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ABSTRACT

A two-layer model with an idealized continental shelf and slope bottom topography is utilized to study
some properties of the response of stratified coastal regions to meteorological forcing with variations in the
alongshore direction. The model is such that the coastline is straight, there are no alongshore variations in
the bottom topography, and the parameter A=38p/83 is small, i.e., A1, where §F is the internal Rossby
radius of deformation and 85 is a scale length of the bottom topography. In that case, the inviscid response
to forcing by an alongshore wind stress is composed of uncoupled baroclinic and barotropic components.
The baroclinic component consists of forced internal Kelvin waves, with an offshore scale of the order of
8z (~15 km) and the barotropic component consists of forced continental shelf waves, with an offshore scale
the order of the width L of the continental shelf and slope (L= 100 km). The alongshore scale of the forcing
is assumed to be greater than L and the method of solution of Gill and Schumann and of Gill and Clarke is
used. As a result, the alongshore and time-dependent behavior of the baroclinic and barotropic components
is governed by forced, first-order wave equations. The response to an impulsively applied, upwelling-favor-
able wind stress with a specialized alongshore structure, i.e., a constant value for a distance of limited extent,
is studied to give insight into the qualitative nature of the behavior of the forced time-dependent, baroclinic
and barotropic components. The solutions show clearly how the region of forced upward motion of density
surfaces may propagate alongshore to locations distant from that of the wind stress which causes the up-
welling. They also illustrate how the barotropic onshore flow to the coast is influenced by the propagation
of forced continental shelf waves such that the region of onshore flow from the interior to the slope and shelf
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may also propagate alongshore.

1. Introduction

The coastal model described by Allen (1975) is
utilized here to study, with the methods of Gill and
Schumann (1974) and Gill and Clarke (1974), some of
the properties of the response of stratified coastal
regions to meteorological forcing. In particular, the be-
havior of the time-dependent response to an idealized

~wind stress forcing with variations in the alongshore
direction is investigated to give insight into the nature
of the resultant alongshore variation in the oceans
response.

A two-layer f-plane model with an idealized con-
tinental shelf and slope bottom topography is utilized
(Allen, 1975). The bottom topography is given by an
exponential depth variation in the offshore direction for
the shelf and slope region as in Buchwald and Adams
(1968). This coastal region adjoins a constant depth
interior. The boundary at the coast is vertical and the
heavy fluid covers the entire shelf such that the density
interface intersects the vertical section at the coast.
The coastline is straight and there are no alongshore
variations in the bottom topography. The motion is
driven by an alongshore component of the wind stress

7 through the suction of fluid into the surface layer at
the coast.

1t is assumed that the parameter A=285/85 is small,
i.e.,, M1, where 8} is the internal Rossby radius of
deformation and 8,=H'/H.. is a scale length of the
bottom topography. (H' is the depth, & is a coordinate
in the offshore direction, and the subscript x” denotes
differentiation.) In that case, the response to forcing by
an alongshore component of the wind stress is composed,
in the first approximation, of baroclinic and barotropic
components which are uncoupled. The baroclinic re-
sponse feels only a flat bottom to the lowest order and
consists of forced internal Kelvin waves, with an off-
shore scale of the order of 8, (~15 km). The barotropic
component consists of forced continental shelf waves,
with an offshore scale of the order of the width L of
the continental shelf and slope (L= 100 km).

The alongshore scale of the forcing 8y, and therefore
that of the response 3y, is assumed to be greater than
L and the time scales of interest §’ are assumed to be
larger than an inertial period, i.e.,

3y>>L, 8> f1,

where f is the Coriolis parameter.

(1.1a, b)
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The method of solution of Gill and Schumann (1974)
and Gill and Clark (1974) is utilized. As a consequence,
the alongshore and time-dependent behavior of the
baroclinic and barotropic components is governed by
forced first-order wave equations. The solutions pre-
sented here are simply the result of solving these
forced first-order wave equations, with a particular
idealized stress distribution, and making some inquiries
about the consequences of the solutions on the nature
of the flow.

One particular coastal phenomenon of considerable
interest is that of coastal upwelling where an upwelling-
favorable alongshore component of the wind stress
drives water in the surface layer offshore. This creates
a suction of fluid from the shelf into the surface layer
near the coast. The simplest conceptual picture of this
upwelling process is that of a two-dimensional response
in a plane normal to the coast, i.e., with no gradients in
the flow in the alongshore direction (e.g., O’Brien and
Hurlburt, 1972). In that case, the offshore flow in the
surface layer is balanced by an onshore flow toward the
coast in the same onshore-offshore plane. With respect
to the flow below the surface layer in the present two-
layer model, the motion outside a distance 8 from the
coast is barotropic, i.e., depth-independent. The on-
shore flow is fed to the shelf-slope region from the
interior and a barotropic alongshore current develops
over the shelf and slope. Within a region of scale 8
from the coast, the flow also has a baroclinic component.
The density interface rises in this region as the flow is
modified by vertical motion such that a mass flux,
equal to that of the barotropic inflow, is pumped out
of the top layer at the coast and into the surface layer.
Abaroclinicalongshore current develops simultaneously.

This two-dimensional response is the picture that is
commonly visualized for coastal upwelling. Since fea-
tures which can lead to alongshore variations in the
flow, e.g., alongshore variations in coastline, bottom
topography and wind stress, are present in upwelling
regions, it is important to appreciate under what con-
ditions the above two-dimensional picture of upwelling
may be valid. Here a simple example is used to illustrate
the alongshore variations in the flow that result in the
present model from an alongshore variation in the wind
stress.

2. Formulation

We utilize a linear two-layer model situated on an
f-plane. The equations are formulated in detail in
Allen (1975) and we use the same notation here with
the additional definition of a dimensionless wind stress
7=1'/70, Wwhere 7 is a characteristic value of the surface
wind stress and where the characteristic horizontal
velocity U= 7o/ (p:fH,). The model geometry is also
the same as given in Allen (1975). The coordinate sys-
tem is placed with the y axis aligned in the alongshore
direction and the x axis pointing offshore, with the
origin x=0 at the coast. The equation for the total

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 6

depth, in dimensionless coordinates, is
HT=HT(()) exp(x/ﬁg), 0<x< 1, (2.13)
Hr=Hrq exp(@s)=Hrq, 1<z, (2.1b)

where Hr is independent of y.
We will utilize assumptions (1.1a, b) which in dimen-
sionless form are
a>1, >, (2.2a, b)

As a result of (2.2a, b), the alongshore component of

. the velocity is assumed to be in geostropic balance.

Two equations may be derived for the mass transport
streamfunction ¥ and the interface height 4. As is dis-
cussed in Allen (1975), if

A=10r/8pK1, (2.3)

where g is the dimensionless internal Rossby radius
of deformation and ép= Hr/Hr,, the barotropic prob-
lem for ¥ and the baroclinic problem for % are un-
coupled.! We will assume that (2.3) holds and, more
specifically, that p=0(1) and 3p<K1. With (2.3), the
resulting equations for ¢ and % are

(Woo—05 W)+ 057,=0, (2.4)
(h2z—06r"%h)=0, (2.5)
where the subscripts (x,y,!) denote differentiation.
The boundary conditions at the coast are
wi=—1(yt)/H1, 4.=0 at x=0, (2.6a,b)

where (2.6a) is required to balance the offshore trans-
port in the surface Ekman layer. In terms of ¢ and 4,
Eqgs. (2.6a, b) imply

Y= —7(3,1) 2.7

hytho= —7(y,t)/H (2.8)

The other boundary conditions in « for ¥ and % are
¥.=0 atx=1, 2.9

h—0 for x/6g>>1. (2.10)

at x=0,

at x=0.

The condition (2.9) has been explained by Gill and
Schumann (1974). We point out that it is essentially
based on the assumption (see Allen, 1976) that the
onshore flow to the shelf-slope region at x=1 is geo-
strophically balanced, i.e., that

V= — (Hipy+ Hepey) atx=1.

We will consider initial-value problems where the
wind stress forcing 7 is applied impulsively at =0 and

(2.11)

1 The free wave solutions calculated by perturbation methods
for A<1 by Allen (1975) required frequency corrections dependent
on A. This implies that in the forced problem the weak coupling
will cause non-uniformities in the solution for long time scales de-
pendent on . We do not consider these effects here. We essentially
assume that \ is small enough that, for the time scales of interest
for these examples, the non-uniformities are negligible.
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where the initial value of % is equal to zero, i.e.,

h=0 at¢=0. (2.12)

The initial value for ¢ is such that the offshore flow in
the surface Ekman layer, which is set up instantane-
ously in this problem, is balanced by an onshore flow

with an equal mass flux, i.e.,
Y,=—1 att=0. (2.13)

The alongshore distribution of the wind stress is a
rectangular function

0, 0<y
7(y, 1>0)=1 7, —]|3|<y<0 (2.14)
0, y<—Il

where 7, is a constant and 7,>0 so that the wind stress
is upwelling-favorable. The alongshore distribution is
chosen deliberately to have the rather unrealistic form
(2.14) since this introduces, very strongly, the effects
of alongshore variations in = and since solutions of the
first-order wave equations by the method of character-
istics are especially easy to obtain and to understand
in this case. The discontinuities of 7 at y=0 and — | yo|
would undoubtedly generate a response with short
alongshore wavelengths which would violate assumption
(2.2a). However, since the first-order wave equations
that result with assumptions (2.2) admit solutions with
discontinuous forcing functions and since this type of
forcing results in a sharp division in y and ¢ of the flow
properties, which helps clarify the results, we will
utilize it. If the variation of the forcing is sufficiently
smoothed in the alongshore direction, the resulting
solutions will be smoothed so that (2.2a) is satisfied.
Similar qualitative results will follow, but the change
in flow properties will take place more gradually in y
and 2.

3. The baroclinic problem

We first consider the baroclinic problem for % which
is defined by Eq. (2.5), boundary conditions (2.8) and
(2.10), and initial condition (2.12). With the small A
assumption [Eq. (2.3)], this problem is the two-layer
analogy of the continuously stratified, flat bottom up-
welling problem considered by Gill and Clarke (1974).

The appropriate solution to (2.5), which satisfies

(2.10), is
h=G (%) exp(—=/3z). G1)

The satisfaction of (2.8) requires that G obey the
equation

Cl_th_Gy= T(y,l)/Hl,
where ¢;=28z and where, from (2.12),

G=0 att=0.

(3.2)

3.3)

Eq. (3.2) is a forced first-order wave equation. It is
the two-layer equivalent of the equation found for the
baroclinic modes in the continuously stratified case
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F16. 1. The stress  for £>0 as a function of y (top plot). Below
that is a y-t diagram for the solution G of (3.2). The solution has
different behavior, which is summarized in Table 1, in the four
marked regions. Outside of these regions the solution is G=0. The
bottom plot is G as a function of y [Eq. (3.6)] for the four values
of ¢ indicated in the y-¢ diagram.

by Gill and Clarke (1974). The solution to this two-
layer problem may be thought of as corresponding to
the solution for the first baroclinic mode in the continu-
ously stratified case. With r=0, Eq. (3.2) governs the
propagation of free internal Kelvin waves. These non-
dispersive free waves propagate toward the negative y
direction (toward the north on the west coast of the
United States) with a wave velocity of ¢1. A typical
dimensional value for ¢, is approximately 50 km day™
(Kundu e al., 1975).

The forced wave equation (3.2) may be most easily
solved by the method of characteristics. If the variables

=y+al, s=t, (3.4a, b)
are defined, (3.2) transforms to
G, ("7,8) = TCl/Hl, (3-5)

which may be readily integrated along the character-
istics = constant.

The wind stress, defined by (2.14), is plotted for
>0 as a function of y in Fig. 1. Below that plot in
Fig. 1, a y-t diagram is given with some of the char-
acteristics 7= constant plotted and with the region
—|y0] <¥<0, in which the stress 7 acts, indicated.
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TasLE 1. Features of the balances in (3.8) in the four regions of Fig. 1.

Region Solution Eq. (3.8a) Eq. (3.8¢) Character
1 (3.6d) = —8r2h, 9;+2=0 time-dependent,
two-dimensional
(Du =0) (7y=0)
2 (3.6¢),(3.6f) ~+0,=0 a=—h, steady, geostrophic
(h=0) (0:=0)
3 (3.6e),(3.6h) R 0= —hy time-dependent, free
internal Kelvin wave
(12, =0) (#=0) front
4 (3.68) (=0, (0.=0, 9= hy #0, the
9,=0, 7=0, alongshore velocity is
he=0) hy=0) in steady geostrophic
balance
Four regions in which the solution has a different 7= h, (3.8b)
character are also marked. These will be referred to
shortly. It is easy to see, from this y-¢ diagram, how the beta=—hy (3.8¢)

solution G behaves as (3.5) is integrated along the

characteristics. Initially, at s={=0, we have G=0.

When (3.5) is integrated with respect to s, for g

= constant, G increases linearly with s when the char-

acteristic is in the region — |yy| <y<0 and G remains

constant when the characteristic is outside this region.
The solution is

G=0 for 0<y, y<-—|yo|—cxt, (3.6a,b)

and, for cy< | y},},
G=|y|ro/H; for —cit<y<0, (3.6¢)
G=cytru/Hy for —|yo| <y<—ci, (3.6d)

G= (y+ |yo|+c1t)r/H:

for — |yof —ct<y<—]vo|, (3.6¢)
while, for c#> |y,
G=|y|rw/H, for — |y, <y<0, (3.6f)
G=|yo|rw/Hy for —ct<y<—]|yo], (3.6g)
G= (y+ |yl t+et)ro/Hy
_ for — |y0| —ct<y<—cit. (3.6h)

. The solution for G as a function of v, at the four different
times marked on the y-f diagram, is plotted at the
bottom of Fig. 1. Note that 2(x=0)=G and that G
may be thought of as the height of the density interface
at the coast.

It will be useful, in discussing the solution (3.6), to
look at the equations for the baroclinic velocity com-
ponents which may be defined by

= Ve —7, U= Us —U%1. (3.73,, b)
These components obey the equations
UetTy= —3r "My, (3.8a)

We point out that the question of what type of
balance, two-dimensional or otherwise, is present in the
baroclinic component of the flow may be asked with
regard to which terms are important in the continuity
equation (3.8a) and in the y momentum equation (3.8c).
For example, in the two-dimensional response dis-
cussed in Section 1, the terms in (3.8a, ¢) with y deriva-
tives are equal to zero and do not enter in the balance.

We note that the solution (3.6) has a different char-
acter in the four regions shown in the y-f diagram in
Fig. 1, and that outside these regions the solution is
G=0. The balances in (3.8) are also different in these
four regions. These features are summarized in Table 1.
We can see the following points. In region 1, the re-
sponse is time-dependent and is purely two-dimen-
sional. There is no y dependence in the flow in this
region, because the stress in — |y,] <y<0 is y-indepen-
dent and because information about the y-dependence
of = has not had time to propagate, with the velocity
¢1, from the point y=0.

In region 2, on the other hand, the flow is steady and
is geostrophically balanced. With this particular stress
distribution, the propagation of information about the
finite extent of 7, along the characteristic n=0, is ac-
companied, within the region — |yo| <y<O0, by the im-
mediate set-up of a steady geostrophic flow. In the
steady flow, the baroclinic onshore component of ve-
locity # is balanced by #,, i.e., by alongshore pressure
gradients.

The solution in region 3 is essentially a free internal
Kelvin wave front which is generated in response to
the directly forced solution in — | yo| <y<0 and which
propagates toward the north (negative y) with velocity
¢1. The onshore velocity components are zero in free
internal Kelvin waves and in this region @=0.
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The vertical motion of density surfaces takes place
in regions 1 and 3, as is evident from the plot of G for
different times in Fig. 1. The vertical velocities in these
two regions are balanced in the continuity equation
(3.82) in different ways. In region 1, with two-dimen-
sional flow, it is onshore gradients in the onshore com-
ponent % which balance the vertical motion 8z %4.. In
region 3, however, it is alongshore gradients in the
alongshore component ¥ which balance 8z %k, Note
that the upwelling of the density interface that occurs
in region 3 takes place at an alongshore location which
is different from that of the wind stress which is causing
the upwelling.

With the constraints of continued wind stress forcing
and a barotropic inflow to the coast outside of x=0(3z),
there must continue to be an upward motion of the
density interface at some alongshore location. For
cit> |yo|, all of the time-dependent upward motion of
the density interface occurs in region 3, i.e., in the
internal Kelvin wave front which is propagating toward
the north with velocity c;.

Region 4 connects the motion in the internal Kelvin
wave front with the steady motion in region 2, where
both the onshore and alongshore velocity components
are geostrophically balanced. In region 4, the density
interface at the coast is elevated, compared with its
initial value, but it is independent of time and of y.
As a result, an alongshore velocity component 7, which
is in steady geostrophic balance, exists in this region,
and the onshore component %#=0.

The description of the two-dimensional problem,
given in Section 1, applies to the velocity field in region
1. In contrast to this picture, however, for ¢it> |y,
e.g., at times 3 and ¢, in Fig. 1, the baroclinic velocity
field that is set up within 8z of the coast is described
in the following way. There is a barotropic onshore
flow in — |y0] <y<0 for x>0 (5g). Within 0<x<8g, a
steady baroclinic component exists such that in (3.8a)
%5 is balanced by %,. The onshore flow in the bottom
layer turns toward the north (toward —y). The ve-
locity in the bottom layer is northward (in region 4)
up to the location of the internal Kelvin wave front
where it falls to zero as ¥, balances dz2k: and the
density interface moves vertically upward. The corre-
sponding alongshore flow in the top layer, from the
location of the wave front to the region where the
stress acts, is toward the south. Within — |y,] <y<O0,
the alongshore flow in the top layer is turned and is
fed horizontally to the coast to satisfy the boundary
condition (2.6a).

We emphasize that the motion of fluid into the
surface Ekman layer at the coast ¥=0 occurs within
—|y0] <¥<O0 as it must to satisfy the boundary flux
condition (2.6a) set by the local wind stress. However,
the upward motion of the density interface which
occurs in region 3 is not determined by the local wind
stress. This property of the response was pointed out
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by Gill and Clarke (1974) and the present example
provides a simple specific example of it. The solutions
also illustrate clearly some of the general features found
in the numerical studies of Suginohara (1974).

As far as a conceptual picture of the motion involved
in coastal upwelling is concerned, perhaps one of the
more useful results here is the reminder that, as well
as the familiar two-dimensional mass balance situation
in which onshore gradients in the onshore velocity
balance the vertical motion (region 1), it is also pos-
sible to find cases where alongshore gradients in the
alongshore velocity component balance the vertical
motion (region 3).

4. The barotropic problem

The barotropic problem is defined by Eq. (2.4),
boundary conditions (2.7) and (2.9), and initial con-
dition (2.13). With the small A approximation (2.3),
this problem is similar to the forced barotropic shelf
wave problem considered by Gill and Schumann (1974).

To find the solution, it is convenient to define

J=vt f (5,0)d9, @.1)

and to solve for ¢.
The equation and boundary conditions, in terms of
¥, are

(‘;13_58—11;:) t+ 53—-1‘7/”: 6B_11', (4.2)
¥,=0 atx=0, ¢¥,=0 atx=1, (4.3a,b)
¢=0 at:=0. (4.4

The problem is now identical in form to that treated
by Gill and Schumann (1974) and we follow their pro-
cedure. We expand ¢ in terms of the free shelf wave
eigenfunctions ¢.(x) (Buchwald and Adams, 1968), i.e.,

=2 Y.(3,1)éa(x), 4.5)
n=1
where ¢, satisfies the eigenvalue problem
¢n,,, _63_1¢nz+ (anaB)—1¢n= 0, (4.63.)
6,=0 atx=0, ¢,.=0 atz=1. (4.6b,c)

Substituting (4.5) into (4.2) and utilizing the
expansion

i= i bada (),

n=1

4.7

we find that ¥V, satisfies the forced first-order wave
equation
4.8)

an_lynt— Ym/= —bnT,
where, from (4.4),

Y,=0 ati=0 4.9)
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and where a, is the phase velocity of free continental
shelf wave modes in the long-wave (nondispersive)
limit (2.2). Typical dimensional values of a, (Cutchin
and Smith, 1973) are ¢;~400 km day~ and a,~100
km day~.

With (4.9), the solutions to (4.8) for V, are similar
to the solution for G [Eq. (3.6)] in Section 3, except
that the characteristics are modified by the change in
wave speed from ¢ to ¢, and the stress 7 in (4.8) has a
different multiplicative factor. In particular, the solu-
tion for ¥, will have the same general behavior as G
in the four different regions in the y-# diagram in Fig. 1.
The interpretation of the resulting flow here will differ
somewhat, however, as a consequence of the difference
in the relation of the velocity components to the func-
tions % and y.

Barotropic velocity components may be defined in a
manner similar to the baroclinic components in (3.7)
and they are

4 =HT—1\//,, =Hp! (Z ’Yny¢n - 1') = z /. —HT_IT, (410&)

b= —HrW,=—Hr'Y Vubrs=Y 6, (4.10b)

where v
ﬁn=HT—lYny¢n, (410(:, d)

The solutions for ¥, in the regions 1-4 may be inter-
preted in terms of the resulting consequences for the
velocity components # and 9.

In region 1, the solution for ¥, is y-independent and
we find a two-dimensional response. The § component
of velocity grows due to the onshore flow forced by the
wind stress. This follows from the balance 9,4-4= —p,
in the y-momentum equation where in region 1, %
=—Hy'r, 4,=0, and p,=Hy},7. Note that, if all
modes ¥, are in region 1, i.e., if ai/<|yo] and —|y,]
<y< —ay, this response may be directly described by
the solution to (4.2), (4.3) and (4.4) with ¥, =0. That
solution is

b= —HrW,=tHr 'r,{1—~exp[ (x—1)/85]},

and it represents a barotropic coastal jet. The jet
structure in ¢ is formed by the increase in magnitude
of the onshore velocity 4= —Hs 7 as Hyp decreases
and by the assumption (2.9) that 9(x=1)=0.

In region 2, the flow is steady and the balance in
(4.8) is

Dp= _HT—1Yn¢nz-

(4.11)

Yny= bar. (4.12)

To see what this implies we include the expansion (4.7)
in (4.10a), which gives .

a=Hy L (V= bur)g. (4.13)

Note that it is not appropriate to draw conclusions on
4 at x=0 from (4.13), since 4 (x=0)= —Hr 'z, but the
eigenfunctions ¢, (x=0)=0. It will be helpful, therefore,
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Fie. 2. A schematic of the flow pattern that develops in the
bargtropic problem from the first mode, i.e., from d=~4,— Hr 7,
227;, at a time a:£> | yo.

to look specifically at the behavior of the onshore flow
at the slope boundary x=1 where at the initial time
t=0, and in region 1,

A(x=1)=—Hy ™'Y byrda(x=1). (4.14)

We see from (4.13) that when the balance (4.12) is
achieved in region 2 for a mode #, the contribution of
that mode to the onshore flow in region 2 is equal to
zero. The loss of a contribution to the onshore flow in
region 2, however, is accompanied by the development
of an equivalent contribution in region 3. This may be
seen in the bottom plot of Fig. 1 where the y gradients
of ¥, are of equal magnitude but of opposite sign in
regions 2 and 3. The total contribution of a given mode
to #(x=1), therefore, remains constant and equal to
its initial value, although the alongshore location
changes. For a./<|yo|, the contribution to #(x=1)
from the nth mode occurs in regions 1 and 3, whereas
for a.t> |yo| it occurs entirely in region 3, where the
solution represents a free continental shelf wave front
propagating northward with velocity a,.

The motion in region 4 again connects that in regions
2 and 3. It is characterized by a steady alongshore
velocity 9, and zero onshore velocity 4,=0. The steady
alongshore motion exists from the location of the
propagating shelf wave front in region 3 to the steady
flow in region 2. This alongshore flow provides the
mass flux between region 3, where there is onshore or
offshore flow? to the slope at =1, and region 2, |vq|
<y<0, where the total flow is turned onshore to satisfy
the flux condition (2.7) which is set by the local wind
stress.

The flow pattern that develops from the first mode
is the simplest and probably the most important since
that mode has the largest amplitude and the highest
wave speed. It includes an onshore flow at x=1 in the
shelf wave front in region 3. For a;#> |ys/, this onshore
flow in region 3 is linked, by a steady alongshore
velocity in region 4, to the steady motion in — |y
<y<0 in region 2, where the flow is turned onshore
to satisfy (2.7). The onshore-offshore motion in region

2 The contribution #.(x=1) of the modes to #(x=1) alternates
in sign for increasing #.
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2 results from a superposition of —Hz 7 and #; and,
since |#i(x=1)|>|Hs'r|, a small amount of flow
near x=1 is turned offshore. A schematic of the flow
pattern is given in Fig. 2.

We point out that for increasing ¢, as the higher modes
achieve the steady balance (4.12), the total alongshore
current 9 in — |yo] <y<O0 concentrates close to the
coast at x=0. In the limit / — «, 9 has a delta function-
like behavior at x=0 for — |y,| <y<O0.

The important point here is that the region of largest
onshore flow to the shelf-slope region, which occurs in
connection with the first mode, propagates northward
with velocity ai. As a result, fluid is drawn from the
ocean interior onto the shelf-slope region at alongshore
locations that differ from that of the wind stress. This
propagation also results in the set-up of steady along-
shore barotropic currents (region 4) at locations north-
ward of the wind stress that forces them.
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