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Abstract. The two-frequency microwave technique at slanting incidence for the measurement of ocean 
wave spectra, first proposed by Ruck ef al. (1972), is investigated in more detail with respect to its 
applicability in aircraft and space vehicles. It is shown that by carrying out signal processing in the 
frequency domain the system-inherent signal-to-noise ratio can be increased considerably, making the 
operation of the system from air- and space-borne platforms feasible. 

1. Introduction 

The two-frequency microwave technique at slanting incidence angles first proposed 
by Ruck et al. (1972), (cf. also Ransone and Wright, 1972; Hasselmann, 1972) may 
prove to be a feasible, simple method for measuring two-dimensional ocean-wave 
spectra from aircraft and satellites. However, its applicability from air- or space- 
borne platforms has occasionally been questioned (e.g., Plant, 1977). In this paper, 
we investigate this problem in more detail. 

For fixed difference frequency, incidence angle and azimuth the technique 
measures a single wave component of the long surface wave field determined by the 
Bragg resonance condition for the ‘beat wave’. By varying the difference frequency 
of the two microwave signals, together with the azimuth of the antenna axis, the full 
two-dimensional gravity wave spectrum can be determined. The method makes use 
of the fact that the short surface waves (capillary and ultra-gravity waves) which 
scatter the microwaves via the Bragg mechanism are modulated by the longer waves 
on which they propagate. 

In order to relate the backscattered microwave signals to the surface wave 
spectrum, the modulation transfer function must be known. This can be calculated 
using the two-scale, or composite-wave model. The modulation of the backscat- 
tered power arises from the change in local depression angle induced by the long 
waves, as calculated by Barrick (1972), and from the hydrodynamic interactions 
between the short Bragg waves and the longer surface waves. This latter effect has 
not always been fully considered by previous authors when discussing the two- 
frequency technique (Ruck et al., 1972; Barrick, 1972; Jackson, 1974; Plant, 
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1977). However, Keller and Wright (1975) have taken hydrodynamic interactions 
into account when calculating the modulation of the backscattered microwave 
power from short wind-generated waves in a wave tank in the presence of a longer 
plunger-generated wave. More recently, this interaction has also been studied by 
Plant ef al. (1977) in the ocean for shoaling waves. 

In this paper the basic equations for the two-frequency technique are rederived 
in the frequency domain using a rather different analysis from that of previous 
investigators. It is shown that by carrying out signal processing in the frequency 
domain the system-inherent signal-to-noise ratio can be increased considerably. 
Under typical conditions an effective signal-to-noise ratio of order 10: 1 is esti- 
mated for both airplane and satellite applications, and it is concluded that in both 
cases the two-frequency technique does indeed represent a useful, simple method 
for measuring the two-dimensional surface-wave spectrum. 

2. The Theory of the Two-Frequency Technique 

We consider a radar system which emits two continuous waves (CW) of slightly 
differing frequencies fi, f~. In practice, the implementation of the two-frequency 
technique may be achieved by a scatterometer which emits successive pairs of 
pulses at the two frequencies. We assume that in this case the time separation 
between subsequent pulses of different frequency is so small that aliasing effects can 
be neglected and the analysis reduces to the CW case. 

The antenna axis is assumed to be directed at the ocean surface at an oblique 
incidence angle such that the backscattering of the microwaves by the rough sea 
surface is caused by Bragg scattering. Typically, the incidence angles should lie 
between 30” and 70”, where the upper limit is determined by the shadowing effects 
of long waves near glancing incidence and the lower limit by the breakdown of the 
small-amplitude conditions for the long Bragg-scattering waves encountered near 
vertical incidence (zero incidence angle). 

To relate the backscattered signal to the surface-wave field we apply the two- 
scale or composite-wave model, as introduced by Wright (1968), Barrick and Peak 
(1968) and Bass et al. (1968). According to this model, the surface-wave spectrum 
is divided into two regions of different wavelength scales. The short waves 
represent the Bragg-scattering waves. The long waves are represented locally by 
tangent surface elements, or ‘facets’, of dimension D small compared to rhe 
wavelength a of the long waves, but large compared to the wavelength A of the 
Bragg waves, 

A cc D K ii . (1) 

It is then assumed that Bragg theory can be applied in the local reference system of 
the moving, inclined facet. 

The amplitudes B’“’ (S = 1,2) of the two backscattered microwave signals can be 
represented as the superposition of the contributions from all facets j within the 
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footprint of the antenna. For simplicity of notation, we assume that the emitted 
waves both have the same amplitude. In the reference system of the antenna, 
moving with the platform velocity V, the (complex) backscattered amplitudes can 
then be expressed in the form 

B(‘) = 1 Aj e’qI‘) . 
i 

(2) 

Here Aj represents a (complex) scattering amplitude for the facet i, and the phase 
(~7’ is given by 

&) = 2x .k!“’ I, 3 

where xi is the average position of the facet j relative to the antenna, located at 
x = 0, and kj is the wave-number vector of the backscattered wave, pointing from 
the facet j to the antenna. 

Although the complex amplitude A, contains a phase factor by definition, we 
have retained in Aj only the phase contribution which is the same for both 
microwave frequencies. The frequency-dependent part, arising from the different 
phase shifts along the propagation path to and from the facet for each frequency, 
has been factored out in the term ei*p’. This separation is well-defined if the facet 
size is small compared with the horizontal wavelength hh = 27r/lAkj of the beat 
wave, where A k = kc’) -k’*’ represents the beat wave number and A& its horizontal 
projection. In this case the backscattered field from a given facet can be regarded as 
identical for each frequency, except for the relative phase shift between the two 
waves. 

Because we have chosen the platform as reference system, the velocity of the 
facet i is given by the sum of the platform velocity V and the orbital velocity frj of 
the long waves at the local facet position, Thus for small times 

cpl”’ = (~7 + 2k’“’ . (tJj + V)t 

or, alternatively, 

(3) 
where &j(r) G (&, tj) re p resents the horizontal and vertical displacements of the 
facet by the long-wave orbital motion relative to its mean position Xi, corresponding 
to the surface at rest (the Stokes drift may be neglected or included in V). 

The Doppler shift induced by the phase velocity of the short Bragg-scattering 
waves relative to the facet velocity appears in this model in the phase of the 
scattering factor Aj, since within the approximation (1) it is the same for each 
frequency. 

The mean square modulus of the scattering amplitude Aj is proportional to the 
local cross section Uj per unit surface area, the proportionality factor G(xj) 
depending on the distance of the platform from the facet, the antenna pattern and 
the areas of the horizontal projections of the facet surfaces. The facet sizes can be 
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defined such that the latter are constant for all j and t, and can therefore be taken as 
Unity. 

Thus, 

I@ = G(xj)aj . (4) 

The averaging bar denotes here the ensemble average over the short waves for a 
given long-wave-field realisation. 

Because of the electromagnetic and hydrodynamic modulation, the cross section 
ai will be a function of the position of the facet with respect to the long-wave field. 
In fact, cri depends not only on the facet position, but also on the facet velocity and 
other properties of the long-wave field (cf. Appendices A and B). For linear (i.e., 
weak) modulation this dependence may be expressed by a linear transfer function 
Rk, and Equation (4) may be written 

I&l’ = uoG(xi)[ 1+ 1 (R&z& e’(‘“‘-‘I’+ c.c.) d&] , (5) 

where u. is the average cross section over the footprint, zk represents the Fourier 
transform of the surface elevation [ associated with the long carrier waves 

f = 1 [zs eitk’r-‘r)+ c.c.] d& 

with 6 = (g[k[)“*, g = 9.81 m . SC*, and C.C. stands for complex conjugate. 
We consider now the complex product 

y(r) = B(~)B(~)* = C A,A; ei(vj1)-‘Pj2’2’) 

ii’ 

(6) 

(7) 

and its frequency power spectrum 

P,(f)=p~,~df)= 1-1 dr e-27i’T$l&+ bTdi y(r)y*(r +r). 03) 

It will be shown that P,(f) contains a peak which is proportional to the long-wave 
spectrum. This provides the basis for the dual frequency technique. 

Since the surface wave field is both statistically stationary and homogeneous, the 
time average in Equation (8) can be replaced by a spatial average (e . a) over a large 
number of different, statistically independent surface patches: 

P,(f) = Irn dr e-2.rrifT(y . y*(r)) . 
-m 

(9) 

This is the ensemble average that a moving platform, such as an aircraft or 
spacecraft, in effect carries out when performing time averages of signals received 
at the platform. It may therefore be expected that the number of degrees of 



TECHNIQUE FOR MEASURING OCEAN-WAVE SPECTRA 219 

freedom involved in the estimate (9) is governed only by the distance the platform 
travels, which determines the number of statistically independent patches, and is 
not dependent on the platform speed. The sampling time needed to estimate a 
spectrum with given statistical stability is accordingly inversely proportional to the 
platform velocity. 

Consistent with this result, we shall find that the characteristic frequencies of the 
spectrum P,(f) scale with the platform velocity. This result implies that the feasi- 
bility of the two-frequency method is not dependent on the speed of the instrument 
carrier and applies equally for air- and space-borne platforms. 

Inserting Equation (7) in Equation (9) we obtain 

In deriving this equation we have assumed that the complex scattering amplitudes 
for different facets are statistically independent and have uniform phase dis- 
tributions. Thus when calculating the ensemble average of quadruple products only 
index combinations containing the index pairs indicated in (10) survive. 

The first term is the frequency spectrum PIB,lz of 1B”‘12 = IB(2’12. 
For complex Gaussian B’“’ (s = 1,2) (which in the present case follows from the 

Central Limit Theorem) it can be expressed as the convolution of the Doppler 
spectrum of B’“’ with its complex conjugate: 

I 

m 

PI = V”PesW’edf-f’). 
-Lx 

(11) 

According to the two-scale model (cf. Wright, 1968; Hasselmann and Schieler, 
1971) PBS(f) consists of the usual two Bragg lines, displaced by the Doppler shift fD 
due to the platform velocity, and broadened by the Doppler shifts due to the 
random orbital wave motion and the variable Doppler shift of the platform motion 
within the footprint. For aircraft and satellite applications, the platform motions are 
dominant, and the two Bragg lines are merged into a single bell-shaped dis- 
tribution, depending in detail on the antenna pattern, with a maximum at the mean 
platform Doppler shift fD and a width of order (l/r)lVI . Ikl sin 8 68, where 0 is the 
angle between the platform velocity V and the radar wave number k, and 613 is the 
beam width. 

The convolved spectrum PI(f) then has a peak at 2fD and at zero frequency, each 
peak being of order J2 broader than the original peaks of PBS(f) (cf. Figure 1). 

The second term has a more interesting structure. Substituting Equation (3) and 
(5) into the second term of Equation (lo), and replacing the sum over j and k by 
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integrals, we obtain 

p*(f) = (+; Ip, &( / j- &G(x) e2’rAkr+(Ak y-nf)T1 x 

, (11) 

where S(f) = R(f)+ 2i Ak3 - 2 A& * k/161 and A& is the projection of Ak onto the 
horizontal plane. 

The two additional terms in the transfer function S(l) arise from the expansion 
of the phase term (cf. Equation (3)) in the form 

e2iAkB= 1+2i(Ak3-iA&t/I&I)[, (12) 

which is valid for beat wavelengths large compared with the height of the long 
waves. 

Performing first the x-integration and neglecting at this stage the variation of the 
Doppler shift 2Ak. V within the footprint, we obtain 

p2( f) = 4$& dT e*i(Ak k’-Tf)T 
( ID@ AWi*+ 

+i dk(S/*[]D(6+2 Ak)j2 eeiGT+ 
I 

+ [0(-t + 2 Ak)[* e+“’ IF&)) 9 

(13) 

where the filter function D(k) is the Fourier transform of the antenna footprint 

D(k) = & [ d&G(x) eikr 

and F(k) is the spectrum of the long waves: 

(z&q) = $S(l -&F(G). (1% 

For a large footprint, D(k) is sharply peaked at & = 0 and can be approximated by a 
S-function, 

lP(H12 = ~24W), (16) 

where cy is proportional to the incident radiation intensity at the center of the 
footprint and Af = a-* 5 dx G*(x) is a weighted footprint area. For example, for a 
Gaussian antenna pattern we have 

G2(x) = a* exp [-x*/xi] (17) 

D’(k)=$-$exp [-k*/2&;], (18) 
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where 

and 

1 1 
lkol =z k (19) 

Af=m;. (20) 

Taking the S-function approximation (A, + co) for the second term of Equation 
(13), we obtain 

+h2Af -f+l Ak . V-~)~S~~%(-2 A&)+ 
IT (21) 

+S( -f++ Ak . V+f)jS+12E(-2 A&)]} 

with 

Se. = S(-2 A&), S+=S(+2Ak) and I=&&. 

The first term represents a d.c. contribution at essentially zero frequency and zero 
beat wave number, which is independent of the long-wave modulation and not of 
interest in the present context. The integral of this term over f for A& = 0 can be 
shown to be equal to 

(22) 

For A& # 0, Equation (21) shows that Pz(f) consists of two Bragg lines at the 
surface-wave frequencies *f corresponding to the Bragg components & = rt2 Ak of 
the beat wave number, with superimposed Doppler displacements due to the 
platform velocity: 

f=*?+$AkV). (23) 

The peaks are directly proportional to the two-dimensional wave spectral density at 
the corresponding Bragg beat wave numbers, with a proportionality factor which is 
given by the modulation transfer function and the general radiation geometry. 

If the variability of the platform-induced Doppler shift 2 Ak * V within the 
footprint is taken into account, a straightforward calculation shows that the Bragg 
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lines are simply broadened by an amount of the order of 

(The line broadening associated with the indeterminateness of the frequency as a 
result of the finite footprint size is small for the cases considered here. However, for 
small footprints and stationary platforms this effect can become dominant and was 
responsible for the finite width of the resonance peaks observed by Plant, 1977.) 

3. Signal-to-Noise Ratio 

The feasibility of extracting the surface wave spectrum from the Bragg peaks of 
P2(f) depends critically on the ratio of the energy~in the peaks to the spectral 
density of the broad ‘noise’ background PI(f) in the vicinity of the peaks (Figure 1). 

I 

2fd 
‘f rcs 

Fig. 1. Schemetic graph of the Doppler spectrum of the product signal B(l). IS’*‘*. 

For the optimal case of a narrow band filter equal to twice the width Sfres of the 
peak, the signal-to-noise ratio is given by 

fres+sfr,s 
j dfh(f) 

SNR = fr,.-Sfr.. 

2 SfresPl(fres) 

= 27r2&a2Ap{JS-12F(-2 A&)+ IS+j2F(+2 Ak)} 

2 ~fres~l(f*es> (25) 

For satellite and most aircraft applications the Bragg frequency shifts *f’ are 
masked by the Doppler broadening Sfres, so that (25) must be expressed for the 
combined signal of both lines. 
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To obtain an estimate for SNR we insert in Equation (25) a typical value for the 
modulation transfer function as calculated from theory and measured during 
JONSWAP 1975 (to be published), 

jR(r2 A@/2 A&l = 13. (26) 

Assuming further that the convolved Doppler spectrum Pi is Gaussian, 

P1 = A exp (-f2/2fi) (27) 

with 

f 0 = $. /V/ lklS8 >> Sf res ?I 

and 

A = 4(2r)- “*cr;A;a2f;‘, 

we obtain approximately 

(29) 

SNR = 5 . lO*e. i. f’F(j$)S(e) . (30) 
res 

Here F(fi is the scalar spectrum of the long waves in m* Hz-‘, Af the area of the 
footprint in m* and S(6) the angular spreading factor. Inserting a Philipps spectrum 

E(f)= p * g2(27r-4f5 (31) 

with p = 0.01 and assuming a cos4 8 spreading factor 

S(fl)=-&cos’8 for lC!?lst, s(e)=0 for~cje~c~, (32) 

we obtain as an estimate for the signal-to-noise ratio 

SNR = 0.25f-‘A;‘fo . (Sfres) , (33) 

or, expressing Af in terms of the footprint diameter 1x01, and assuming a Gaussian 
antenna pattern, 

SNR=0.1(~)2~=0.1(~)2~~~~~, where A* =$. (34) 
res 

Taking as example lkl = 2~/0.03 m-l (X-band), Ak = 21r/424 m-‘, 8 = 45” cor- 
responding to a water wavelength of h* = 300 m and 21x01= 10 km, we obtain 

SNR = 1.8 . (35) 

The same SNR is obtained, e.g., for a footprint diameter of 1 km and a water 
wavelength of 30 m, corresponding to a typical airplane application. 

The SNR given by the formal definition can in fact be enhanced by perhaps an 
order of magnitude by substracting out the ‘noise’ background PI(f) which in the 
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present case is easily detectable and measurable as it represents a spectrum which is 
much broader than the signal spectrum P*(f). 

From Equation (33) or (34) it is evident that the SNR is larger for small footprint 
areas. However, small antenna footprints give poor spectral resolution (see Equa- 
tion (19)). Experimentally, one should therefore aim for the smallest footprints 
which are still compatible with the desired spectral resolution. 

The sampling time T, required to resolve the Bragg peak with, say, 20 degrees of 
freedom (corresponding to 10 independent data pieces using a Bartlett spectral 
analysis technique) is of order lOr/l I/j lAkl68. However, more relevant for the 
application of the two-frequency technique is the sampling distance 

(36) 

This is independent of the platform velocity, as anticipated, (see discussion of 
Equation (9)) and also of the footprint dimension. The quantity 2Ak . 80 represents 
the horizontal wave number resolution Sk,,,. Equation (36) states simply that to 
measure a wave number spectrum with the resolution a&,, with resonable statisti- 
cal significance one needs a horizontal sampling distance an order of magnitude 
greater than the resolution wavelength. 

This requirement follows from general sampling considerations and is indepen- 
dent of the particular technique used to sense the sea surface, or the speed with 
which the sea surface is sampled. Thus we conclude that theoretically the two- 
frequency technique is capable of yielding the maximal spectral resolution attain- 
able with surface sampling schemes with an effective signal-to-noise ratio of order 
10: 1. 

Appendix A: The Modulation Transfer Function 

The modulation transfer function Ri is the sum of two terms 

Rk = Rz” + Rpdr. . (AlI 

Rz” describes the modulation of the backscattering cross section due to the purely 
geometric effect that the facets are tilted by the carrier waves. Since the Bragg 
scattering cross section u is given by 

u = T . [E(-2&)+E(+2&)], 642) 

where T is a scattering coefficient depending on the incidence angle, the ‘tilt’- 
modulation of the cross sections is 

su 

( ) 
- l&T .n^ =-- - 3 
U tilt (+o a5 ;=o 

643) 
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where 

1 aa 1 dE,; 1 aT --=- 
uo ad E, a$ T aij' (A4) 

and 

E,=E(-2k)+E(+2&). 

Insertion of the Fourier representation (6) yields 

(‘46) 

(A7) 

T can be calculated from electromagnetic theory and is given in the literature (e.g., 
Rice, 1951; Wright, 1968; Hasselmann and Schieler, 1972; Schieler, 1977). 

The hydrodynamic modulation transfer function Ry is calculated in Appendix 
B using WKB interaction theory. The modulation of the short-wave spectrum by 
the long waves is linearly related to the modulation of the radar cross section (see 
Equations (4) and (5)): 

SE =- 
Eo ’ 

(A81 

Thus the dimensionless hydrodynamic modulation transfer function for radar 
backscattering required in Section 2 is identical with the transfer function for 
energy modulation. 

Appendix B: Hydrodynamic Interactions 

The hydrodynamic interaction between short and long surface waves has been 
treated by Keller and Wright (1975) in terms of the transport equation for the 
energy spectrum of short water waves in which the interactions are described by the 
radiation stress tensor of Longuet-Higgins and Stewart (1964). 

Here we use a somewhat simpler representation of the WKB-type hydrodynamic 
interaction starting from the action balance rather than energy balance equation of 
the short waves. In the case of a vanishing source term, the equation describes the 
conservation of action density along a ray path in four-dimensional phase space. It 
can be shown quite generally that action density is a conserved quantity for waves 
propagating in a medium which varies on a much larger space and time scale than 
the waves. (see e.g., Whitham, 1965; Bretherton, 1970; Willebrand, 1975). 

In solving the action balance equation we take the rc,tio of the group velocity of 
the short wave to the group velocity of the long wave and the long-wave slope as 
expansion parameters. Keller and Wright used a different expansion parameter, the 
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ratio of the horizontal component of the orbital velocity of the long wave to the 
phase speed of the small wave. For short-wave radiation (e.g., X-band) and 
medium to high sea states this ratio is not always small. 

In the two-scale approximation, the long waves are regarded as a slowly varying 
current in a vertically accelerated coordinate system on which the short waves 
propagate. 

The evolution of the short-scale wave field is then governed by the action balance 
equation (radiation balance equation) 

where N(k, x, t)=E(k, 3, t)/w’ is the action spectrum, & the wave number, o the 
frequency in a fixed coordinate system, w’ the intrinsic frequency of the wave 
components in a reference system moving with the local current oi(&, t), and 
Q = Q(&, x, t) a source function. The path velocities f and 6 are given by the ray 
equations 

where CO (k, x, t) = w’(k) + & * 0(x, t) denotes the dispersion relation for deep water 
waves propagating in a variable current 0(x, t) and an accelerated reference 
system. au/a& is the group velocity in a fixed reference system, and -awlax the rate 
of change of the wave number (refraction) due to the large scale fluid motion. If the 
source function is zero, then Equation (Bl) expresses in spectral form the conser- 
vation of action density of individual wave trains along ray paths in four-dimen- 
sional 3, k-space. 

The intrinsic frequency is given by 

wYk)= (Hlkl+~lk3)“z 7 

where r is the surface tension, p the density of water and g’ the sum of the 
acceleration of gravity g and the orbital acceleration (due to the fluid motion) 
projected in the direction of the facet normal. 

Since the wave slopes a&lax of the long waves are assumed to be small, we have 
to second order 

&kg-$f, (B4) 

where ~2 is the radian frequency of the long waves. 
The source function Q is the sum of 3 terms Qi, Q,, and Qd. Qi describes the 

energy input from the wind, Q, the energy transfer within the wave field due to 
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conservative resonant wave-wave interaction and Qd the energy loss due to dis- 
sipative processes (Hasselmann, 1972; Hasselmann et al., 1973). 

Since the effect of the large-scale motion is small by assumption, we may apply a 
perturbation expansion of the Liouville operator 

~=~~+s2? (B5) 

and the action spectrum 

N=N,+SN. 036) 

Furthermore, we assume that the source term Q vanishes to zeroth order and is 
given to first order by 

[SW 7 (B7) 

where SQ/SN denotes the functional derivative of the source function Q. 
In the absence of large waves the action spectrum satisfies the zeroth order 

radiation balance equation 

.JZo[No] = 0. 038) 

To first order we have then 

~o[SNl+SLZ’[Nol =~I,=, [SW. 
0 

(B9) 

We take the ratio of the group velocity of the short waves pg to the group velocity 
of the long waves &G/& as small and also ,j?l&I<< 1. The operator 2 can then be 
decomposed into 

and 

ST = y, .~+o.-&~(~.o)-$. - - 
(Blob) 

The detailed structure of Q and therefore of Q’ = SQ/SN is not known. In par- 
ticular, the wind dependence of Q’ is not well established. This question can be 
resolved only by experiments and considerable effort is presently devoted to 
investigate this problem with modulation experiments in the ocean (e.g., 
JONSWAP 75, Plant et al., 1977). We assume here for simplicity with Keller and 
Wright (1975) that Q’ at the equilibrium state No is a diagonal operator and make 
no assumption about its wind speed dependence: 

SQ 
z [aNo]= -PC& xW. N=N 0 

0311) 
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~(k, x)-l is a characteristic relaxation time of the system which is determined by 
the input from the wind (a,), by damping processes (Q,) and by conservative 
transfer processes within the wave field (Q,). 

The assumption that SQ/SN is approximately a diagonal operator at N = No 
means that near equilibrium the net effect of the perturbation forcing terms Qi, Qd 
and Q, on the wave field can be described by a damping of each individual wave 
train, without a transfer of action from one wave train to another. Equation (B9) 
can be solved by using a Fourier representation of SN and fi 

SN = & SE = No (R$“d’.tg ei(‘3-‘L)+c.c.) dg 

O= igyae 
I( 

E *i i&3-&)+, c d& 
) 

. . -, 

where 2% represents. the Fourier transform of the long-wave field amplitude (see 
Equation (6)) and 

wo= (glkl+~lkll)lii I 0314) 

which is approximately equal to w’ because 

In (B12) it is implied that Rr. is independent of 26, such that Rp”‘, is a linear 
transfer function between the relative change in spectral energy of the short waves 
and the amplitude of the long waves. 

Assuming that the zeroth order energy spectrum is homogeneous in x- space, we 
obtain from equation (B9) 

with 

aEo -- 
ak > 

6.k 
rlk12 I 

0315) 

0316) 

nd Eo= WONO. 
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Choosing for the short-wave spectrum E a Phillips spectrum E. - I& IV4 we obtain 
from (B15) and (B16) 

0317) 

where y = $ for gravity waves. 
We regard p in (B17) as an empirical complex parameter whose value must be 

determined by experiment. 
In Figure 2 the absolute value and phase cp of (l/llj)Rhyd’. are plotted as function 

of y=f.Z/p for -y=:. 

t 

$R hydri = 4.5+=+ 
lkl 

4.5--------------------- 

0 1 2 3 
-Y 

T rp = arc ctgt-y) 

1 2 -Y 3 
00 I I I r 1 1 

450- 

Fig. 2. Contribution to the modulation transfer function originating from the hydrodynamic inter- 
actions between short and long waves as a function of y = 27rf/p. The first curve shows the modulus and 

the second, the phase (theoretical). 

The hydrodynamic transfer function derived by Keller and Wright (1975) differs 
from our Equation (B15) because of the different expansions used. Their formula 
for Rr. generalized to a two-dimensional wave field may be obtained from our 
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expression (B1.5) if the first factor 

g is replaced by 
(h-p,. &-iF 

w +cL (h -pg * fc)*+p*. 
(B18)* 
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