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A new theory is presented explaining why not only short surface ripples, but also longer ocean 
surface waves are damped by oil films floating on the sea surface. The wave attenuation by viscoelastic 
surface films is attributed to the Marangoni effect, which causes a strong resonance-type wave 
damping in the short-gravity-wave region, and to nonlinear wave-wave interaction, by means of which 
wave energy is transferred from the longer waves to the energy sink in the Marangoni resonance 
region. A viscoelastic surface film changes the free surface boundary condition in the tangential 
direction and thus strongly modifies the flow pattern in the boundary layer. As a consequence, wave 
energy is dissipated by enhanced viscous damping in the short-gravity-wave region due to large 
velocity gradients induced in the viscous boundary layer. Estimates of the influence of surface films on 
nonlinear transfer rates are given. Data on wave damping obtained in laboratory and field experiments 
by previous investigators are discussed in the light of the proposed theory. It is found that this theory 
is capable of explaining the observed strong wave damping by viscoelastic surface films. The theory 
predicts that in the equilibrium range of the spectrum, but outside the Marangoni resonance region, 
wave damping increases with wave number k as k 3/2 and increases quadratically with wind speed (up 
to the limit where the film is "washed down"). The higher the elasticity of the surface film, the stronger 
is the wave damping. 

1. INTRODUCTION 

Since ancient times it has been well known that oil films 

("slicks") spread on the surface of rough seas dampen 
surface waves (Aristotle, Problematica Physica, 23, no. 38; 
Plinius Secundus (the Elder), Historia Naturalis, vol. 2, 
chap. 49, 77, also chap. 106; Plutarch, Moralis: Quaestiones 
Naturalis, vol. 11, no. 12, also Moralis: De Prima Frigido, 
no. 950). There exist many historical records of oil having 
been used to aid rescue operations in stormy seas (see, for 
example, the historical reviews by Scott [1978]), a tacit 
acknowledgement that slicks considerably reduce wave 
breaking and the wave-induced turbulence, thus making the 
sea less dangerous for small boats. 

However, among present-day oceanographers there exists 
much scepticism about the effectiveness of thin oil films in 
calming long ocean waves [Scott, 1978]. Indeed, from a 
physical point of view it is difficult to understand that surface 
films which may be only one molecular layer thick, i.e., few 
10 -9 m, can have a damping effect on surface waves with 
wavelengths much longer than the wavelengths of capillary 
waves. For example, Gottifredi and Jameson [1968] con- 
cluded "that no known surface film could affect waves of 

length greater than about 1 m." 
It has been argued that, by suppressing the capillary and 

short gravity waves, surface films reduce the aerodynamic 
roughness and thus the energy input from the wind [Frank- 
lin, 1774; Scott, 1978]. However, the wave system cannot 
respond instantaneously to a reduction of the wind input, 
because the dissipation of gravity wave energy requires a 
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considerable length of time. Clearly, according to hydrody- 
namic wave theory (see, for example, Phillips [1977, equa- 
tion (3.4.25)]), normal viscous dissipation is much too weak 
to account for the observed strong damping of surface waves 
with wavelengths of the order of meters. 

In 1979 the damping of long surface waves by a monomo- 
lecular surface film consisting of oleyl alcohol was measured 
quantitatively in a slick experiment carried out in the North 
Sea [Hiihnerfuss et al., 1983]. It was found that even waves 
with wavelengths of 3.2 m are significantly damped when 
they travel through a 1.5-km-long monomolecular surface 
film patch. At that time we had no explanation as to why the 
longer waves were also damped. 

In this paper we show that the attenuation of long ocean 
waves by surface films consisting of surface-active material 
can be explained by the Marangoni effect, which causes a 
resonance-type damping of short gravity waves by viscoelas- 
tic films [Levich, 1940, 1962; Dorrestein, 1951; Davies and 
Vose, 1965; Lucassen and Hansen, 1967; Lucassen, 1968; 
Gottifredi and Jameson, 1968; Lucassen-Reynders and Lu- 
cassen, 1969; Lucassen-Reynders, 1985; Cini et al., 1987] 
and by nonlinear wave-wave interaction by means of which 
wave energy is transferred from longer waves to the energy 
sink in the short wave region [Hasselmann, 1962, 1963a, b; 
Hasselmann et al., 1973; Komen et al., 1984]. At this point 
we should mention that in the western scientific literature it 

has become standard practice to attach the name "Ma- 
rangoni" to all effects that are induced by surface tension 
gradients at interfaces between two fluids. Such effects were 
first studied by the Italian physicist Marangoni [1872]. 

When studying the influence of surface films On wave 
damping, oceanographers have often confined their investi- 
gation to inextensible films, thereby implying that inextensi- 
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ble films give rise to the strongest wave damping (see, for 
example, Phillips [1977, p. 48]). But, as was already shown 
by Levich [1940] and Dorrestein [1951], this is not true: 
surface films of finite surface elasticity give rise to stronger 
damping. 

In the past, the effect of viscoelastic films on the damping 
of small-wavelength capillary waves has been investigated 
mainly by chemists, who used this effect to study the 
rheological properties of surface-active materials (for a re- 
view, see Lucassen-Reynders [1985]). Only in the last few 
years has it been realized that such films can give rise to a 
resonance-type or anomalous damping in the short- 
gravity-wave region [Cini and Lombardini, 1978; Lucassen, 
1982; Hiihnerfuss, 1986; Cini et al., 1987]. 

Experimental evidence of such anomalously high damping 
of surface waves in the short-gravity-wave region by mono- 
molecular slicks was obtained in laboratory experiments as 
early as 1981 by Cini and Lombardini [1981] and by Hiih- 
nerfuss et al. [1981b]. Recently, this effect has also been 
measured by Russian investigators in the open sea [Ermakov 
et al., 1985, 1986]. 

In section 2 we briefly sketch the basic underlying physics 
of the Marangoni wave theory. For details, the reader is 
referred to the book of Levich [1962] and to the papers by 
Lucassen-Reynders and Lucassen [1969], Cini and Lombar- 
dini [1978], and Cini et al. [1987] or to the appendix of this 
paper. The appendix has been added because in Levich's 
[1962] book, equations (121-18) and (121-19) contain a sign 
error (apparently a misprint) which is perpetuated through- 
out the literature and which has resulted in incorrect formu- 

lae for the damping coefficient appearing in many papers. In 
section 3 we discuss how wave energy can be transferred 
from the low-wave number region to the energy sink in the 
Marangoni resonance region by nonlinear wave-wave inter- 
action. Experimental evidence of Marangoni damping is 
presented in section 4. In section 5 we compare our theoret- 
ical predictions on wave damping of long ocean waves with 
experimental data obtained during the Marine Remote Sens- 
ing (MARSEN) slick experiment in the North Sea in 1979 
[Hiihnerfuss et al., 1983]. Finally, the results and implica- 
tions of the present investigation are discussed in section 6. 

2. THE THEORY OF MARANGONI WAVE DAMPING 

The resonance-type behavior of damping of water waves 
is connected with the fact that elastic surfaces can carry two 
kinds of waves, the well-known gravity-capillary waves and 
the Marangoni waves. The Marangoni waves are predomi- 
nantly longitudinal waves in the boundary or shear layer. 
They are heavily damped by viscous dissipation. When these 
two waves are in resonance as given by linear wave theory, 
the surface waves experience maximum damping. The re- 
storing force for Marangoni waves is a tangential force 
associated with surface tension gradients, which are deter- 
mined by the viscoelastic properties of the surface film. The 
inertial mass of the system is given by the mass of the 
boundary layer, which is a thin layer extending below the 
surface. Its thickness d is determined by the dynamic 
viscosity r/and the density p of the fluid, as well as by the 
angular frequency •o of the wave [Phillips, 1978, p. 46]: 

d = (1) 

The dispersion relation for Marangoni waves can be 
derived from the Navier-Stokes equations together with the 
appropriate boundary conditions. In the case of a surface 
covered with a viscoelastic film the kinematical boundary 
condition at the free surface differs from the one for a clean 

surface. The viscous tangential stress does not vanish as in 
the case of a clean surface, but it is balanced by the 
tangential stress exerted on the water surface by surface 
tension gradients. Since the viscous stress is proportional to 
gradients in the velocity field, the stress associated with the 
viscoelastic film causes strong velocity gradients in the 
boundary layer. 

Here we do not want to give exact derivations of the 
relevant formulae of Marangoni wave theory. This is de- 
ferred to the appendix. Instead, we use the analogy with 
longitudinal oscillations of a viscoelastic membrane to derive 
approximate formulae. This derivation has the advantage of 
providing further insight into the basic physics involved. 

For a membrane with elasticity modulus •, membrane 
thickness • and mass density •, the dispersion relation for 
the longitudinal wave mode is given by w = (•/b[t) •/2 k, 
where w and k denote the radian frequency and wave 
number, respectively. Quite similarly, the dispersion rela- 
tion for the "longitudinal" Marangoni wave reads 

CO l = [(1 - i)E/pd]l/2k I (2) 
Here E denotes the dilational modulus of the surface film. It 

is a complex quantity which describes the surface elasticity 
(the real part) and the surface viscosity (the imaginary part). 
The factor (1 - /) enters into (2) because the restoring force 
due to the film elasticity has to be balanced not only by fluid 
acceleration but also by the viscous force within the bound- 
ary layer. It can be shown that both terms have equal 
amplitudes, but are out of phase by 90 ø . 

Inserting (1) into (2) yields 

co• = [(- i)E2/(prl)]k• (3) 
This is the well-known approximate dispersion relation for 
Marangoni waves first derived by Lucassen [1968], which is 
obtained from the exact hydrodynamic equations when both 
the gravity and the surface tension (but not surface tension 
gradient) terms are neglected. 

If we assume that the film is purely elastic (E real), write 
k• as k• = K• + iAt (K• and A t real), and assume that w• is real, 
we obtain from (3) 

K I = COS (7r/8)(p'r/E-2)1/4OOl TM (4a) 

A t = tan (rr/8)•l = 0.414•1 (4b) 

From (4b) we see that the imaginary part of k• is of the same 
order of magnitude as the real part, which implies that the 
Marangoni wave is heavily damped on the scale of one 
wavelength. Only at a distance of one wavelength from the 
source has the wave amplitude decreased to 7.4% of its 
original value. This is the reason why Marangoni waves 
escaped detection until 1968 [Lucassen, 1968]. Marangoni 
waves can exist only when the sea surface can support 
surface tension gradients. Marangoni waves are predomi- 
nantly associated with horizontal particle motions and are 
therefore also called "longitudinal waves." The strong 
damping of the Marangoni waves is associated with the 
occurrence of strong velocity gradients within the surface 
boundary or shear layer which then leads to enhanced 
viscous dissipation. 
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Fig. 1. Dispersion relations of gravity-capillary and Marangoni waves (approximation based on (3)) for the case that 
the water surface is covered with a monomolecular film consisting of CEM3AB. 

If gravity-capillary waves propagate on a water surface 
covered with a viscoelastic film, they give rise to local 
contractions and expansions of the surface film which in turn 
cause surface tension gradients. Thus Marangoni waves can 
be excited. However, the surface deformations are forced to 
oscillate with frequencies and wave numbers that in general 
are not the frequency and the wave number of Marangoni 
waves. Resonance will occur when the wave number of the 

surface wave at a given frequency is equal to that of the 
Marangoni wave. It is possible because the structure of the 
dispersion relations for gravity-capillary and Marangoni 
waves is such that both dispersion curves can "intersect" or 
approach each other. In Figure 1 the approximate dispersion 
relation of Marangoni waves based on (4b) is plotted to- 
gether with the well-known dispersion relation of gravity- 
capillary waves. A dilational modulus applicable to a mono- 
molecular film consisting of hexadecyl-trimethylammonium 
bromide (CEM3AB) was used in the calculations. 

In this context it should be emphasized that the resonance 
between short gravity waves and Marangoni waves dis- 
cussed herein is based upon linear wave theory, while the 
nonlinear resonant wave-wave interaction theory described, 
for instance, by Hasselmann [1962, 1963a, b] is a higher- 
order effect of weak nonlinear wave theory. 

In the resonance region it no longer makes any sense to 
talk about two separate wave modes. The particle motions 
are shared by both modes. (Strictly speaking, dispersion 
curves cannot "intersect.") Both wave modes are affected 
by the enhanced viscous dissipation in the surface boundary 
layer due to the presence of a viscoelastic film and thus 
experience strong damping. The result is a resonance-type 
behavior of the relative damping coefficient y• = A/A o as a 
function of wave number or frequency. Here A and A o 
denote the (viscous) damping coefficients of gravity-capillary 
waves propagating on slick-covered and on clean surfaces, 
respectively. 

The location of the resonance in the frequency domain can 
be obtained by equating the wave number of the Marangoni 
wave and the wave number of the gravity-capillary wave. 
Since in most cases of practical interest to ocean wave 
damping, resonant damping due to surface films occurs in 
the short-gravity-wave region, we use here only the disper- 
sion relation for gravity waves 

k• = g - ]co• (5) 

where g denotes the acceleration of gravity and w e denotes the 
radian frequency and k s the wave number, of the gravity 
waves. The resonance frequency COre s and resonance wave 
number kres is obtained by equating Kt and k s of (4a) and (5). 
This yields 

COre s = (COS 7r/8)4/5g 4/5/91/5 rll/5E - 2/5 (6) 

Note, however, that the maximum of Y(D = A/Ao is located 
not exactly at co .... but rather at a slightly lower frequency 
because the Marangoni wave is a strongly damped wave. 
This effect can be compared with a forced damped harmonic 
oscillator, where the maximum amplitude is also encoun- 
tered below the resonance frequency. Since the Marangoni 
wave is heavily damped, the width of the resonance must be 
quite broad. From (4b) we conclude that the half-power 
width is of the order of the resonance wave number. Thus 

the width of the resonance increases with increasing reso- 
nance frequency (.Ore s . 

From (6) we see that the resonance wave number de- 
creases with increasing dilational modulus E. Therefore in 
order to achieve maximum damping at long wavelengths, 
one has to choose a surface film with large E. However, no 
chemical substances exist in nature with dilational moduli 

much larger than 0.4 N m- •. If this value is inserted into (6), 
we obtain as an upper limit for the resonant wavelength 
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Fig. 2. Relative viscous damping coefficient y(f) = A(f)/A0(J9 
as a function of frequency for water surfaces covered with hexade- 
canoic acid methyl ester (PME), oleic acid (OLS), oleyl alcohol 
(OLA), hexadecyl-trimethylammonium bromide (CEM3AB) and 
triolein. 

Ares = 2 rdkres = 2 rr g/Wr2es (7) 
Are s • 1 m 

The exact resonance condition as well as the functional 

dependence of the damping coefficient A on wave frequency 
•o and complex dilational modulus E = IEI exp (-iO) has been 
calculated by several authors [Cini and Lombardini, 1978; 
Lucassen, 1982; Hiihnerfuss, 1986; Cini et al., 1987]. The 
clean-surface damping coefficient A o is given by the Stokes 
equation 

4K 2 
A o = Pg + 3rrK 2 (8) 

where • denotes the real part of the complex wave number 
and o-is the surface tension. The formula for the relative 

damping ratio y• = A/A o then reads 

l+X(cos 0-sin 0)+XY- YsinO 

Y(f) = 1 + 2X(cos 0- sin 0) + 2X 2 (9) 
where 0 is the phase angle, 

X = IEI •2(21/2w3/2(p 7/) 1/2) -I (10) 

Y = IEI •(4wr/) - 1 (11) 

Figure 2 shows the theoretical y as a function off = (2 rr)-• 
•o for water surfaces covered with five different monomolec- 

ular slicks assuming the E and 0 values summarized in Table 
1: hexadecanoic acid methyl ester (PME), oleic acid (OLS), 
oleyl alcohol (OLA), hexadecyl-trimethylammonium bro- 
mide (CEM3AB), and triolein (TOLG). In calculating these 
curves, the dispersion relation for gravity-capillary waves 

to2= g• +_ K3 (12) 
P 

has been used to convert from wave number to frequency 
space. 

In Table 1 the maximum of the damping coefficient, y .... 
as well as the frequency fM at which y(f) attains its maxi- 

mum value are also given. The calculations were carried out 
withr/= 10 -3Pas, p- 103kgm -3 ando-=0.073Nm -• , ß 

We now define the Marangoni damping time T•u as the 
time in which the spectral energy density at f = f•u has 
decayed to 1/e of its original value. More often its reciprocal 
value a•u = TM -• is used; this value is called the damping 
rate. They are related to A m , which is the damping ratio 
defined in the spatial domain, by 

gM = T/• 1= 2Cg•M) AM = 2Cg•M)Ymax AO•M) (13) 
Here c•(fM) denotes the group velocity of the surface wave 
at f = f•u. The factor 2 enters into (13) because A M is 
conventionally defined in terms of amplitudes, not energies. 

In the case of an oleyl alcohol slick, using values of c•(f•u) 
= 0.18 m s -• Ao(f•u) = 0.09 m -• and Ymax = 28 (see Table 
1), we obtain from (13) 

a•u = T• 1 = 0.91 s- 1 (14) 

In the absence of a surface film the damping is due mainly to 
viscous dissipation in the bulk water, while in the presence 
of a viscoelastic film it is caused mainly by the viscous 
dissipation in the boundary layer. The elastic stress associ- 
ated with the surface tension gradient Orr/Ox, which is in- 
duced by the nonuniform horizontal displacement of the 
film, has to be balanced by a shear stress in the boundary 
layer' 

Orr •OUx Ouz• ox - 'q \ + ox j 
Here ux and u z denote the orbital velocities of the water 
particles in x (horizontal) and z (vertical) directions. The 
surface tension gradient is related to the horizontal displace- 
ment s • of the surface due to the passage of a surface wave by 

0o- 02s c 
Ox • (16) 

As was stated before, the surface dilational modulus E is a 
complex quantity. A nonvanishing phase angle implies that if 
the surface area is varied harmonically in time, the areas of 
maximum surface dilation or compression do not coincide 
with areas of maximum or minimum surface tensions, re- 
spectively. This means that the viscoelastic film has a finite 
response (relaxation) to surface area variations. Experimen- 
tal verification of this effect was recently supplied by wind- 
wave tunnel experiments using a surface potential sensor 
carried by a wave follower [Lange and Hghnerfuss, 1984; 

TABLE 1. Dilational Moduli Used in Calculating the Curves of 
Figure 2 

Substance IEI, N m-• 0, deg Ymax fM, HZ 

Hexadecanoic acid methyl 0.046 176 40.1 3.5 
ester (PME) 

Oleic acid (OLS) 176 19.5 6.1 
Oleyl alcohol (OLA) 175 27.9 4.8 
Hexadeyl- 177 26.3 4.6 

trimethylammonium 
bromide (CEM3AB) 

Triolein (TOLG) 175 18.3 6.85 

0.014 

0.0225 

0.0255 

0.0115 

These values were obtained in wave tank experiments at a 
temperature of about 288 K. Also given are Ymax and fM, defined by 
Ymax = Y (fM). 
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Hiihnerfuss et al., 1985a]. For the five surfactants mentioned 
above, the phase angle is always close to 180 ø . This implies 
that at areas of maximum divergence the surface tension is 
largest, which is just the opposite of what one intuitively 
expects. 

Viscoelastic films greatly enhance velocity shear in the 
boundary layer. The ratio of the velocity gradient at the 
surface in the presence of a viscoelastic film to the velocity 
gradient at a clean surface is approximately given by 

r = •'•X'X/film/•, OX ] clean 

E 02s • / 0st E k (17) 

The last identity follows because the spatial scales of the 
horizontal and vertical displacements s c and s r associated with 
the passage of a wave are the same. Inserting the values for 
an oleyl alcohol film floating on water and considering the 
4.8-Hz surface wave where maximum damping occurs, we 
obtain r = 81.4. The depth of the boundary layer in this case 
is (see (1)) d = 2.6 x 10 -4 m. The large increase of the 
velocity gradients in the boundary layer by almost 2 orders 
of magnitude gives rise to a drastically increased viscous 
dissipation in the surface layer, which in turn leads to an 
increase in the skin temperature. 

3. NONLINEAR WAVE-WAVE INTERACTION 

3.1. The Action Balance Equation 

The evolution of surface wave spectra can be described by 
the action balance equation [Hasselmann, 1960; Willebrand, 
1975; Masuda, 1980, 1986; Komen et al., 1984; Phillips, 
1985]: 

dN ON 

- + (% + U) ß VxN = Sin + Snl- Sdis (18) dt Ot 

Here N(k, x, t) = (to/k) F (k, x, t) denotes the spectral density 
of wave action per unit mass in wave number space, Vx is the 
gradient operator in x space, and F(x, k, t) is the ocean wave 
height variance spectrum, which in the following we shall 
simply call "ocean wave spectrum." In the case of gravity 
waves, N(k, x, t) can also be written as N = gF/to. Likewise, 
eg denotes the group velocity, U is the velocity of the 
underlying current, p is the density of seawater, and to is the 
intrinsic angular frequency, which is related to the wave 
number k = Ikl by the dispersion relation (12). Sin, Sn•, and 
Sdis represent source terms describing the wind input, non- 
linear wave-wave interactions, and dissipation, respectively. 
The source terms are functions of the wave vector k, the 
friction velocity u., and also of the wave spectrum F. The 
source function Sin and Sdis are poorly known both theoret- 
ically and experimentally (for a detailed discussion see, for 
instance, Komen et al. [1984] or Phillips [1985]). 

Useful quantities which characterize the strength of the 
three source terms in the spectral evolution are the transfer 
rates 6•in , 6•nl , and 6•di s or the transfer times T = 6• i-- 1 (i = in, 
nl, dis). They are defined by 

ai ri-1 Si = = • (19) 

The nonlinear transfer function Sn• can be calculated from 
resonant wave-wave interaction theory [Hasselmann, 1962; 
1963a, b; Hasselmann and Hasselmann, 1985]. Sn• can be 
written as 

Snl: -VkT(k) (20) 

where T(k) represents the net spectral flux of action through 
wave number space. The flux divergence in wave number 
space represents the net gain or loss of action spectral 
density at the wave number k. 

In the gravity wave region the third-order (four wave) 
nonlinear wave-wave interaction is predominant [Valenzuela 
and Wright, 1976], and VkT(k) can be expressed as 

ß 8 (to + to2 - to3 - to4) 8 (k + k 2 - k 3 - k4) dk2 dk3 dk4 (21) 

Here Ni (i = 1, 2, 3) and N denote N(ki) and N(k), 
respectively, and • is the Dirac delta function. Q2 is an 
interaction coefficient which depends on k•, k2, k3, k4, and k. 
It is largest when the low wave numbers are all comparable 
in magnitude and are parallel. Computer programs have been 
developed for calculating the nonlinear energy transfer in 
spectral regions up to k = 2.5 kp, where kp denotes the wave 
number of the spectral peak (see, for example, Hasselmann 
and Hasselmann [1985]). In this spectral region the nonlin- 
ear energy transfer is very sensitive to the spectral shape. 
However, in our investigation we need to know the nonlin- 
ear energy transfer in the equilibrium range, in which k is 
usually larger than 2.5 kp. 

In the equilibrium range of the spectrum, estimates of the 
nonlinear energy transfer have been given by Kitaigorodskii 
[1983] and Phillips [1985]. This is the range where the wave 
numbers are substantially larger than kp and much smaller 
than those which are influenced by capillarity and molecular 
viscosity. In this wave number range the spectrum can be 
described by the form [Toba, 1973; Phillips, 1985] 

F =/3 u. k- 7/2 (22) 

where k denotes the modulus ofk. The proportionality factor 
/3 is a constant which has to be determined experimentally. 
According to Phillips and Kitaigorodskii, the interaction 
coefficient Q2 in this range is approximately proportional to 
k 6 ' 

The nonlinear interaction or energy transfer is structured 
in such a way that the energy gain at a fixed spectral point k 
is independent of, but the loss is proportional to, the value of 
the spectrum at k [Hasselmann, 1962]. Thus resonant wave- 
wave interaction tends to level down peaks and fill in dips in 
the wave spectrum such that the spectral energy is more 
uniformly distributed over all wave numbers. The nonlinear 
transfer resembles a diffusion process in wave number space 
which drives the spectrum toward equilibrium. The more the 
spectrum is distorted owing to Marangoni damping, the 
larger is the transfer rate by nonlinear interaction. 

A functional form describing the rate of action or energy 
input from the wind, Sin, has been proposed by Phillips 
[1985] and is given by 

Sin-- 13N(k) -- M(cos qO) 2p to N (k) (23) 

where c is the phase velocity of the wave component, ½ is 
the angle between the wave vector and the wind, p is the 
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Fig. 3. Frequency spectra of wind waves measured in the wind wave tank of the University of Hamburg (fetch is 
15 m) for a slick-covered (CEM3AB) and a clean surface. The wind speed at a reference height of 0.5 m was Urcf = 8 
m s -•. The dotted line represents the relative damping curve y(f) with the ordinate on the right-hand side [from 
Hfihnerfuss et al., 1987]. 

index in the directional distribution of F(k), and M is a 
numerical factor, which has to be determined experimen- 
tally. According to Phillips [1985] and Plant [1982], reason- 
able estimates for M and p are M = 4 x 10 -2 and p = 0.5. 

Mitsuyasu and Honda [1986] have shown that (23) is also 
applicable when the water surface is covered with a slick. 
However, in this case the relationship between wind speed 
and friction velocity u is different from the relationship 
applicable to a slick-free surface. In wind wave tank exper- 
iments, Hfihnerfuss et al. [1981b] found that u, is about 20% 
lower for a water surface covered with methyl oleate than for 
a clean surface. 

The dissipation source function Sdi• describes the dissipa- 
tion of wave action due to wave breaking and viscous 
damping. In the Marangoni resonance region the energy 
dissipation is caused primarily by viscous dissipation. Visual 
observation of sea surfaces covered with surface films 

clearly shows that wave breaking is effectively absent in the 
short-gravity-wave region and that the breaking of longer 
waves is strongly reduced. The attenuation of these waves is 
caused mainly by nonlinear energy transfer to waves with 
shorter wavelengths, which dissipate the energy by en- 
hanced viscous dissipation due to Marangoni damping. 

3.2. Nonlinear Transfer Rates 

In order to explain the damping of ocean waves with 
wavelengths in the meter range by monomolecular slicks, a 
phenomenon which was observed in earlier experiments 
[Hfihnerfuss et al., 1981a, 1983], we must show that nonlin- 
ear wave-wave interaction can transfer energy sufficiently 
fast from these wave components to the Marangoni damping 
region. Obviously, normal viscous damping is much too slow 
to explain the strong damping of these long waves (the decay 
time for a 0.7-Hz wave due to viscous damping is 36 hours !). 
Indeed, it was shown by Hasselmann et al. [1973] that the 
time evolution of wave spectra is determined mainly by 
nonlinear wave-wave interactions. The nonlinear interaction 

establishes a balance between the input and dissipation 

source functions. It involves a delicate adjustment of the 
spectral shape and the nonlinear transfer. 

If the wave spectrum is distorted in the short-gravity-wave 
region by Marangoni damping, the wave system reacts with 
an adjustment of the nonlinear energy transfer such that the 
wave spectrum is driven toward equilibrium. This can be 
achieved only by an increase in the energy transfer in the 
direction of the Marangoni dip. In principle, the energy 
transfer can be calculated by solving (18) numerically with 
an initial spectrum which includes an undistorted Marangoni 
dip (similar to the one shown in Figure 3). This has been 
attempted by using a Siemens 7.800 mainframe computer. 
Though these computations clearly show an increase of the 
nonlinear transfer, they are not accurate enough to render 
reliable quantitative results. This is because the storage 
capacity of the computer was not adequate for numerical 
calculations to be carried out for a sufficiently fine spectral 
grid. 

From theoretical considerations we expect that at wave 
numbers much smaller than the Marangoni resonance wave 
number but much larger than the peak wave number, the 
nonlinear transfer rate is of the same order of magnitude in 
the case of a slick-covered surface as for a slick-free surface. 

This is because in this wave number region the intrinsic 
dynamics of the waves are essentially unaltered by the 
presence of a slick. However, the nonlinear energy transfer 
is indirectly affected, because a slick gives rise to a spectral 
form which in the equilibrium range is steeper than the 
Phillips spectrum. The wave field tries to restore equilibrium 
by increasing the nonlinear energy transfer rate. 

Estimates of the transfer rates due to nonlinear wave- 

wave interaction in the equilibrium range of the spectrum 
have been given by Kitaigorodskii [1983] and Phillips [1985]. 
According to Phillips [1985] the processes of energy input 
from the wind, nonlinear energy transfer, and loss by wave 
breaking are all of importance in the equilibrium range and 
have comparable magnitudes. Phillips' expressions for the 
action spectral flux divergence and the spectral action den- 
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sity read (see equations (2.4), (2.10), (2.20), and (3.1) of 
Phillips [ 1985]) 

- Vk T(k) = Gw(cos q>)2p (24) C•nl -- N 

where G is a dimensionless constant, which, according to 
Phillips (1985), has the same order of magnitude as the 
nondimensional constant M in the wind input source term 
(23). Inserting the dispersion relation for gravity waves 

w = (gk) 1/2 (25) 

into (24) and setting p = 0.5 yields 

anl = G g- 1/2k3/2//2, cos (• (26) 

Now we want to get an estimate of the increase in the 
nonlinear energy transfer rate in the presence of a slick. If 
the energy flux to the Marangoni damping region by nonlin- 
ear wave-wave interaction is smaller than the energy dissi- 
pation by Marangoni damping, the Marangoni dip cannot be 
filled in. In this case, the wave spectra obtained by the wave 
number domain measurements, e.g., by radar backscatter- 
ing, should delineate the Marangoni dip. With increasing 
wind stress the nonlinear transfer rate increases, and thus so 
does the energy flux. We therefore predict that the depth of 
the Marangoni dip decreases with increasing wind stress. If 
the wind stress exceeds a critical value u,•., the Marangoni 
dip should disappear completely. In this case, nonlinear 
interaction is sufficiently fast to transfer enough wave energy 
from longer waves to the Marangoni damping region to 
balance the enhanced viscous dissipation. 

This is indeed observed in wind wave tank experiments, as 
will be discussed later. Therefore we hypothesize that the 
nonlinear transfer rate in the presence of a slick, which we 
write as 

s 

anl = anl + Aanl (27) 

has the same functional dependence on wind stress and wave 
number as does the nonlinear transfer rate a,• for a slick-free 
surface (see (24)). However, for a slick-covered surface the 
wave spectrum FX(k) is slightly steeper because the short 
waves are damped more strongly than the long waves. This 
leads to an increase in the nonlinear transfer rate because the 

wave system responds to a deviation from equilibrium by an 
increase in the nonlinear energy transfer. Therefore our 
estimates of the nonlinear transfer rates, which are based on 
equilibrium spectra, constitute lower limits. 

We assume that the additional energy flux Ae through the 
spectrum caused by the Marangoni dip is constant in the 
equilibrium range for a given wind stress. The condition for 
constant energy flux Ae(k) through the spectrum is (see 
Kitaigorodskii [1983, equation (8)] 

•(k) = gF(k)k2Aanl(k) = A• 0 = const (28) 

Here F(k) denotes the wave spectrum integrated over angles 
and k = Ikl. We assume further that the dependence of A% 
on wind stress is the same as for the spectral flux in the case 
of a slick-free surface as given by Kitaigorodskii [1983, 
equation (45)] and Phillips [1985, equations (2.10) and 
(2.20)], 

A•o • u3, (29) 

Inserting (29) into (28) yields 

Aan I oc /•- lg- 1/2k3/2u2, (30) 

Thus Aanl has the same dependence on k and u, as does Cgnl. 
We can now relate Aanl at k = kl and u, = u,1 to Aan• at k 
= k 2 and u, = u,2 by 

AC•nl(kl, /t,,) = kl I/t,2] AC•nl(k2' /t,2) (31) 
It must be stressed that these equations apply only in the 

equilibrium range of the spectrum where no internal wave 
number scale exists. This implies that (30) and (31) are valid 
only outside the Marangoni resonance region when the wave 
spectrum exhibits a Marangoni dip. However, these equa- 
tions should also apply in the Marangoni resonance region 
when above a certain wind stress u, c, the Marangoni dip is 
filled in owing to a large flux of wave energy into the 
Marangoni resonance region by nonlinear wave-wave inter- 
action. In this case the Marangoni resonance region loses its 
characteristic wave number scale, which is given by the 
width of the Marangoni dip. Thus in this case, this wave 
number region can also be included in the equilibrium range 
of the spectrum. However, the slope of the spectrum is 
slightly modified. 

The disappearance of the Marangoni dip occurs for wind 
stresses larger than u, c, which can be determined experi- 
mentally, for example, in wind-wave tank experiments. The 
critical wind stress u, c depends on the physicochemical 
properties of the surface film. In the case of an oleyl alcohol 
film, Feindt [1985] found in a wind wave tank experiment 
that the Marangoni dip disappears at u, c = 0.50 m s -•. (This 
value corresponds to his reference wind speed of 12 m s -• 
(see section 4.1).) 

Thus at the wind stress u, - u, c, Marangoni damping is 
balanced by the nonlinear energy transfer, if the following 
identity holds at the center of the Marangoni dip where k = 

Aanl(kM, U,c ) = a M (32) 

Inserting (32) into (31) yields 

k u, 
Aanl (k, u,)= a M (33) 

This is the principal equation of this section. Equation (33) 
makes it possible to calculate the increase of the nonlinear 
energy transfer rate Aa,• (or the damping rate) due to the 
presence of a slick at any wave number k and wind stress u, 
in the equilibrium range of the spectrum. 

The constants appearing in (33) are the Marangoni damp- 
ing rate a3•, the Marangoni resonance wave number k3•, and 
the critical wind stress u, c at which the nonlinear energy 
transfer has reached the level where it just balances Ma- 
rangoni damping. Both a3• and k3• can easily be calculated 
from Marangoni wave theory if the physico-chemical prop- 
erties of the surface film are known. Also, U,c can in 
principle be calculated by using nonlinear wave-wave inter- 
action wave theory. 

An alternative way of determining U,c is by experiment, 
for instance, by measuring the wave spectrum of a slick- 
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covered water surface as a function of wind speed in a wind 
wave tank. As an .example we calculated AO•nl for a water 
surface covered w{th an oleyl alcohol film (k•u = 2rr/0.068 
m-• a•u 0.9 s-• = 0.50 m s-•) at the wave number k , -- , ll:g c 

= 2•r/3.2 m -• and at the wind stress u, = 0.16 m s -1, 
corresponding to U•o = 5.5 m s-• (U•o is the wind speed at 
a height of 10 m; see section 5). With these values inserted 
into (33) we obtain 

Aanl- 2.9 X 10- 4 s- 1 

which corresponds to an interaction time of Tn• = (Aanl)- • = 
58 min. 

It is interesting to compare this estimate of the increase of 
the nonlinear transfer rate Aanl with an estimate of the 
nonlinear transfer rate anl for a clean surface. In Kitaigor- 
odskii's [1983] paper one can find such an estimate. Com- 
bining his equations (13), (45), and (63) and setting U, = 30 
u,, one obtains 

anl = (1.5- 9.9) x 10-2 g-•/2 k3/2 u.2 (34) 

With k = 2rr/3.2 m -• and u. = 0.16 m s -• inserted, the 
nonlinear transfer rate becomes 

anl- (3.4 - 22) x 10-4 s- • (35) 

corresponding to a nonlinear transfer time of 
-1 

Tnl = = anl = (7.5 - 49.5) min (36) 

Thus Aan• is in this case smaller than a,i by a factor of 0.13 
to 0.85. 

Now we want to get an estimate of how the wave spectrum 
is deformed by Marangoni damping. Let us denote the 
quantities that refer to slick-covered surfaces by the index s 
and those that refer to the clean surface by the index 0. First 
we note that to first order, the source functions on the 
right-hand side of (18) balance each other. We obtain for the 
clean and the slick-covered surfaces 

S•n q- Sønl- S 0 - S•is, : 0 dis, v b 

(37) 

S•n + S•l- S•tis, v- Sdis, b = 0 

Here we have split the dissipation source function Sdis into 
two parts' Sdi .... describes the dissipation due to viscous 
dissipation, and Sdis, •, is the dissipation due to wave break- 
ing S O and S•is, are well known theoretically and are ß dis, v v 

proportional to F o and F•., respectively [Phillips, 1977] 

S o dis, v = -- 2 AoF0 
(38) 

S•tis, v: -2 AF s 
From (37) and (38) we obtain 

• S F 0 A SiSn q- S•l- •dis, b 
rs - A 0 Siøn q- Sønl - S 0 (39) dis, b 

In the Marangoni damping region the first factor in (39), the 
ratio y(fi = A/Ao, is a strong function of wave number k or 
frequency f (see Figure 2), while the second term presum- 
ably depends only weakly on these variables. As a conse- 
quence, the ratio Fo/F• should show the same functional 
dependence on k orf as does A/A o. This is indeed observed, 
as we shall show in the next section. 

The source functions appearing in the second factor in (39) 
are, with the exception of SOn•, poorly known. However, 
according to Phillips [1985], all three source functions Siø•, 
Søn• and Sd]s, •, have the same order of magnitude in the 
equilibrium range of the wave spectrum. The source func- 
tions Si• and Sd}s. •, of a slick-covered water surface are 
presumably small in the Marangoni damping region, such 
that the remaining term S• determines the value of the 

$ 0 
numerator in the second factor in (39). Since O•nl > O•nl , Snl 
must also be larger than Sø•. This implies that the denomi- 
nator is larger than the numerator. Thus the peak in the Fo/F• 
curve must be smaller than the peak in the A/A 0 curve, which 
is also observed. 

4. EXPERIMENTAL EVIDENCE OF MARANGONI DAMPING 

4.1. Laboratory Experiments 

It seems that Cini and Lombardini [1981] were the first to 
demonstrate experimentally that the ratio of the short-wave 
attenuation of water covered with a monomolecular film to 

that of pure water exhibits a maximum as a function of 
frequency. They studied the attenuation of mechanically 
generated sinusoidal waves in a small wave tank. Since they 
used monochromatic waves, nonlinear interactions were 
absent in their experiment. They showed that the measured 
wave attenuation agrees quite well with the one calculated 
from Marangoni theory. 

At the same time, Hiihnerfuss et al. [1981b] noted in wind 
wave tank experiments with slicks that the wind wave 
spectra often exhibit a dip in the short-gravity-wave region. 
Figure 3 shows frequency spectra of wind waves measured 
with a wave staff in the wind wave tank of the University of 
Hamburg for the case of a slick-covered surface (monomo- 
lecular CEM3AB film) and a clean water surface. The 
reference wind speed was Uref = 8 m s-•, and the fetch was 
15 m. This wind speed Uref is the wind velocity measured at 
a reference height of 0.50 m above water level. The relation- 
ship between Uref and the friction velocity u, derived from 
wind profile measurements [Lange and H1;ihnerfuss, 1978; 
Feindt, 1985] is in the case of a clean surface 

U, = 0.053Uref (40) 

and in the case of a film-covered surface approximately 

U,s = 0.042Uref (41) 

For most monomolecular surface films we have U.s = 0.8 u.. 
The dotted line in Figure 3 represents the relative damping 

coefficient y(f) - A(•/Ao(f) as calculated from Marangoni 
theory with IEI - 0.0255 N m -• and 0 = 177 ø . It has its 
maximum very close to the center of the Marangoni dip [see 
H•hnerfuss et al., 1987]. 

Figure 4 shows frequency spectra measured in the same 
wind wave tank [Feindt, 1985] with the water surface cov- 
ered with a CEM3AB surface film for three different wind 

speeds. As can be seen from this plot, the depth of the 
Marangoni dip is greatest at Ure f -- 8 m s -• . It decreases with 
increasing wind speed and vanishes at Uref >-- 12 m s-•. This 
wind speed is about 1 m s-• below the wind speed at which 
the surface film is disrupted by wave breaking and "washed 
down." The disappearance of the slick from the surface is 
also evident from visual observations and from radar back- 

scattering experiments carried out by Feindt [1985] in the 
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Fig. 4. Frequency spectra of wind waves measured in a wind 
wave tank with the water surface covered with a CEM3^B film for 

three different wind speeds Ure f [from Feindt, 1985]. 

wind wave tank in Hamburg. Figure 5 shows the X band (9.8 
GHz) radar cross section of a clean water surface and of 
surfaces covered with hexadecanol (CEA), oleyl alcohol 
(OLA), and CEM3AB, as a function of wind speed. In this 
experiment the incidence angle was 54 ø , and measurements 
were carried out at VV polarization (vertical transmission 
and vertical reception). At this incidence angle the radar 
backscattering can be described by Bragg scattering theory 
[Valenzuela, 1978]. According to this theory the radar cross 
section is proportional to the spectral energy density at the 
Bragg wave number, which in this case was 331 m-•. From 
Figure 5 we see that the radar cross sections for the clean 
and slick-covered surfaces become equal if Urcf = 13 m s -1 . 
This means that at this wind speed the slick is "washed 
down" by wave breaking. 

4.2. Open Ocean Experiments 

To our knowledge, Cini et al. [1983] were the first to report 
Marangoni damping in wave spectra measured in polluted 
sea areas in the Gulf of Genoa, Italy. However, clear 
evidence of Marangoni damping on slick-covered ocean 
waves was first presented by Ermakov et al. [1985, 1986]. 
They carried out slick experiments from a platform in the 
Black Sea, USSR, in 1982 and 1983. These investigators 
used olein (technical grade oleic acid) and vegetable oil as 
surfactants. The dimensions of their slicks were small, 
typically 10 m. Figure 6 shows as an example the spectral 
energy depression by olein for a low wind speed case (U- 
1 m s-•) as a function of frequency. These frequency spectra 
were obtained from wave measurements performed by a 
resistive-type wave gauge. Note, however, that in the open 
ocean the short-wave frequencies are subject to significant 
Doppler-shifting by the orbital motion of the long waves (see 
discussion in section 5). Only at'low sea states, such as were 
encountered in the experiment by Ermakov et al., the 
root-mean-square Doppler shift is so small that the Ma- 
rangoni dip can still be delineated in frequency spectra. 
These measurements, as well as other measurements per- 
formed by Ermakov et al. [1986], show that with increasing 
wind speed the maximum of Fo/Fs decreases and the fre- 
quency at which this maximum occurs shifts toward higher 
frequencies. 
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Fig. 5. Wind wave tank measurements of the radar cross sec- 

tion of a clean water surface (circles), and of water surfaces covered 
with hexadecanol (CEA, triangles), oleyl alcohol (OLA, pluses), and 
CEM3AB (crosses) as a function of wind speed, for incidence angle 
of 54 ø, and VV polarization [from Feindt, 1985]. 

Radar backscattering measurements carried out by Singh 
et al. [1986] also delineate resonance-type Marangoni damp- 
ing [Alpers and Hiihnerfuss, 1988]. Singh et al. measured the 
depression of the normalized radar cross section (NRCS) by 
an oil slick simultaneously at 5.7 GHz (C band) and 13.3 
GHz (K, band) from an airplane as a function of incidence 
angle O. In the range of incidence angles where the radar 
backscattering is dominated by Bragg scattering the varia- 
tion of the NRCS depression with incidence angle can be 
related to the depression of spectral energy density in wave 
number space k. 

According to Bragg scattering theory the NRCS is propor- 
tional to the spectral energy density of the surface waves at 
the wave number Ikl = 2 Ikol sin O in look direction of the 
antenna. Here Ikol denotes the radar wave number. Thus by 
varying O and/or the radar wave number Ikol, Fo/Fs can be 
measured as a function of wave number k. Furthermore, by 
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Fig. 6. Spectral energy depression Fo/Fs by an olein surface 
slick patch of 10-m length as a function of frequency for a wind 
speed of about 1 m s -• [after Ermakov et al., 1986] (dotted curve; 
left-hand ordinate) and damping curve y(f) calculated by means of 
the Marangoni wave theory (E = 0.030 N m-l; 0 = 176 ø) (solid 
curve; right-hand ordinate). 
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Fig. 7. Depression of spectral energy density of short waves by 
crude oil as function of wave number for low wind speeds (3-6 m 
s-I). The data are derived from the C band and K, band radar 
backscatter measurements of Singh et al. [1986]. 

changing the azimuth angle of the radar antenna, the direc- 
tional dependence of Fo/Fs can also be determined. Figure 7 
shows the depression of spectral energy density of short 
waves by crude oil as a function of wave number at low wind 
speeds (3-6 m/s). This curve was derived from C and K, 
band radar data obtained by Singh et al. (flight line 5, 
September 16, 1983). It clearly exhibits the typical Ma- 
rangoni-type behavior. Alpers and Hfihnerfuss [1988] have 
conjectured that Marangoni damping is also active in this 
case, because surface-active compounds spread from thick 
oil centers and form numerous small monomolecular slick 

patches interdispersed in the vicinity of crude oil spills. 
Surface-active compounds are always encountered in crude 
oil as impurities [Hfihnerfuss et al., 1989]. It can be con- 
cluded from the location of the peak in the spectral energy 
depression curve (Figure 7) that the surface-active material 
spreading from the crude oil centers is a medium damping 
surface-active compound resembling triolein, which is se- 
creted by plankton or fish ("fish oil"). 

The experimental data discussed above clearly delineate 
the resonance-type Marangoni damping. It is surprising that 
this damping escaped detection for such a long time. 

5. EXPERIMENTAL EVIDENCE OF LONG-WAVE DAMPING 

Quantitative measurements of long-ocean-wave damping 
by large slicks were carried out by Hfihnerfuss et al. [1983] 
during the Marine Remote Sensing Experiment (MARSEN) 
in 1979 in the North Sea. During this experiment a mono- 
molecular oleyl alcohol film of approximately 1.5 km x 1.5 
km was laid on the sea surface by disseminating small 
chunks of frozen oleyl alcohol from a helicopter. The tidal 
current and the wind drift moved the slick toward the 

platform. It took the slick little more than half an hour to 
drift through the position of the platform. The frequency 
spectra were measured inside and outside the slick area by a 
wave staff at the German research platform Nordsee. 

Records of 29-min duration were used for calculating the 
wave spectra, because such long time series are required to 
achieve acceptable statistical significance of the spectral 
estimates. The frequency resolution in the frequency range 
0.06-1 Hz was 0.09 Hz, and the number of degrees of 
freedom was 162. 

The frequency spectra of the short waves with frequencies 
between 2 and 20 Hz were also measured by a wave staff. 
However, a Marangoni dip could not be delineated. This is 
expected because the frequency of the short waves is subject 
to Doppler shifting by the orbital velocity Uor b of the long 
waves. Since the Doppler shifts are positive as well as 
negative, the Marangoni dip is smeared out in the frequency 
spectrum. We expect that the Marangoni dip can hardly be 
delineated in the frequency spectrum if the rms Doppler shift 
is larger than the half width ((5f)r½s of the Marangoni reso- 
nance region 

(((5fd)2)1/2 -1 2 1/2 = Ares ((Uorb)) --> ((sf)res (42) 

This equation may be approximated by 

(((5fd)2) 1/2 = 2rr3g - 1Ar•slf03 Hs --> ((sf)res (43) 

where Hs denotes the significant wave height and fo is the 
frequency of the dominant wave. For a Pierson-Moskowitz 
spectrum, ((Uorb)2) 1/2 can be calculated exactly, and condi- 
tion (42) reads 

(((5fd)2) 1/2 = 0.064 A•s • U19.5 --> ((sf)res (44) 

Here U19.5 denotes the wind speed at a height of 19.5 m, 
which is related to the significant wave height by H• = 0.21 
g-• U•29.5. If we insert the values applicable to the MARSEN 
experiment (Arcs = 0.067 m, U,9.5 = 5.5 m s -1, H• = 1.5 m, 
and fo = 0.35 Hz), we obtain from (43) 

(((5 fa) 2) •/2 = 6.0 Hz (45) 

and from (44) 

(((sfd)2) 1/2 = 5.3 Hz (46) 

Both values are larger than the half width ((sf)res of the 
Marangoni resonance for oleyl alcohol, which is about 2 Hz. 
This explains why the Marangoni dip could not be delineated 
in the measured frequency spectra during the MARSEN 
slick experiment. 

Now we turn to the damping of the long waves. Figure 8 
shows the ratio F•/Fo as a function of frequency in the range 
0.06-1 Hz. The error bar refers to 90% confidence limit. The 

wind speed during the experiment measured by a cup 
anemometer on the platform at a height of 46 m above sea 
level was 5-6 m s -', the significant wave height was 1.5 m, 
the peak frequency of the wind wave spectrum was 0.35 Hz, 
the air temperature was 286.1 K, and the water temperature 
was 287.1 K. 

From Figure 8 we see that for f -> 0.7 Hz corresponding to 
a wavelength of A _> 3.2 m, a statistically significant decrease 
in the spectral energy density is observed. In the frequency 
range between 0.7 Hz and 1 Hz, the spectral energy has 
decreased to about 0.80 -+ 0.15 of the energy of a pure water 
surface. 

Unfortunately, in this experiment we could not measure 
the damping ratio of the waves as a function of the distance 
traveled in the slick. During the record of 29-min duration, 
some waves (the ones recorded first) had almost traveled 
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Fig. 8. Reduction of spectral energy density of ocean waves by 
an oleyl alcohol film patch of approximately 1.5 km length, for wind 
speed of 5-6 m s-• and significant wave height of 1.5 m. The error 
bars (90% confidence limits) indicate that wave attenuation becomes 
statistically significant at about 0.7 Hz. 

through the whole slick patch of 1.5 km length and others 
(the ones recorded last) hardly traveled at all. Almost the 
total time period during which the slick drifted through the 
position of the platform was used to calculate the spectrum. 
Thus the effective length of the slick patch relevant to 
determining the wave damping was around 750 m. The time 
for a 0.7-Hz wave to travel through an ocean patch of 750-m 
length is 

ts = 750 m/cg = 11.4 min (47) 

where cg is the group velocity of the 0.7-Hz wave (cg = 1.1 
m s-l). 

The damping rate Aanl can be calculated from the equation 

exp (- Aanlts) = Fs/Fo (48) 

Inserting t s = 11.4 min and Fs/F o = 0.80, we obtain for the 
0.7-Hz wave 

Aanl(0.7 Hz) = 3.3 x 10-4 s- • (49) 

This value corresponds to a characteristic damping time of 

Tnl = (A anl ) - 1 = 51 min 

which is very close to the theoretical estimate of 58 min 
obtained in section 3.2. 

6. DISCUSSION 

Much experimental evidence exists that demonstrates that 
surface-active material accumulated on the surface of the sea 

increases the damping of short surface waves (ripples). 
However, contrary to common belief, not the inextensible 
films but the viscoelastic ones exert the strongest damping 
on the short surface waves. (For a more quantitative com- 
parison between the "inextensible" and the "viscoelastic" 
case the reader is referred to the paper by H•ihnerfuss et al. 
[1981a]). When the surface waves are in (linear) resonance 

with Marangoni waves, i.e., when the frequencies and wave 
numbers of both wave modes coincide, the relative damping 
coefficient reaches a maximum. For many viscoelastic films, 
maximum damping is encountered in the short-gravity-wave 
region. 

The resonance-type damping gives rise to a dip (the 
"Marangoni dip") in the energy spectrum in this wave 
number region. The Marangoni dip has been delineated by 
wave spectra measured in the frequency domain by a wave 
staff in a wind wave tank [Hiihnerfuss et al., 1981b]. In the 
open ocean it can be delineated in frequency domain mea- 
surements only when the rms Doppler shift by the orbital 
motion of the long ocean waves is sufficiently small, i.e., 
when condition (31) is fulfilled. This situation was encoun- 
tered in the experiments of Ermakov et al. [1985, 1986]. For 
the special case of an oleyl alcohol film and a fully developed 
wind sea this means that for wind speeds roughly above 2 m 
s-• it becomes difficult to delineate the Marangoni dip in the 
frequency spectrum. 

However, this restriction does not hold for measurements 
in the wave number domain. Such measurements can be 

performed by radar backscattering at oblique incidence 
angles where Bragg scattering holds [Alpers and Hl;ih- 
nerfuss, 1988] or by photographic techniques [Cini et al., 
1983]. The data of Singh et al. [1986] indicate that the 
resonance-type depression of the spectral energy density in 
the short-gravity-wave region can be delineated in wave 
number space even at wind speeds between 10 and 14 m s -•. 
However, the damping effect vanishes when the film is 
"washed down," i.e., when it has disappeared from the sea 
surface. Wind wave tank experiments show that in the 
presence of surface films with very strong wave damping 
ability this happens for u, -> 0.6 m s -• which should 
correspond to a wind speed at a height of 10 m of about U•0 
= 18 m s-• in the open ocean. Slicks with a medium or low 
wave-damping ability exhibit less intensive intermolecular 
forces between the film-forming substances and are thus 
"washed down" already at wind speeds U•0 considerably 
less than 18 m s -•. In particular, biogenic slicks, which 
consist of a mixture of surface-active compounds, may 
sometimes already disappear from the sea surface at U•0 • 
7-10 m s- •. 

Marangoni damping leads to a deformation of the spectral 
form in the short-gravity-wave region. The wave system 
responds to such deviations from equilibrium with an in- 
crease in the energy flux towards higher wave numbers. 
Thus energy is drawn from the waves with low wave 
numbers, which leads to damping of longer water waves. For 
example, in a field experiment in the North Sea in 1979, 
Hl;ihnerfuss et al. [1983] found that gravity waves of 3.2-m 
wavelength were significantly damped when traveling 
through a 1.5-km slick patch consisting of oleyl alcohol. At 
that time we had no explanation for the measured damping of 
such long waves by the monomolecular slick. In this paper 
we have presented theoretical estimates of the damping time 
based on the theories of Kitaigorodskii [1983] and Phillips 
[1985] on the energy balance in the equilibrium range of the 
spectrum. The damping time of the 3.2-m wave is estimated 
to be 51 min in this field experiment, while the theoretical 
estimate is 58 min. This time is about 1.2 to 7 times lower 

than the clean surface nonlinear interaction time at this 

spectral range. We interpret this result as a confirmation that 
Marangoni damping together with nonlinear wave-wave in- 
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teraction can explain the observed strong damping of me- 
dium long gravity waves by viscoelastic surface films. 

According to our theory, the rate of energy transfer 
increases quadratically with wind speed. This is consistent 
with wave staff measurements carried out in a wind wave 

tank [Feindt, 1985] and with airborne radar backscatter 
measurements carried out over the ocean [Singh et al., 
1986]. An increase in the nonlinear transfer from low to high 
wave numbers results in a shallower Marangoni dip and 
leads to an increase in the long-wave damping. Thus the 
higher the wind speed, the stronger is the damping of the 
long waves by the slick. 

In addition to increasing of nonlinear energy transfer by 
the Marangoni dip, a surface film also decreases the wind 
input such that the wind stress is about 20% less than it is for 
a clean surface [Hiihnerfuss et al., 1981b]. Wave breaking 
also diminishes, and thus dissipation due to this effect 
decreases. 

However, the main mechanism responsible for long-wave 
damping remains nonlinear wave-wave interaction. At high 
wind speeds, slick patches a few hundred meters in diameter 
can be very effective in damping waves of a few meters 
wavelength. The result is a strong reduction in wave break- 
ing such that a stormy sea becomes much less dangerous for 
small boats or for offshore structures. 

Viscoelastic surface films could be applied in rescue 
operations at sea or at oil rigs for protecting them against the 
impact of wave breaking. A few liters of surface-active 
material disseminated from a helicopter upwave from the 
distressed ship would suffice to calm the sea sufficiently. Oil 
rigs could be protected by surrounding them at distances of 
several kilometers by a chain of buoys which are capable of 
releasing surface active material by remote control in the 
case of dangerous sea states. The same method could be 
applied for protecting the coast by anchoring a chain of 
buoys, on which surface-active material is stored, several 
kilometers off the coastline. 

Though the damping effect of viscoelastic films increases 
with wind speed, it should be kept in mind that the damping 
effect disappears at high sea states when the film is "washed 
down." For slicks with very strong wave-damping ability, 
this should take place at friction velocities u, above 0.6 m 
s -• corresponding to values of U•0 around 18 m s -•. 
However, usually this happens at wind speeds U•0 = 10 - 13 
m s -j, and in the case of biogenic slicks it happens at even 
lower wind speeds U•0 •< 10 m s -•. 

Surfactants best suited for calming a stormy sea are those 
which have a large dilational modulus E, i.e., those which 
have a high elasticity. 

APPENDIX: DERIVATION OF BASIC FORMULAE OF 

MARANGONI WAVE THEORY 

Both surface and Marangoni waves are solutions of the 
Navier-Stokes equation describing the dynamics of a fluid, in 
this case, water. Marangoni waves exist only when the 
surface is covered with a viscoelastic film. Surface waves 

exist when the surface is clean as well as when it is covered 

by a viscoelastic film. 
In this investigation we confine ourselves to plane wave 

solutions of the Navier-Stokes equation. Then all quantities 
depend only on two space variables, x and z. The z-axis is 
chosen normal to the unperturbed water surface pointing 
into the air. The Navier-Stokes equation describing the time 

and space evolution of the velocity field u = (Ux, uO then 
reads 

OUx Op [02021 • = + •l + Ux "or ox 

(A1) 

Ou r _ Op [ 0 2 0 2 ] P at az -pg+n •'2x +• uz 
Here, p denotes the pressure within the water, g is the 
acceleration of gravity, p is the density, and r/is the dynamic 
viscosity of water. In (A1) the advection term has been 
neglected, implying that only waves of small amplitudes are 
considered (linear wave approximation). 

The (kinematical) boundary conditions at the free surface 
for the tangential and normal stress components read 

0o- 

Ox 
rxz = 0 (A2a) 

o' •x + p - pg•' - Pa - far = 0 (A2b) 
Here cr denotes the surface tension, •' is the surface eleva- 
tion, p, is the atmospheric pressure, and %. (i, j = x, z) is the 
stress tensor describing the viscous friction within the fluid 

T•j = T] L Oxj q-OXi] (A3) 
These boundary conditions differ from the ones applicable 

to a clean surface only by the first term in (A2a), which is 
zero in the case of a clean water surface. Thus a viscoelastic 

film changes the tangential boundary condition such that the 
viscous stress rx• no longer vanishes at the free surface. Now 
the viscous stress has to be balanced by the tangential stress 
exerted on the water surface by surface tension gradients. 
Since the viscous stress is proportional to gradients in the 
velocity field, the strain associated with the viscoelastic film 
causes strong velocity gradients in a layer adjacent to the 
surface. The occurrence of such strong velocity gradients is 
the reason for enhanced viscous dissipation and therefore 
enhanced damping of surface waves by viscoelastic films. 

In order to solve these equations, we have to relate the 
surface tension gradient Oo'/Ox to the horizontal displacement 
s c of the surface due to the passage of a surface wave and to 
such rheological properties of the film as elasticity and 
viscosity. Strictly speaking, however, the intrinsic rheolog- 
ical properties of the film do not enter into the problem, but 
rather the rheological properties of the film coupled to the 
medium on which the surface film floats. 

A varying surface stress leads to changes in area and 
shape of a surface element. In this investigation we take into 
account only changes in surface area and neglect changes in 
shape (see, for example, Lucassen-Reynders, 1985]). This 
amounts to retaining only the dilational stress part of the 
surface stress tensor and neglecting the shear stress part. 

For small deformations, the change in surface tension Ao- 
is then related to the relative change in area zXA/A by 

Ao-= E (A4) 
A 

where E is the surface dilational modulus. In general, E is a 
complex quantity, which conventionally is written as 
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E = IEI exp ( - iO) = Ea + ioorla (AS) 

Ea is called the surface dilational elasticity, and r/a is the 
surface dilational viscosity. A nonvanishing phase angle 0 
implies that if the surface area is varied harmonically in time, 
the areas of maximum surface dilation or compression do not 
coincide with areas of maximum or minimum surface ten- 

sion, respectively. This means that the viscoelastic film has 
a finite response (relaxation) to surface area variations. For 
linear waves the tangent of this phase lag 0 is proportional to 
wave frequency 

For small-amplitude waves the relative change in surface 
area of a surface element of area A is, to first order, given by 
[Lucassen-Reynders and Lucassen, 1969] 

• = -- (A6) 
A Ox 

where s cis the horizontal displacement of the surface element 
due to the orbital motion associated with the passage of a 
surface wave. 

Thus the kinematical boundary conditions (A2a) and 
(A2b) read 

02• [Oux OuzJ E •xx- rl L oz + = 0 (A7a) Ox 

02• ' Ou z 
rr •2 x + p - Pa - 2 r/ 0-•' = 0 (A7b) 

For an incompressible viscous fluid, solutions of the Navier- 
Stokes equation can be obtained by writing the velocity field 
u as a sum of an irrotational field and a divergence-free field. 
In the case considered here where all quantities depend on 
two variables only, the irrotational field can be described by 
a potential function (I) and the divergence-free field by a 
vorticity function •, which satisfy the equations 

A(I) = 0 (A8a) 

p • - r/A• = 0 (A8b) 
Thus we can write u as 

or in components 

u = grad cI) + curl ß (A9) 

Uj -- (A10a) 
Ox 

Odp 
uz = (A10b) 

Oz Ox 

Note that the velocity field of a fluid without viscosity (r/= 
0) can be characterized solely by a potential function (I). The 
vorticity function • describes the modification of the flow 
field due to viscosity. 

Harmonic wave solutions of (A1) can be written as 

dp= Ce kz e i(kx + tot) (A 11) 

• = BemZ ei(l•x + tot) (A12) 

where k, m, and to are complex quantities, which are related 
by 

m 2= k 2 + ioop/rl (A13) 

because ß has to satisfy (A8b). Inserting (All) and (A12) 
into the dynamical boundary conditions (A7a) and (A7b), 
expressing the pressure p in (A7b) by 

0cI) 
p = -p • (A14) 

Ot 

taking the time derivative of the resulting equations (A7a) 
and (A7b), and replacing • according to the kinematic 
boundary condition at the free surface (neglecting the advec- 
tive term) by 

0cI) 
½ - (A15) 

Ot 

yields two homogeneous equations for C and B. 
Solutions exist if the determinant vanishes (see equations 

(17) and (18) of Lucassen [1968])' 

+ 2 irlwk 2 + Ek 3 + rlw(m 2 + k 2) - iEmk 2 
+ ipgk- ipw 2 - 2rlwk 2 + irrk 3 rrgk 2 + 2irlwmk + rrk 3 = 0 

(A16) 

For a fixed co, this equation has two solutions. One solution 
describes surface waves, and the other describes the Ma- 
rangoni waves. 

Note that (A1) contains a friction term which implies that 
the solutions are damped waves. Therefore k has to be a 
complex quantity. Conventionally, k is written 

k = •(- iA (A17) 

where the real part K represents the wave number and the 
imaginary part A represents the damping coefficient. 

The surface wave solutions of (A16) have been investi- 
gated by computer calculations which show that the wave 
number K is practically independent of E. To a good approx- 
imation, g obeys the dispersion relation (12) applicable to a 
fluid with a clean surface. However, the damping coefficient 
A strongly depends on E. In certain frequency regions, A can 
attain values which are ten to several hundred times larger 
than the damping coefficient A o for viscous fluids with a 
clean surface. A/A o is not a monotonic function of E. It has 
a maximum at an intermediate E. 

As an illustration of these formulae, we consider the 
propagation of a wave with a frequency of 4.8 Hz corre- 
sponding to a wavelength of 0.068 m in water with dynamical 
viscosity of r/ = 10 -3 Pa s. Inserting these values together 
with p = 103 kg m -3 and rr = 73 x 10 -3 N m -• into (8) yields 
for a clean water surface 

A 0 • 0.1 m- I (A18) 

Thus the distance D O at which the amplitude of a wave with 
a wavelength of 0.068 m wave has decayed to 1/e of its 
original value is in the case of a clean water surface 

Do = A• -l• 10 m (A19) 
Now let the water surface be covered with a surface film 

with dilational modulus IEI - 0.0225 N m-•, and phase angle 
0 = 175 ø. This is the value applicable to oleyl alcohol 
(Z-9-octadecen-l-ol) as measured in wave damping experi- 
ments in a wind wave tank [H•hnerfuss, 1986]. With these 
values we obtain f = 4.8 Hz and A/A o = 28. Therefore the 
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distance at which the amplitude of a wave of 0.068-m 
wavelength has decayed to 1/e of its original value becomes 
in this case 

D = (A0/A) Do = 0.36 m (A20) 

This means that the wave amplitude has decayed to 1/e of its 
original value only after about five wavelengths. 

The distance at which the square of the amplitude had 
decayed to 1/e of its original value is then D/2. We now 
define a characteristic damping time T M as the time in which 
the spectral energy has decayed to 1/e of its original value. 
Since the energy propagates with the group velocity vg, we 
obtain 

TM = D/2vg (A21) 

Our example yields TM • 1 s because Vg for a 4.8-Hz wave 
is 0.18 m/s. This is about $ times the wave period. 

A/A o is a function of both the dilational modulus E and the 
wave number K. It has a maximum both as a function of E as 

well as a function of K. From equations (2), (8), and (9) of 
Lucassen [1982] we infer that in the gravity wave region 

max 

This means that the maximum attainable increase in wave 

damping due to a surface film increases with water wave- 
length. Furthermore, we infer from equation (10) of Lucas- 
sen [1982] that the dilational modulus required for obtaining 
maximum damping in the gravity wave region depends on g 
in the following way (assuming 0 = 0)' 

Emax cr •c- 5/4 (A23) 

From this equation we see that for obtaining maximum 
damping at long wavelengths, one has to choose a surface 
film with large E. However, no chemical substances exist in 
nature with dilational moduli E much larger than 0.4 N m-•. 
If E = 0.4 N m-• is inserted into (9), one obtains maximum 
wave damping at a frequency corresponding to a wavelength 
of approximately 1 m. Thus surface chemistry puts a con- 
straint on maximum wave damping. Waves with wave- 
lengths above 1 m cannot be damped strongly by the 
Marangoni effect (except for wind waves; see section 3). 

Monomolecular surfactants have E values typically in the 
range of 10 -3 -- 5 X 10 -2 N m -• [Hiihnerfuss, 1986]. 
Maximum damping occurs for these surfactants in the cen- 
timeter to decimeter range. The relative damping coefficient 
at maximum damping in this wavelength regime lies typically 
between 10 and 100. Furthermore, the ratio of the maximum 
damping coefficient Ama x to the wave number g is related to 
K by [see Lucassen, 1982, equation (8)] 

Amax •x K TM (A24) 
This means that the shorter waves decay over fewer wave- 
lengths by Marangoni damping than do the longer waves. 

The penetration depth d' of the vorticity function ß is 
defined by 

d'= IRe ml- 1 (A25) 

Since k << m, we obtain from (A13) 

d' = (,1/pw) 1/2 (A26) 

where d' is related to the thickness d of the boundary layer, 
defined in (1), by 

d = 2•/2d ' (A27) 

Inserting the values applicable to oleyl alcohol floating on 
the water surface (f• = 4.8 Hz, p = 103 kg m -3, and r/= 
10 -3 Pa s), we obtain 

d • 2.6 x 10- 4 m (A28) 

The penetration depth of the vorticity function defines the 
thickness of the sea surface skin layer. According to (A26), 
the thickness of this layer decreases with increasing wave 
number: 

d' cr •( - 1/4 (A29) 
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