of time here) that
Assumption 1 is satisfied. In order to check the other assumptions, we need some
preliminary results.
The next lemma gathers some general estimates; the first one is a classical Moser
tame product estimate, the second one is a generalized Kato-Ponce commutator
estimate (note that the estimate depends on f only through its gradient, see Ths.
3 and 6 of [11]), and the last one is a classical “quasilinear type” estimate (e.g.
Chapter II.C of [1]).

Lemma 9. Let t0 > d/2 and s ≥ 0.
i. For all f, g ∈ Hs ∩Ht0(Rd), one has, using notation (2),

|fg|Hs . |f |Ht0 |g|Hs + 〈|f |Hs |g|Ht0 〉s>t0 ;

ii. Let r ∈ R be such that −t0 < r ≤ t0 + 1. Then, for all f ∈ Ht0+1 ∩Hs+r(Rd)
and u ∈ Ht0 ∩Hs+r−1(Rd),∣∣[Λs, f ]u

∣∣
Hr . |∇f |Ht0 |u|Hs+r−1 + 〈|∇f |Hs+r−1 |u|Ht0 〉s>t0+1−r .

iii. Let N ∈ N, and P be a first order differential operator on L2(Rd)N with
anti-adjoint principal part: P :=

∑d
j=1 Pj(x)∂j + P0(x), with Pj(x) symmetric for

j = 1, . . . , d and x ∈ Rd. Then, for all U ∈ Hs ∩Ht0+1(Rd)N ,

|
(
ΛsPU,ΛsU

)
| .

(
‖P‖Ht0+1 |U |Hs +

〈
‖P‖Hs |U |Ht0+1

〉
s>t0+1

)
|U |Hs ,

with ‖P‖Hs :=
∑d

j=0 |Pj |Hs .

The following lemma gives some properties on T−1 which are necessary to check
Assumption 2 (recall that the norm ‖ · ‖s has been defined in (38)).

Lemma 10. The following estimates hold for all s ≥ 0 and uniformly with respect
to µ ∈ (0, 1) (and ε = 1 or ε =

√
µ):

i. ‖T−1V ‖s ≤ c0

(
|V |Hs +

〈
(|h|Hs + |∇b|Hs)|V |Ht0

〉
s>t0+1

)
;

ii.
√

µ
∣∣T−1∇ζ|Hs ≤ c0

(
|ζ|Hs +

〈
(|h|Hs + |∇b|Hs)|ζ|Ht0+1

〉
s>t0+1

)
;

iii.
1
ε

∣∣(T−1h− 1)V
∣∣
Hs ≤ c0

(
|V |Hs+1 +

〈
(|h|Hs+1 + |∇b|Hs+1)|V |Ht0+1

〉
s>t0

)
,

where c0 is a constant depending only on 1
h0

, |h|Ht0+1 and |∇b|Ht0+1 .

Proof. i. Remark first that

(42) |V |2L2 ≤
1
h0

E[εb](V )2 and µ|∇ · V |2L2 ≤ C(
1
h0

, |∇b|L∞)E[εb](V )2;
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replacing V by T−1V in the above expressions and using (39) shows that

|T−1V |2L2 ≤
1
h0

(V,T−1V ) and µ|∇ · T−1V |2L2 ≤ C(
1
h0

, |∇b|L∞)(V,T−1V ).

A simple Cauchy-Schwartz inequality thus yields

(43)
{
‖T−1‖L2(R2)2→L2(R2)2 ≤ 1

h0√
µ‖∇ · T−1‖L2(R2)2→L2(R2) ≤ C( 1

h0
, |∇b|L∞).

Using the fact that T−1 is self-adjoint, one has
(
T−1∇

)∗ = −∇ · T−1, and thus

(44)
√

µ‖T−1∇‖L2(R2)→L2(R2)2 ≤ C(
1
h0

, |∇b|L∞).

We can now prove the following inequality

(45) E[εb](ΛsT−1V ) ≤ c0

(
|V |Hs +

〈
(|h|Hs + |∇b|Hs)|V |Ht0

〉
s>t0+1

)
,

which, together with (42), obviously implies the first point of the lemma. From
(39), one gets the relation

E[εb](ΛsT−1V )2 ≤
(
ΛsV,ΛsT−1V

)
+

(
T[Λs,T−1]V,ΛsT−1V

)
=

(
ΛsV,ΛsT−1V

)
−

(
[Λs, h]T−1V,ΛsT−1V

)
− µ

(
[Λs, T ]T−1V,ΛsT−1V

)
.(46)

Replacing T by its expression and integrating by parts, one gets therefore

E[εb](ΛsT−1V )2 ≤
(
ΛsV,ΛsT−1V

)
−

(
[Λs, h]T−1V,ΛsT−1V

)
−1

3
(
[Λs, h3](

√
µ∇ · T−1V ),Λs(

√
µ∇ · T−1V )

)
−
√

µ

2
(
[Λs, h2∇bT ]T−1V,Λs(

√
µ∇ · T−1V )

)
+
√

µ

2
(
[Λs, h2∇b](

√
µ∇ · T−1V ),ΛsT−1V

)
+ µ

(
[Λs, h∇b∇bT ]T−1V,ΛsT−1V

)
.

Applying Cauchy-Schwartz’s inequality to every component of the r.h.s. of the
above expression, and using Lemma 9.ii and (39), one gets directly

E[εb](ΛsT−1V ) ≤ C(
1
h0

, |h|Ht0+1 , |∇b|Ht0+1)

×
(
|V |Hs + E[εb](Λs−1T−1V ) +

〈
(|h|Hs + |∇b|Hs)E[εb](Λt0V )

〉
s>t0+1

)
,

from which one deduces (45).
ii. Remark that

√
µ
∣∣ΛsT−1∇ζ

∣∣
2

≤ √
µ
∣∣T−1∇Λsζ

∣∣
2

+
√

µ
∣∣[Λs,T−1]∇ζ

∣∣
2

≤ C(
1
h0

, |∇b|L∞)|ζ|Hs +
√

µ
∣∣[Λs,T−1]∇ζ

∣∣
2
,(47)

where we used (43) to control the first term of the r.h.s. For the second term,
remark that [Λs,T−1] = −T−1[Λs,T]T−1, so that

[Λs,T−1] = −T−1[Λs, h]T−1 +
1
3
(
√

µT−1∇)[Λs, h3](
√

µ∇ · T−1)

−
√

µ

2
(
√

µT−1∇)[Λs, h2∇b] · T−1 +
√

µ

2
T−1[Λs,∇b](

√
µ∇ · T−1)

−µT−1[Λs,∇b∇bT ]T−1.
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It follows that |[Λs,T−1]∇ζ|L2 can be controlled using Lemma 9.ii, the estimates
on ‖T−1‖L2→L2 and

√
µ‖T−1∇‖L2→L2 given by (43) and (44), and the estimate on

‖T−1‖Hs→Hs and
√

µ‖∇ · T−1‖Hs→Hs given by i. Together with (47), this proves
ii.
iii. Just remark that 1− T−1h = T−1(T− h) = µT−1T , so that

1
ε
|(1− T−1h)V |Hs ≤

√
µ

ε
|√µT−1T V |Hs .

Since
√

µ/ε ≤ 1, the result follows from the first two points and Lemma 9.i. �

A direct consequence of Lemmas 9.i and 10.i and .iii, and of the definition of Fε,
is that the first part of Assumption 2 holds with s = t0 and m = 2.
Remarking that

dζ(ζ 7→ T−1)ζ̃ = −T−1
(
εζ̃ + µdζ(ζ 7→ T [h, εb])ζ̃

)
T−1,

and using Lemmas 9.i and 10.i and .ii, one can check that the conditions on the
first and second derivative of Fε made in Assumption 2 are also satisfied.
In order to check Assumption 3, we must study the Cauchy problem associated to
the linearization of (41) around some reference state u := (V , ζ):

(48) ∂tu +
1
ε
Lu + Fε

u[u]u = f, u|t=0 = g,

with f = (F1, f2)T and g := (G1, g2)T .
From the explicit expression of L and Fε given in (40), and writing h := 1+ε(ζ−b),
T := T [h, εb], and T := h + µT , one gets that (48) is equivalent to

(49)
(

(h + µT )∂tV
∂tζ

)
+

(
N1 N2

N3 N4

) (
V
ζ

)
=

(
(h + µT )F1

f2

)
,

with initial condition (V, ζ)|t=0 = (G1, g2), and where the linear operators Nj (j =
1, . . . , 4) are given by

N1V := h(V · ∇)V + h(V · ∇)V +
µ

3
∇

[
h3

(
DV (∇ · V ) +DV (∇ · V )

)]
,

+µQ[h, εb](V, V ),

N2ζ :=
1
ε
h∇ζ + bζ + µ∇

(
haζ

)
,

N3V :=
1
ε
∇ · (hV ),

N4ζ := ∇ · (ζV ),

with

a := εhDV (∇ · V ) + (V · ∇)2b− (∇b− h∇) · (∇ζ + εFε
1 [u]),

b := ε(V · ∇)V − εFε
1 [u] + µa∇b,

and with Q[h, εb](·, ·) standing for the bilinear symmetric form canonically associ-
ated to Q[h, εb].

Remark 9. Thanks to Proposition 1, one can replace ∇ζ + εFε
1 [u] by −ε∂tV in the

definition of a and −εFε
1 [u] by ε∂tV + ∇ζ in the definition of b. It follows that√

µ|a|Hs and |b|Hs are bounded from above by

C(|ζ|Ht0 , ‖V ‖t0+1, |b|Ht0+1 , ‖ε∂tV ‖t0)
(
|ζ|Hs + ‖V ‖s+1 + ‖ε∂tV ‖s + |b|Hs+1

)
.
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The following lemma end the proof of the theorem since it implies that Assump-
tion 3 is also satisfied with s0 = t0, m = 2, d1 = 2 and d′1 = 0 (recall that the
notation Is is defined in (5)):

Lemma 11. Let T > 0, f = (F1, f2) ∈ C([0, T ];Xs), g ∈ Xs and u = (V , ζ) ∈
Xs+1

T be such that ∂tu ∈ Xs
T . Then for all s ≥ 0, there exists a unique solution

u = (V, ζ) ∈ Xs
T to (48) and for all 0 ≤ t ≤ T ,

|u(t)|Xs ≤ c1

(
Is(t, f, g) +

〈
(|u|Xs+1

T
+ |ε∂tu|Xs

T
)It0+1(t, f, g)

〉
s>t0+1

)
,

with c1 = C(T, 1
h0

, |u|
X

t0+2
T

, |ε∂tu|Xt0+1
T

, |b|Ht0+2 , |b|Hs+2).

Proof. We only prove the energy estimate, since the existence/uniqueness of a solu-
tion to the linear Cauchy problem (49) can be classically obtained by regularization
techniques. Multiplying the first equation of (49) by TΛsT−1 and the second by
Λs, and taking the scalar product with ΛsV and Λsζ respectively, one gets

1
2
∂t(TΛsV,ΛsV ) +

1
2
∂t(Λsζ, Λsζ) = −(ΛsN1V,ΛsV )− (ΛsN4ζ, Λsζ)

−
[
(ΛsN2ζ, ΛsV ) + (ΛsN3V,Λsζ)

]
+([Λs,T]T−1N1V,ΛsV ) + ([Λs,T]T−1N2ζ, ΛsV )

+(TΛsF1,ΛsV ) + (Λsf2,Λsζ) +
1
2
(∂tTΛsV,ΛsV );(50)

we now prove that (with u = (V, ζ), u = (V , ζ), f = (F1, f2), and | · |Xs as defined
in (38))

∂t(TΛsV,ΛsV ) + ∂t(Λsζ, Λsζ)
≤ c1

(
|u|Xs + |f |Xs +

〈
(|u|Xs+1 + |ε∂tu|Xs)|u|Xt0+1

〉
s>t0+1

)
|u|Xs .(51)

We thus check that all the components of the r.h.s. of (50) are bounded from above
by the r.h.s. of (51).
• Control of (ΛsN1V,ΛsV ). Let us first rewrite

(ΛsN1V,ΛsV ) = −1
2
µI + (ΛsAV,ΛsV ) + µ(ΛsB(∇ · V ),Λs(∇ · V ))

+µ(ΛsCV,Λs(∇ · V )) + µ(ΛsD(∇ · V ),ΛsV )(52)

with

AV := h(V · ∇)
(
V + µ(V · ∇b)∇b

)
+ h(V · ∇)

(
V + µ(V · ∇b)∇b

)
−µ

2
h2(V · ∇)(∇ · V )∇b,

B := −1
3
h3DV − 1

3
h3(∇ · V ),

CV :=
1
3
h3(V · ∇)(∇ · V )− 1

2
h2(V · ∇)(V · ∇b),

+
[
h2(V · ∇) + (h2(V · ∇))∗

]
∇b · V

D := h2∇b(∇ · V ),

and I :=
(
[Λs, h2∇b(V · ∇)]∇ · V,ΛsV

)
+

(
[Λs, h2(V · ∇)(∇bT ·)]V,Λs∇ · V

)
. One

can check that µI is bounded from above by the r.h.s. of (51) by applying Cauchy-
Schwartz’s inequality to its two components, and then using (42) and Lemma 9.ii.
Remarking also that A and B are first order differential operators with anti-adjoint
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principal part, one can use Lemma 9.iii and (42) to check that the second and third
component of (52) are bounded from above by the r.h.s. of (51). Finally, we can
prove that the same control holds on the last two components of (52) by using
Cauchy-Schwartz’s inequality and Lemma 9.i (remark that C and D are simple
matrix and scalar valued functions).
• Control of (ΛsN4ζ, Λsζ). From the explicit expression of N4 and Lemma 9.iii,
one obtains directly that this term is controlled by the r.h.s. of (51).
• Control of (ΛsN2ζ, ΛsV ) + (ΛsN3V,Λsζ). Integrating by parts, one gets imme-
diately that

(ΛsN2ζ, ΛsV ) + (ΛsN3V,Λsζ) =
(
Λs(bζ),ΛsV

)
−

(
Λs(h(

√
µa)ζ),

√
µΛs∇ · V

)
+

1
ε

(
[Λs, h]∇ζ, ΛsV

)
+

1
ε

(
∇[Λs, h]V,Λsζ

)
.

The first two components can be controlled by a Cauchy-Schwartz inequality and
Lemma 9.i, and the last two by Cauchy-Schwartz and Lemma 9.ii (note that the
commutator estimate provided by this lemma depends only on h through ∇h =
ε∇(ζ − b) and provides therefore the ε necessary to compensate the singular term
1/ε). Together with the estimates of Remark 9, this shows that this term also is
controlled by the r.h.s. of (51).
• Control of ([Λs,T]T−1N1V,ΛsV

)
. Let us remark that N1V can be written as

(53) N1V = TH + P1V + P2(
√

µ∇ · V ),

with H :=
[
(∇ · V )V − 3

2 (V · ∇b)V
]
, and where P1 and P2 are both first order

differential operators, and whose coefficients are polynomial expressions of
√

µ, h,
∇h,

√
µ∇ · V , ∇(

√
µ∇ · V ) and of the vectors V and ∇b and their first derivatives

(the exact expression of P1 and P2 is of no importance). One has therefore

[Λs,T]T−1N1V = [Λs,T]H + [Λs,T]T−1(P1V + P2(
√

µ∇ · V ))

= [Λs, h]H + [Λs, h]T−1(P1V + P2(
√

µ∇ · V ))

+µ[Λs, T ]H + µ[Λs, T ]T−1(P1V + P2(
√

µ∇ · V ))
:= I1 + I2 + I3 + I4.

One deduces directly from Lemmas 9.ii and 10.i and the definition of H, P1 and
P2 that

|I1|L2 + |I2|L2 ≤ c1

(
‖V ‖s +

〈
(‖V ‖Hs + |h|Hs + |∇b|Hs)‖V ‖t0+1

〉
s>t0+1

)
,

and a simple Cauchy-Schwartz inequality shows that scalar products (I1,ΛsV ) and
(I2,ΛsV ) are controlled by the r.h.s. of (51). Proceeding exactly as for the control
of the third term of (46), one can check that the same control holds for (I3,ΛsV )
and (I4,ΛsV ).
• Control of ([Λs,T]T−1N2ζ, ΛsV

)
. Using the explicit expression of T and Lemma

10, and proceeding as for the control of the third term of (46), one can bound this
term from above by the r.h.s. of (51).
• Control of the last three terms of (50). Controlling these terms by the r.h.s.
of (51) follows directly from a Cauchy-Schwartz inequality (and an integration by
parts for the O(µ) component of T and ∂tT).
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We can now conclude the proof of the lemma. Recalling that from (39), (42)
and the definition (38), one has

(TΛsV,ΛsV ) + (Λsζ, Λsζ) ≤ C(|h|L∞ , |∇b|L∞)|u|2Xs

|u|2Xs ≤ C(
1
h0

, |∇b|L∞)(TΛsV,ΛsV ) + (Λsζ, Λsζ),

one can integrate (51) with respect to time to obtain, for all t ∈ [0, T ],

|u(t)|Xs ≤ c1

[
|u(0)|Xs +

∫ t

0

(
|u|Xs + |f |Xs +

〈
(|u|Xs+1 + |ε∂tu|Xs)|u|Xt0+1

〉
s>t0+1

)]
.

Using this identity with s = t0 + 1 shows that

(54) |u(t)|Xt0+1 ≤ c1

[
|u(0)|Xt0+1 +

∫ t

0

(
|u|Xt0+1 + |f |Xt0+1

)]
,

and Gronwall’s lemma thus yields, for all t ∈ [0, T ],

|u(t)|Xt0+1 ≤ c1

(
|u(0)|Xt0+1 +

∫ t

0

sup
0≤t′′≤t′

|f(t′′)|Xt0+1dt′)

(recall that c1 is a generic notation whose value can change from one line to another);
plugging this expression into (54) thus ends the proof of the lemma. �

�

4.3. Justification of the Serre and Green-Naghdi models. As said above, the
Serre and Green-Naghdi are both asymptotic models which describe the dynamics
of the water-waves equations. It is not known however whether these asymptotics
are correct, in the sense that the exact solutions to the asymptotic models provide a
correct approximation to the exact solutions of the water-waves equations. This is
what we show below: if solutions (V µ

app, ζ
µ
app) to the water-waves equations exist and

approximately solve (35), then their asymptotic behavior (as µ → 0) is correctly
described by the Serre (ε =

√
µ) or Green-Naghdi (ε = 1) models.

Theorem 3 (Justification of the Serre and Green-Naghdi models). Let t0 > 1,
ε =

√
µ (Serre) or ε = 1 (Green-Naghdi), and s ≥ t0 + 2.

Let also T > 0 and (V µ
app, ζ

µ
app)0<µ<1 be bounded in C([0, T

ε ];Xs+40) and assume
that hµ

app := 1 + ε(ζµ
app − b) satisfies (36) at t = 0. If moreover

(hµ
app + µT [hµ

app, εb])∂tV
µ
app + hµ

app∇ζµ
app + εhµ

app(V
µ
app · ∇)V µ

app

+µε
[

1
3∇

(
hµ

app
3DV µ

app
div(V µ

app)
)

+Q[hµ
app, εb](V

µ
app)

]
= µ2Rµ

1

∂tζ
µ
app +∇ · (hµ

appV
µ
app) = µ2rµ

2 ,

with (Rµ
1 , rµ

2 )0<µ<1 bounded in C([0, T
ε ];Xs+38), then there exists 0 < T ≤ T and a

unique solution (V µ, ζµ)0<µ<1 ∈ C([0, T/ε] : Xs+4) to (35) with initial conditions
(V µ

app |t=0 , ζ
µ
app |t=0). Moreover, one has

sup
0≤t≤T

∣∣(V µ, ζµ)− (V µ
app, ζ

µ
app)

∣∣ . µ2/ε,

uniformly with respect to 0 < µ < 1. Restricting to small enough values of µ, one
can moreover take T = T .

Remark 10. The existence of a family (V µ
app, ζ

µ
app)0<µ<1 having the properties as-

sumed in the theorem is established in [2].
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Proof. Since Assumptions 1-3 have been checked in the proof of Theorem 2, the
result is a direct consequence of Corollary 1. �

Acknowledgment: The authors thank B. Texier for fruitful discussions.
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[3] S. V. Basenkova, N. N. Morozov, and O. P. Pogutse. Dispersive effects in two-dimensional

hydrodynamics. Dokl. Akad. Nauk SSSR, 1985.
[4] A. E. Green, N. Laws, and P. M. Naghdi. On the theory of water waves. Proc. Roy. Soc.

(London) Ser. A, 338:43–55, 1974.
[5] A. E. Green and P. M. Naghdi. Derivation of equations for wave propagation in water of

variable depth. J. Fluid Mech., 1976.

[6] E. Grenier. Pseudo-differential energy estimates of singular perturbations. Comm. Pure Appl.
Math., 50(9):821–865, 1997.

[7] Richard S. Hamilton. The inverse function theorem of Nash and Moser. Bull. Amer. Math.

Soc. (N.S.), 7(1):65–222, 1982.
[8] G. Iooss, P. I. Plotnikov, and J. F. Toland. Standing waves on an infinitely deep perfect fluid

under gravity. Arch. Ration. Mech. Anal., 177(3):367–478, 2005.

[9] J. W. Kim, K. J. Bai, R. C. Ertekin, and W. C. Webster. A strongly-nonlinear model for water
waves in water of variable depth: the irrotational green-naghdi model. Journal of Offshore

Mechanics and Arctic Engineering, Trans. of ASME,, 2003.

[10] David Lannes. Well-posedness of the water-waves equations. J. Amer. Math. Soc., 18(3):605–
654 (electronic), 2005.

[11] David Lannes. Sharp estimates for pseudo-differential operators with symbols of limited
smoothness and commutators. J. Funct. Anal., 232(2):495–539, 2006.

[12] Yi A. Li. A shallow-water approximation to the full water wave problem. Comm. Pure Appl.

Math., 59(9):1225–1285, 2006.
[13] Hans Lindblad. Well posedness for the motion of a compressible liquid with free surface

boundary. Comm. Math. Phys., 260(2):319–392, 2005.

[14] Hans Lindblad. Well-posedness for the motion of an incompressible liquid with free surface
boundary. Ann. of Math. (2), 162(1):109–194, 2005.

[15] John Nash. The imbedding problem for Riemannian manifolds. Ann. of Math. (2), 63:20–63,

1956.
[16] Markus Poppenberg. Nash-Moser techniques for nonlinear boundary-value problems. Elec-

tron. J. Differential Equations, pages No. 54, 33 pp. (electronic), 2003.

[17] Markus Poppenberg, Klaus Schmitt, and Zhi-Qiang Wang. On the existence of soliton
solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differential Equations,

14(3):329–344, 2002.

[18] Xavier Saint Raymond. A simple Nash-Moser implicit function theorem. Enseign. Math. (2),
35(3-4):217–226, 1989.

[19] Michael E. Taylor. Partial differential equations. III, volume 117 of Applied Mathematical
Sciences. Springer-Verlag, New York, 1997. Nonlinear equations, Corrected reprint of the

1996 original.
[20] Ge Wei, James T. Kirby, Stephan T. Grilli, and Ravishankar Subramanya. A fully nonlinear

Boussinesq model for surface waves. I. Highly nonlinear unsteady waves. J. Fluid Mech.,

294:71–92, 1995.
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