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The effects of randomness on the stability of 
two-dimensional surface wavetrains 

BY I. E. ALBERt 

Department of Mathematics, University College, London, U.K. 

(Communicated by K. Stewartson, F.R.S. - Received 5 January 1978) 

A simplified nonlinear spectral transport equation, for narrowband 
Gaussian random surface wavetrains, slowly varying in space and time, 
is derived fron the weakly nonlinear equations of Davey & Stewartson. 
The stability of an initially homogeneous wave spectrum, to small oblique 
wave perturbations is studied for a range of spectral bandwidths, resulting 
in an integral equation for the amplification rate of the disturbance. It is 
shown for random deep water waves that instability of the wavetrain 
can exist, as in the corresponding deterministic Benjamin-Feir (B-F) 
problem, provided that the normalized spectral bandwidth cr/ko is less 
than twice the root mean square wave slope, multiplied by a function of the 
perturbation wave angle = arctan(m/l). A further condition for 
instability is that the angle 0 be less than 35.26?. It is demonstrated that 
the amplification rate, associated with the B-F type instability, diminishes 
and then vanishes as the correlation length scale of the random wave field 
(ca. 1/o) is reduced to the order of the characteristic length scale for 
modulational instability of the wave system. 

1. INTRODUCTION 

Studies of the evolution of nonlinear surface water waves have tended to treat the 

problem either from the deterministic point of view, with emphasis on the pro- 
perties and stability of nonlinear wavetrains (Benney & Newell I967; Benjamin 
& Feir I967; Hasimoto & Ono I972; Davey & Stewartson 1974) or from the random 

point of view, with emphasis on wave-wave energy transfer within a broad spectrum 
due to weak nonlinear couplings in a nearly homogeneous random ocean (Phillips 
I960; Hasselman I962, 1963; Watson & West I975; Willebrand I975). It should 
be noted that Longuet-Higgins (I976) has made a notable start in joining these 
two wave viewpoints together, in his study of nonlinear wave-wave interactions 
near the peak of a gravity wave spectrum. 

In this paper we seek to provide a further bridge between the deterministic and 
random schools, by examining the stability properties of a weakly nonlinear 
random wavetrain. For this study, we assume the degree of randomness, or spectral 
spread a about the carrier wavenumber k0, is small. 

We start the analysis by assuming that the Davey & Stewartson (D-S) equations 
(the two-dimensional version of the nonlinear Schrodinger equation of Hasimoto 

t Present address: Arete Associates, P.O. Box 3800, Santa Monica, California, 90403. 
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526 I.. E. Alber 

& Ono) governing the development of the complex wave amplitude A (X, r), remain 
valid when A(X, r) is a random function of X. It is required by the D-S multiple 
scale analysis that spatial variations of the envelope function occur over distances L, 
which are large compared with the carrier wavelength, i.e. where L = O(27/ko e). 
The small parameter e is identified with the characteristic wave slope, which for 
random wave systems is given by the r.m.s. wave slope e = (k2 a) . a- is the mean 

square amplitude of some given unperturbed spatially homogeneous wave field. 
A transport equation for the ensemble averaged two point correlation function 

p(X1, X2, r)= A(X+}r,r)A*(X-Ir,r)> is derived from the nonlinear D-S 

equations, allowing for slow variations of p in both X and r. By specifying that the 
random surface wavetrain is described by a Gaussian random process, the nonlinear 
fourth-order correlation terms appearing in the derived correlation equation, are 

readily related to calculable second-order correlations, thus providing an approxi- 
mate closure of the governing correlation equations. Upon Fourier transforming 
the correlation equation (with respect to r) one obtains an equation describing the 
evolution of the wave power spectral density F(X, P, r); F being the Fourier trans- 
form of the two-point correlation function. A similar procedure was used by Wigner 
(1932) in deriving a Boltzmann-like equation for the quantum-mechanical wave 

probability function using the Schrodinger equation as a starting point. Applica- 
tions of this technique to the field of plasma physics and quantum mechanics have 
been made by Leaf (i968), Tappert (I97I), and Hasegawa (1975). 

The two-dimensional Schrodinger-like equations for water waves, developed by 
Davey & Stewartson, were employed by Longuet-Higgins (I976) to calculate the 
resonant transfer of energy between four waves in a narrow gravity-wave spectrum. 
The resonant interaction analysis provides a collision-like integral term to the 

spectral transport equation, which is third order in the spectral function. As in the 
studies of Watson & West (1975) and Willebrand (i975), we study in this paper 
the effects of the nonlinear terms which are second order in F(X, P, r). These 
second-order terms only vanish when the spectrum is homogeneous in X, or when 
the wave system is stable to small spatial perturbations. 

The present derived spectral equation (further specialized for the case of deep 
water) is studied for its stability to small-amplitude long-wavelength perturbations, 
in the form of oblique spatial waves. An integral equation for the amplification rate 
Q of the disturbances is obtained from a linearized version of the derived spectral 
equation, and is seen to depend upon the specific form of the unperturbed spectrum, 
Fo(P). 

In the present investigation, we examine the stability of a spectrum which is a 

very simple normal form, Fo(P) = (1/2tcro ) exp [- (P2/2o-g + P^/2-^)]. A closed- 
form expression can then be found for Q as a function of the wavenumbers I and m 
of the oblique-wave perturbations. 

It, is found that the wave spectrum is unstable (Q has a positive imaginary part) 
to such long-wavelength disturbances, provided that the spectral bandwidth, 
Og/ko, is less than twice the r.m.s. wave slope, (k aA)i, multiplied by a function of 0 

)I ,,, m-Liltiplied by a function ofL V 
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the perturbation wave angle q = arctan (m/l). When or/ko - 0, the present results 
reduce to the form of the deterministic stability criterion of Davey-Stewartson- 
Hayes (or Benjamin & Feir for one-dimensional wavetrains). For oblique waves in 

deep water, the result is recovered that a random wavetrain is unstable provided 
that the perturbation wave is at an oblique angle less than 35.26? with respect to 
the direction of the carrier group velocity. 

The present analysis shows the key result that the instability diminishes, from 
the deterministic-like limit at - = 0, as the spectral bandwidth increases. The 

Benjamin-Feir type instability in fact totally vanishes, when the bandwidth of 
the spectrum satisfies the condition that 

o > 2 (ka) [1-2(m/l)2] (Q -0). k>2 k0 a2I + (2m/1)J (= 0). 

2. THE DAVEY-STEWARTSON EQUATIONS 

Davey & Stewartson (i974) used the method of multiple scales (as did Benney 
& Newell 1967) to develop equations governing the evolution of two-dimensional 
wavetrains (i.e. waves propagating in the two surface directions x and y). In this 
derivation the wave height ((x, y, t) of a weakly nonlinear progressive wave, above 
its undisturbed position, can be written in the formt 

2 (x, y,t) = eA(X, Y, r)exp [i(ko x - ot)] + c.c.+ 0(e2), (2.1) 

where X = e(x-cgot), Y = ey, = e2t. (2.2) 

The complex amplitude A (X, Y, T) is taken to be a slowly varying function of space 
and time relative to the carrier wavelength 2n/ko and carrier period 2l/w0. X is the 
direction of the carrier group velocity cgo, t is time and the carrier dispersion relation 

(for waves of depth h) is given by the linear relation 

w2 = gko o, cr = tanh ko h. (2.3) 

The group velocity of the carrier wave is given by 

ego = W(k0) 
- (g/2o0) {o k0h(l - c(2)} (2.4) 

When expansions for C and the fluid velocity potential are carried out to order e3 
and are substituted in Laplace's equation, with appropriate surface wave and 
bottom boundary conditions, one obtains, after suppressing secular behaviour, the 

following pair of evolutionary equations for the complex amplitude A (X, r), 

i8A + 2A 2A 
A2A +v,AQ, (2.5) 

a2Q a2Q 2A12 (2.6) 
A12?/1^y = K1 (2.6) 

t We have normalized the wave height differently than Davey & Stewartson so that the 
maximum wave height max= IA I = a. 
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528 I. E. Alber 

The coefficients in (2.5) and (2.6) are 

A = ' w"(7o) =- -4- [0 - ko h(l - 02)} + 4k h2-2(1 - a2)] < 0, 2 "(0o) = 0 - 0o o 

v = i6 4 10022+904 -ho2 - {4c2 +4CpCgo(l .2)+gh(l_o2)2} 
?--0 + (gh _ C2 --'--- P = 16or~ (~gho-g0)g 

C = W'(k0)/2k0 = go/2ko > 0, Cp = O/ko (2.7) 

= k{2cp + Cg(l - (2)}/go, A ==gh - c 0 , j = gh, 

K 2hego 2p + Cgo(1 - C2 ) 
4IC gh _ C2 o ' 94ko t lgh-cu 0 J 

For the deterministic problem, the basic solution of (2.5) and (2.6), which rep- 
resents a uniform wavetrain of fixed amplitude IAI = a is the modified Stokes 
solution 

A = aoexp - i(vag + v Qo) r], Q = Q = constant. (2.8) 

If one assumes an oblique-wave spatial perturbation (or modulation) of the 
Stokes solution given by 

A = a0{ + ea(X, r)} exp [(-ira+a + , Qo) ],2. 

Q = Qo{ +eq(X, )}, 

where a = + E + a_E-1, 

q = q+E+q_E-, (2.10) 
E - exp{i(lX+mY - QT)}, 

and then linearizes equations (2.5) and (2.6), the resulting dispersion relation for 

Q, as a function of the wavenumbers I and m is given by 

9'2 = (Al2 +m2) 2ia2a + (A12 +tm2)],1 (2.1) 
where v = v + vl K1 m2/(A 12 + t, m2). J 

The above result was derived by Davey & Stewartson (i974) and by Hayes 
(1973) (using the Whitham analysis). Equation (2.11) shows that the wavetrain is 
unstable if the following criterion is satisfied: 

(A12 +?m2) < 0. (2.12) 

Note that A is always negative, i/ positive and v changes from negative to 

positive as koh increases beyond ko h = 1.363 (as pointed out by Hasimoto & Ono 

I972). Hayes has also shown that it is always possible to choose I and m so 
that the instability criterion (2.12) is satisfied. However, Hayes noted that the 

predicted instability is practically non-existent for shallow-water waves in the 

range 0 < k0h < 0.5. 
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For deep-water waves (ko h -oo) the coefficients simplify, 

A = - -/(glk)3 I 
= V(gk3), koh co, (2.13) 

and the wavetrain is unstable if m/i < 1/1/2; i.e. if the angle 0 of the oblique 
disturbance is less than 35.26? with respect to the direction of the wavetrain group 
velocity. For such shallow-angle oblique perturbations, the rate of amplification 
Q = QD of the instability is given by 

( 2-00 2 m 22 m( 22 

(oi) ko a o 2 k- 64 [(k (k2 (2.14) 

The maximum rate of amplification is achieved when the wavenumbers of the 
disturbance satisfy the relation 

(1 2 ( = 4ko ao (2.15) 

By defining the resultant wavenumber amplitude K = (12 + m2) and the modula- 
tion wave direction 0 = arctan (m/l), the above expression can also be rewritten as 

o[1 ?ltan29SJ 
= 

2k0ao at Di 
= 

i,max, (2.16) 

For disturbances parallel to the group velocity, the corresponding one-dimen- 
sional result of Benjamin & Feir is given by setting m = tan 0 = 0. 

We now examine the corresponding random stability problem where the un- 

perturbed wavetrain is a spatially homogeneous random function of X and we 

subject the wavetrain to long-wavelength oblique-wave perturbations. 

3. THE TRANSPORT EQUATION FOR THE CORRELATION 

AND SPECTRAL FUNCTIONS 

We assume that the D-S equations (2.5, 2.6) for the complex amplitude A(X, r) 
describe the evolution of the wavetrain when A is a random function of X and Y. 
For waves undergoing weak nonlinear interactions we seek an equation for the 
slow variation of the two-point space correlation function (the second-order 
statistical moment), 

p(X, X2, ) = <A(Xl, r) A *(X, r)>, (3.1) 

where superscript * denotes the complex conjugate. 
In equation (3.1) the angle brackets denote an ensemble average. Thus we 

require, as in the derivation of 2.5 and 2.6, that variations in p (or its Fourier trans- 

form) occur over length scales of order e-lAo and time scales of order e-2/o0. One 
can show that the one-dimensional spectral width o must be of order ko0. Hence 
we are studying narrow-band processes, with carrier wavenumber k0. 
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3.1. Correlation equation 
To obtain the equation for the two-point correlation p from the envelope ampli- 

tude equation (2.5) we adopt the following procedure (Wigner 1932). We write 
equation (2.5) at the point X1 (=X1, 5Y), multiply it by A*(X2), add it to the 
equation for A*(X2), multiplied by A(X1), and take ensemble averages. The 
resulting equation is 

(A (X,) A *(X)>+a [ - a2j <A(X) A*(X2)> 
[ 62 D2 

+/ ay a2 <(A(X) A *(X2)>)- VlA(X,)A*(X2)) [Q(X,)-Q(X,)] 

-r[<A(X) A *(XI) A(X1) A *(X2)> - A( .2)A *(X2) A(X) A *(X)>] = 0. (3.2) 

The derivatives with respect to X1, Y1, X2 and Y2 can be replaced by derivatives with 
respect to the average coordinates 

X = (X1+X2), Y (Y1+ Y2), (3.3) 

and with respect to the spatial separation coordinates 

r= (X1-X2), r ( - Y2). (3.4) 

Thus from (3.2) we obtain 

i TP+2- 
2p +-2/,a 

2 - 1p[Q(X + r) -Q(X- r)] 
aT aX ar, DY?r2, 

-[<AA(XI)A *(X) A(X)A *(X2)>-A(X2)A *(X2)A (X1)A . (X2))A = 0. (3.5) 

As seen in (3.5) the evolutionary equation for the second-order correlation 
involves fourth-order correlation terms. To evaluate these terms we assume that 
A (X, r) corresponds initially to a Gaussian random process and we further assume 
that the evolving random statistical amplitude field retains the same Gaussian 
statistical properties, as is made plausible by the results of Benney & Saffman (I966). 

For Gaussian statistics, the fourth-order cumulant vanishes, allowing us to write 
the fourth-order correlation in terms of the products of pairs of second-order 
correlations, i.e. 

<A(X,) A *(Xl)A(X) A *(X)> = 2(A(X,)A *(X2)) (A(X1)A *(X1)) 
= 2pa2(X1), (3.6) 

where a2 is the ensemble averaged mean square amplitude equivalent to 

<A (X1 )A* (X,)> = 22. 

A similar expression can be written for the final fourth-order correlation in (3.5). 
In the cumulant expansion, terms involving ensemble averages of the form 
(A(X1)A(X1)) vanish because of the required invariance of such a correlation to 
the addition of a random constant to the phases. 
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Under the Gaussian closure approximation then, equation (3.5) can be written 

a+ aX a+2, p a lp[Q(X+ r)-Q(X- r)] 

- 2p[a2(X+ r)-a2(X - r)] = 0, (3.7) 

where a2(X) = p(X + r, X- i r, r)o. 

The above differential/difference equation can be converted into a differential 

equation with an infinite number of terms, by expanding the bracketed differences 
above in a double Taylor series about r = 0, 

[a2(X + lrx, Y + r) - a2(X- lr, Y - r)] 2 2y2 2 

= 2 [(- rx?r+ +~ y?.. + Y + ]a2( ) (3.8) 
2 .xx 

']- 
2ry - Y .. 

In the following analysis, we retain all the terms in the above Taylor series expansion 

3.2. Spectral transport equation 
The wave-envelope power spectral density F(P, X, r) is defined as the Fourier 

transform of the two-point correlation function 

F(P,X,r) = (2 )2 G eiPr'p(X+ 1rX- r,)dr. (3.9) 

The Fourier wavenumber P, conjugate to the spatial separation r, is taken to have 
cartesian coordinates P, and P in the rx, ry directions. 

The converse relation for the correlation coefficient is 

p(X+ r, X-r, r) = eiPrF(P, X,T) dP. (3.10) 2 
co -O 

When the spatial separation r = 0 we obtain the mean square wave amplitude 
(or height) as 

p(X, X,r) = a2(X, r) = f{ F(P,X,r)dP. (3.11) 
J -00 - 

Note that for a narrow-band random process, the power spectrum F(P) for the 
wave envelope can be simply related to the power spectrum G(P) for the wave 

height C of equation (2.1). The spectral relation is given by the following expression 

1 0 00 r 
(P) = (27)2L j e-iPr<((X + r)*(X - r)>dr, 

= 'F(P -koi) + F(P + koi), (3.12) 

where i1 is the unit vector in the X direction. 
For one-dimensional wavetrains, if we define the positive portion of the 

wave-height spectrum G(P) 2G(P) then one can readily show that 

F(P) = 20(P + k), (3.13) 
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532 IE. Alber 

that is, the one-dimensional wave-envelope spectrum is obtained directly from the 
wave-height spectrum G(P) by simply shifting the spectrum back towards the 
origin through a wavenumber translation ko. Thus a wave-height spectrum G(P) 
which is symmetric about k = ko will yield an envelope spectrum F(P) which is 

symmetric about the wavenumber origin, P = 0. 
With the above spectral relation so defined, we proceed to derive the spectral 

transport equation for F(P, X, r) by Fourier transforming the correlation transport 
equation (equation (3.7)), with the Taylor series expansion for the difference terms. 
The resulting equation for F(P, X, r) is 

+2AP 2+21atPy -sin [4va + 2p Q] F = 0, (3.14) 0-r OX Y 2XaPx2 a Y a 
where the sine operator is defined such that the spatial derivatives operate on either 

a2(X, r) or Q(X, r) and the wavenumber derivatives operate on F(P, X, T), i.e. 

sin 
a a 

- a2F 
2aXPX0 2aDYP, 

(I aaaF Ia2F I1 f3 138a83F 63a2D3F 

-2 XaPx 2aY6PJ 3! 2 
laX3 ap 3a 3 

3ia a2a2 3F 23a a3 
I) {3aX2ayafpap 3ay2apf2 . (3.15) 3!a\2 Xz---- PS --a ax3Y---a^P~OPi (aX a ... 

The companion equation for Q(X,r) is found by ensemble averaging equation 
(2.6), yielding2Q a2Q a223 

A X _T- 2 K ay2 (3.16) 

where a2 = F(P,X,r) dP. 

When the spatial length-scale over which the spectrum varies (ca. 1/K) is very large 
compared with the correlation scale (of the order of i1/r where or is the ID spectral 
bandwidth), i.e. when K/C is small, then the third- and higher-order derivatives in 
equation (3.15) can be neglected compared to the first-derivative terms. In this 
long-wavelength limit (K/cc < 1) equation (3.14) becomes 

OiF aF OF aa2 aQi r OF Q aa2 F1ia 4 +2AP 2-OX + 2PaPy- 2V + J 2 4- +v = . (3.17) 

In this form, the spectral transport equation is similar in structure to the wave- 
propagation equations of geometric optics, with an important nonlinear refraction 
term typically given by 

W a arrr i 8 
aa p, 

JJFdPj apjx (3.18) 

Watson & West (1975) and Willebrand (1975) have obtained similar nonlinear 
refraction terms in their spectral equations for the evolution of broad-band wave 
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spectra. It is not clear that their more complex wavenumber coefficients are easily 
reducible to the present simpler form when the spectrum is narrow banded. 

As noted above, the first-derivative nonlinear term (equation (3.18)) is only the 
first term in a formal infinite series expansion in powers of K/C. For a narrow 

spectrum, centred on a carrier wavenumber k0, or/ko = 0(e), it will be shown that 
all the terms in the series expansion are required if one is to recover the Benjamin- 
Feir type stability properties of the corresponding deterministic system, i.e. a 
wave system where the bandwidth approaches zero. 

A spectral equation of the form given by equation (3.17) has also been studied by 
Hasegawa (1975) for problems related to the dynamics of random optical waves 
in strongly dispersive dielectric media. Tappert (I971) derived a 'collisionless '-wave 
kinetic equation for non-random dispersive-wave systems which included a more 

general sine operator series, similar to that given in equation (3.14). 
Almost all of the applications of the Boltzmann or spectral-type transport 

equations have utilized the long-wavelength approximations K/lo < 1 (except for 
some applications in quantum mechanics; Wigner 1932; Snider I960). It will be 

shown, however, in the following section, when we consider the stability of initially 
homogeneous narrow-band random wavetrains, that it is necessary to retain all the 
nonlinear terms in the sine-operator expansion (or retain the basic nonlinear dif- 
ference term in the correlation equation (3.7)) in order to properly recover the 

complete Benjamin-Feir type instability solution. 

4. STABILITY ANALYSIS 

The nonlinear spectral transport equation (3.14)-(3.16) has as one basic solution, 

F = Fo(P), Q = QO = constant. (4.1) 

This spectral solution, independent of X and T, is the random counterpart of the 
uniform amplitude Stokes wavetrain of deterministic theory. Fo(P) represents a 

homogeneous background 'ocean', with Gaussian random properties in X, which 
is statistically uniform in space and time (a2 = ao = constant). Qo is an arbitrary 
uniform surface current also independent of X and r. We will examine the stability 
of this homogeneous solution, to small-amplitude oblique-wave spatial modulations. 

4.1. The linearized spectral equation 

We assume a perturbed solution of equation (3.14) of the form 

F(P, X, ) = Fo(P)+ eFI(P, X, ), (4.2) 

Q = Qo + eQ1(X, ), (4.3) 

where F1(P, X, r) = f1(P) exp {i(lX + mY - r)}, (4.2 a) 

Q1(X, r) = q1 exp {i(lX + m Y- Qr)}, (4.3a) 



534 I. E. Alber 

and seek to determine under what conditions, if any, does Q have a positive 
imaginary part (SQ) corresponding to unstable growth. Note that the mean square 
amplitude a2, related to the spectrum by equation (3.11), is given by 

a2(X, r) = a+ a1(X, r), (4.4) 

where ao =jFof(P)dP, (4.4a) 

aJ dP= [FffP dP exp{i(lX + mrY-T)}. (4.4b) 

We substitute equations (4.2)-(4.4) into the spectral transport equations 
(3.14)-(3.16) and linearize the resulting expressions by dropping terms of order 
e2, thereby obtaining 

81 - h+2AP| + 2Py -sin( | + 2 )(4a-21Q) Fo 
= (4.5) -- 

oTX 2a--Y aXaPx 2ax a 
4 

a2Q(1 a2Q, 4a2 
n ax2 +/ 1 - Kla y2 (4.6) 1 

^ZX-2 
+It I K 2 (a *2' 

4.2. The stability eigenvalue relation 

Replacing F1, a2 and Q1 by their assumed oblique-wave representations, ((4.2a), 
(4.3a), (4.4b)), equations (4.5) and (4.6) become 

f1(Q- 2AP, - 2P m) + (4vffdP + 2v, q) sinh (-+l l ) F, = 0, (4.7) 

1 = m2 ff1 dP/(A1 2 +# m2). (4.8) 

We recognize the sinh operator expansion as an infinite Taylor series expansion for 
the following difference expression: 

sinh (lp- + m--p) F(P) = [Fo(P+ KC)- F(P - K)]. (4.9) 

If we divide equation (4.7) by (Q- 2APx l-2aPy m), substitute equation (4.8), and 
integrate the resulting expression over all P, we obtain the integral stability eigen- 
value relationt 

2 
00 Fo(P+ IK)-Fo(P- K 

_I + 2;vzf+ 2f X(- 1 2) 2 dP = 0 (4.10) + 
c J-00-(Q-2APl1-2#Pym)-dP= 0 , 

where v v + v K1 m2/2(A1 12 + m2). 

It is possible to reduce the above double integral over P to a single integral (over one 
component of P) after making the following simple vector transformations. 

t Equation (4.10) can also be obtained directly from the correlation equation (3.7) by first 
linearizing and then Fourier transforming the resulting expression. 
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Let us define a wave vector i by 
K = li +(/(/A)mi2, (4.11) 

where i1 and i2 are respectively unit vectors in the X and Y directions. The de- 
nominator of the double integral in equation (4.10) can then be written as 

Q-2AP. - = Q-2API I, (4.12) 
where [K = [12 + (/A)2m2]f. (4.12a) 

Note that the only component of P appearing in the denominator is that in the 
direction of the unit vector i6 = K/l2l, i.e. 

P = P. i = [Pl+(/A) P,m]/IAI. (4.13) 

The component of P in the direction normal to R is given by 
P = P (i3 x )/I^ = [P1l-(i/A) Pm]/IIl. (4.14) 

P, appears solely in the numerator of the double integral in equation (4.10). Hence, 

integration of FO(P + lKc) over P, reduces the double integral to a single integral 
over PI with the wavenumber component 

Kg = IK.if = [12+ (#/A) m2]/lIK (4.15) 

as a parameter. Note c li1 + mi2. 
We may thus rewrite (4.10) as the following single integral eigenvalue equation 

for Q o [F0(Pg + -cK) - 
l7j(Pg 

- 
K6)]d 1+ 2 QdPA = 0 (4.16) 

(5 - 2AP6 ) 

where F0(P6) = fFo(P) dP. (4.16a) 

We note the similarity of equation (4.16) to the integral dispersion relation appear- 
ing in the eigensolution treatment of the linearized Vlasov equation for ionized 

plasmas (cf. Eckar 1972). As in the Vlasov problem the definition and evaluation 
of an integral of the type given by equation (4.16) presents special problems because 
of the pole at Pg = Q/2AK. The general procedure adopted by Landau (1946) is to 
solve the time dependent equation for F, as an initial value problem, by using 

Laplace transforms with respect to r. If we applied this technique to solve equations 
(4.5) and (4.6), we would find, applying the inverse Laplace transform definition, 
the following solution for a2, 0 ) i , dPd 

1 fI7 *+ioo OSes{ f(v P, dI 
a2(XT)e- - dSes _c (iS-2AP) , (4.17) 

-where D(l, S) 1 2-D(ic, S)d 
wrD(,c,S) - 1 ? + O f [?(P + 2-K6) - FO(P - 12s)l dP, 

_- '(iS-2API) K 

and fl(P, 0) = e-Ix Fi(P, 0)dP,. (4.18) 
_ 00 

Integration is along a line parallel to the imaginary S axis and to the right of all 

singularities of the integrand (assuming such a line exists). We may use the calculus 
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of residues to evaluate (4.17). For -P and fl(r = 0) analytic functions of P, the only 
singularities in the S plane are where the function D(K, S) vanishes; that is, where 
our previous equation (4.16) is satisfied with Q replaced by iS. 

The integral in equation (4.16) is thus, on the basis of the existence of the Laplace 
transform, defined for Re (S) Sr > 0 or Im (Q) Q= i > 0, that is, for wave 

instability. The integration in the P? plane is along a path above the pole P = - 
Q/2 1AIK. For the case of wave stability, [Qi < 0, Sr < 0] the pole in the integral of 

(4.16) is above the real axis, and we must replace it by its analytical continuation 
into the negative half of the S plane. Hence the path of integration in the P? plane 
must stay above the pole, which contributes an additional term to D(K, S) equal 
to 27i times the residue at Pg = Q- 2fAiA. Thus for stability we replace (4.16) by: 

1 0V 0 [FO(P6 +K6-2 K6)-]O(Pg- Kg)] d ;t[ 2 2| 

2Tci x, + -I'l Kg -F0 KE 0. (4.19) 

Our primary interest in this paper is to examine wave instability, which we know 
from the deterministic solution of the Davey-Stewartson equations occurs for 

deep-water waves (in the Benjamin-Feir sense) when the oblique wave angle 
0 = arctan (nm/) is less than 35.26?. Hence we can use the eigenvalue equation, 
4.16, to determine Q, as a function of K with the non-dimensional spectral band- 
width, crg/ko as a parameter. 

4.3. Deep-water stability eigenvalue relation 

For the deep-water limit ko h -> oo, the coefficient A and It reduce to the form given 
by equation (2.13), the ratio of the two coefficients being A//u = -. In addition, 
the coefficient V-kv = l/(gk1) = o ok. Since 2A is a negative quantity, we will for 
convenience define 2A - (g/k3) - 1o/ko (4.20) 

The stability eigenvalue equation (4.16) may then be rewritten in the form (for the 
deep-water limit) 1 [o(P +1 K)- ( K) 

1+ 
L o 

)Q 22vdPI 
= 0. (4.21) 

J_oo (Q+ Cx KP P) s 

To evaluate equation (4.21) we separate Q into its real and imaginary parts 
(Q = Qr + iQi). Dividing the integral above into its real and imaginary parts (with 
Kg and ^ real) we obtain the following two integral equations for Dr and Q1, 

Q+ Jo ( ^+K) +Q2K)] dP = 0 - (4.22) 

_(ln, $- (XK +)2 + 1?+ 2vj [Qr + 2] go(I+2-Kg) IA KQ]dP = p 0. (4.23) 

t Note that A < 0 (cf. equation (2.7)). 
$ For the case Qi = 0 only half the second term in (4.19) is taken, i.e. ti multiplied into the 

term in the square brackets. The Cauchy principal value is taken for the integral. 
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If 0o is an even function of P, (that is, the envelope spectrum is symmetric about 

P5 = 0) we see that equation (4.22) can be satisfied identically if Dr = 0. This 

simplifies the evaluation of Q1 to the solution of a single equation, either equation 
(4.23) with Qr = 0, or equation (4.21) with Q = iQi. 

The evaluation of equation (4.21) for a general non-symmetric initial spectrum 
ioP(P) will require special numerical treatment and will be considered in a future 
addition to this present paper. 

A particularly simple spectrum, which is an even function of P and which 
facilitates the solution of equation (4.21), is the two-dimensional normal spectrum 

F?(P)= 
e- - 

0 
ex)2a p [\ +22)1. (4.24) 

Note that oc, or are the basic bandwidths of the undisturbed spectrum, respectively 
in the Pg and P4 coordinate directions. One should consider the normal spectrum, 
given by (4.24) as only a useful mathematical approximation to the spectrum of 
some physically realizable random process, but one useful for illustrating the basic 
nature of the stability solution. 

From equation (4.16) we first carry out the integration over P4 to obtain F0(P)), 
i.e. 

)Fo(JP6) 
= Fo(P)dP=e1(2) exp [- 2]. (4.25) 

Substituting the reduced one-dimensional spectrum into equation (4.21) (with 
Q = iDi) we obtain, after the transformation of variables (P ?+ Kg)//2 c = -t, a 

specialized form of the stability eigenvalue equation, 

1 K [J^-tj ^ .]= 0, (4.26) 2 
va-2 ) [ 

e- 
z-t Jo 

e t 
dt 

- ^ ^ i(QJ/o) 2/2 where z Kg + iS Kg + i(Qi/0) 22 
z-+ 2V/2/2o- (o./ko) (K/ko). 

The first integral appearing in equation (4.26) is related to the complex integral 
function w(z) defined by Abramowitz & Stegun (I964), 

.i f? e-t2dt 2iz re-t2dt (4.27) 
w(z) = - f - = Z - J2 , (4.27) 

cJ oo z- t n Jo z-t2' 

for Im z > 0. Another useful integral form for w(z) is given by 

w(z) = e- l+1 Jet dt) = e-zerfc(iz). (4.27a) 

Rewriting equation (4.26) in terms of the w function, we have 

1 +(iVn/72NK) [w(z)-w(-z*)] = 0 (4.28) 

wh^ ere= 
k (o-/ko)2 where K = N = (4.28a) 

2V2 (o-g/ko)' 2ko a 
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The function w(z) has the following symmetry property 

w(-z*) = [w(z)]*, 

so that [w(z)-w(-z*)] = 2iIm{w(z)}. 

I I I 1 I 1 

//' 

1.0 -? \ 

0.8- / 

,,G, - 
0./" aW0.75 

0.6- 0.50 

z3K0 /P 

(K Kl /( 2kC2 2) 

ko / 
FIGURE 1. Amplification rate of the instability. Qi as a function of the effective modulation 

wavenumber, for various values of the effective bandwidth parameter. 

Hc t(e /(2k a2) = 0. 
Hence, the stability eigenvalue equation for deep water waves takes the final form 

Hence, the stabilitv eigenvalue equation for deep water waves takes the final form 

where 

| (1n/h)=m{w(z)} =N, 

=[/ko2 12 S [(1/ko)2 -2(m/ko)2] Z = + iS, K 
=2V2 [(I/ko)2+ (2m/ko)2] (or/6ko)' 

212 (il,/wo) x [(I/ko)2 + (2m/ko)2]1 
[(i/ko)2 + (2m/ko)2]i ((oko/0) 22 (og/o) 

(4.29) 

(4.29a) 

(4.29b) 

Abramowitz & Stegun (I964) tabulate the real and imaginary parts of w(z) as a 
function of the real and imaginary part of z. Given a value of the spectral band- 
or/ko, the mean square wave slope ko2a and the two normalized modulation 
wavenumbers (l/ko) and (m/ko), one can interpolate in the w(z) tables to determine 
S, and hence the amplification rate Qi = Qi(K, e, o6). These calculations can then 
be used to construct a 'universal' plot (shown in figure 1) of the non-dimensional 



The stability of random surface wavetrains 

amplification rate (Ql/oo)/2ko ao as a function of the effective disturbance wave- 
number [(i/ko)2- 2(m/ko)2]I (2k2a2) for given values of the effective bandwidth 

(o-6ko) I + (2m/1)2m 

(2k2~a2)i - 2(M/1J)2 

4.4. The limit of vanishing bandwidth 

When the bandwidth becomes vanishingly small, o'/ko -- 0, we obtain a special 
stability curve (in figure 1) similar in all features to that produced by Benjamin 
& Feir for deterministic wavetrains. The analytical form of the stability curve, for 
o- - 0, is readily obtained from equation (4.29) by taking the asymptotic expansion 
for w(z) as z ->o, i.e. 

W(Z) - 
(i/4X7) Z-l[1 + 2Z-2 + 3Z-4 + ...] (4.30) 

Hence, to order z-2, Im {w(z)} _ (1/i/I) ,//(K +S2). (4.31) 

Substituting (4.31) into the eigenvalue equation (4.29), yields the following 
expression for the amplification rate of a vanishingly small narrow-band process, 

(^^ ^ f^V^I 
()-- K9() 2(4.32) 

(\O =8(2? ao ko ko 64(t (ko)(3 

Note that from equation (4.15) 

(ko) ko) () (ko) 
A comparison of equation (4.32) with the results of the stability analysis for deter- 
ministic deep-water waves, equation (2.14), shows that the amplification rates 

predicted for the Gaussian random process with vanishingly small bandwidth, are 
identical to those for the deterministic problem, if one makes the identification 

2a = a2 . (4.33) 
(Gaussian random process) (deterministic wavetrain) 

It should be kept in mind that a2 is tht i te mean square wave amplitude for an approxi- 

mately Rayleigh distributed random amplitude a(X) (Cartwright & Longuet- 
Higgins 1956), and that a uniform wavetrain is not a special case of the Gaussian 
random process, except in the trivial limit a2 = a2 = 0. 

With the above identification (equation (4.33)) in mind we see, as shown in ? 2, 
that the maximum rate of amplification is 

(Wi/(o)max 0= k0 

when the effective wavenumber is 

[(I/ko)2- 2(m/ko)2]1 = (8k a2) . 

The limiting solution given by equation (4.32) is plotted as the dashed curve in 

figure 1. Thus a wavetrain with Gaussian random amplitude and phase will be 
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unstable, just like a Stokes deterministic wavetrain, as the bandwidth of the 

spectrum tends to zero. But what of the behaviour of the random wavetrain for 
small but finite cr ? 

4.5. Solutionfor finite bandwidth 

The amplification rate of the instability for finite ar given by the eigenvalue 
relation of equation (4.29), is shown plotted in figure 1. For increasing bandwidth, 
we note a decrease of the initial slope of the amplification curve, Qi/(12- 2m2)i 
and a decrease in the maximum amplification rate. For the most part, the region 
of instability gets smaller, finally vanishing at a particular value of the bandwidth 

parameter. To fix this value we look at the solution for Q1/K in the limit of small 
but finite wavenumber K. 

Low wavenumber limit 

An expression for the initial slope dDi/dKIl_o, or the rate of change of Qi with 

the effective wavenumber of the disturbance (12- 2m2)- = K(1 - 2 tan2 2)/( + tan2 ) 
for a fixed disturbance angle 0 and fixed bandwidth, can be obtained from equation 
(4.29) by finding the solution S = S(K() for small wavenumbers K6/ko < 1. Expanding 
the w function for small KG we obtain the following equation for S = (27/2 Q/lw)0)/ 
[(o'g/ko) (K/kg)] in terms of the complementary error function, in the low-wave- 
number limit2 

2(1 -V7r Ses2erfc S) = ) + m 
. (4.34) 

2koa2 Ia- 2(m/l)2. (4.34) 

The above approximate solution can also be obtained from the long-wavelength 
limit approximation, equation (3.17), for the spectral transport equation. In this 

approximation, unlike the full solution, equation (4.29), Qi is unbounded for large K. 
Thus we see the need to retain all terms in the sine operator expansion in equations 
(3.14)-(3.15). 

Figure 2 shows a plot of the amplification rate slope 

2W /f JI- 2(M12)2 z 
2( 0 |-; + (m/1)2 ] ko 

(in the low-wavenumber limit) as a function of the bandwidth parameter 

(o?/ko) [ + (2m/1)21 I 

(D2a)H L2 1-2(m/1)21 

When the bandwidth is very small, og -> 0, we recover the low-wavenumber approxi- 
mation to the analogue Benjamin-Feir instability-stability equation, 

Q 2 
1 K 2n-2(M/1 

2 
() = (V) [1 2(m/l) 2 (2 a ). (4.35) 

Note that equation (4.35) yields only the first term appearing on the right side of 
the eigenvalue equation (4.32), and corresponds to the small-wavenumber case 
where K/ko < 8((k ao) 

I. E. Alber 540 



The stability of random surface wavetrains 541 

The low-wavenumber solution (equation (4.34)) is quite useful though in deter- 

mining the effect of increasing spectral bandwidth on the stability boundaries of 
the present solution. As is evident from figures 1 and 2, the initial slope of the 

amplification curve diminishes with increasing bandwidth. By setting the amplifica- 
tion parameter S = 0 in equation (4.34) one sees that a condition for stability is that 

(stable) T9 7 (stable) 0for > 2(k )a[11_ 2(m/l)2] 
a'/^9 for ^ w G^: ](4.36) Q1/K O for 0 1ac0F 1-2(m/1)2] (4.36) 

1.0 F0 (t) 

0.8 \ 4- 

1 0.8 

0.6- - 

0.4 - 
10 Cq 3? 2.0 

nstable stable 
0.2 - 

0 0.5 1.0 1.5 2.0 

- (K )4 / 

FIGURE 2. Effective amplification rate slope as a function of the spectral 
bandwidth. Low modulation wavenumber limit, K/ko <k (ko a). 

Thus the amplification rate vanishes, regardless of the wavelength of the disturb- 

ance, if the bandwidth, of/ko, is large enough, of the order of twice the r.m.s. wave 

slope. For one-dimensional wavetrains the criterion becomes 

6/1ko > 2(kaO)i (m/l = 0). 

For two-dimensional wave fields we see that the deep-water random wavetrain 
will always be stable, regardless of how small the bandwidth is, if 

tan =m/l > 1/1/2 (stable). (4.37) 
i.e. if q > 35.26?. 

For the case of unstable random wavetrains we can also say that increasing wave 

obliqueness (i.e. m/l increasing from zero) produces an effective increase in the 
bandwidth of the spectrum in the ratio ((rg/ko): [1 - 2(m/1)2]1. 
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5. DISCUSSION 

The instability criterion for deterministic deep-water wavetrains requires that 
the modulation wavenumbers lie in the range 

0 < [( -2 ) 2/2 koao, D > 0, instability, (5.1) 
Lko O (deterministic) 

or k0 o [1 -+ (m/1)2 ] 

As Benjamin & Feir have noted, it is always possible, for a given wave amplitude, 
to find in any wave generation process, a short enough perturbation wavenumber 
K (or long enough modulational wavelength) such that the above criterion is always 
satisfied. Thus Benjamin & Feir concluded that one-dimensional deep-water Stokes 
waves are always unstable to spatial modulations. 

For the current study of the stability properties of a Gaussian random deep- 
water wavetrain, we have found that instability occurs if the following two criteria 
are satisfied. The first criterion, for the modulational wavenumber, is quite similar 
to equation (5.1) found for deterministic wavetrains, i.e. 

< k [1 + (m/l)2-] < (k 2A)G ( (5.2) 

where 0 < G(o-, m/l) < 4.53. 

Note from figure 1 that a small region of increasing instability (over the equivalent 
B-F limit) develops for small o1/ko. However when o6/ko > 1.561/(kc a2) (K/K6)1 the 

range of unstable wavenumbers is less than for an equivalent B-F unstable wavetrain 
and eventually vanishes as the bandwidth increases. A new additional instability 
criterion, based on the spectral bandwidth, is that 

I [ + (2m/1)12- 
02( < 2(k[2a2-(ml) 

For fixed values of K/co, wave angle 0 = arctan m/1, and bandwidth oc/ko, equations 
(5.2) and (5.3) state that the wave amplitude (or mean square wave slope) has to 
exceed a certain value (set by both equations) before any instability or exponential 
growth can occur. 

As an illustration of this effect, let us look at the amplification rate for a uni- 
directional case, i.e. where m = 0 and where we set nominal values, K/ko = 0.2 
and or/ko = 0.2. Figure 3 shows a plot of normalized amplification rate Q1/(oo as 
a function of the normalized amplitude (or slope) (k1a~) for two values of the 
bandwidth. The dashed line corresponds to the result for the quasi-deterministic 
B-F instability limit. For this case, or = 0, equation (5.3) is automatically satisfied 
and the parameter G = 4.0. 
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When oe- = 0, we note from figure 3 (the dashed curve) that the exponential 
growth rate stays at zero until (k 0a)1 = 0.05, as given by the wavenumber criterion 
of equation (5.2). When the bandwidth is non-zero (o'/ko = 0.2) Qi stays at zero 
until equation (5.3) is satisfied, that is until (k a) > 0.10. 

We see by the above example, that the effect of increasing randomness is to 
delay the onset of instability and to reduce the amplification rates of the modulation, 
once instability is initiated. 

0.020 1 I , 

0.016- / - 

/ L 
i /ko ," / 

0.012- / / - 

, /0.2 

0.004- / 0.004- / 0.2 

/ I I 

0 0.05 0.10 0.15 0.20 

(k2a2) i 

FIGURE 3. Amplification rate of the instability with wave amplitude (or r.m.s. wave slope). 
Fixed disturbance wavenumber (K/ko = 0.2). Perturbation wave vector aligned with 
carrier group velocity vector (m/i = 0). 

When we consider the instability problem in two dimensions (m/l 7 0), finite 
bandwidth effects are also seen to play an important role in reducing the B-F 

type instability mechanism. 
For the two-dimensional problem, first consider the quasi-deterministic case 

o- = 0. Figure 1 indicates that when K/ko < (8koa) the maximum rate of ampli- 
fication in the 1, m plane is found for modulational waves with zero vertical wave- 
number, m = 0. For larger values of K/ko (above (8k2ao2)) the maximum rate of 

amplification is found for those modulational waves for which 

m 1 (K/ko)-2(2kMa 2)lf] 

T =+2 - (K/ko)+ (2ko2 i) = 

Thus for quasi-deterministic wavetrains with large modulational wavenumbers, 

K/ko, the maximum rate of amplification tends to be found in the 1, m plane where 
the wave angle of the modulation m/l-> 1/V/2 or 0 -> 35.26?. 

With the added feature of a finite-bandwidth random-wave process, we see from 
19-2 
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equation (5.3) that as m/1 approaches 1/1/2 that the term (cr0/ko) [1-2(m/l)2]-~ 
grows larger (i.e. the effective bandwidth increases). This indicates that it is much 
more difficult to satisfy equation (5.3), and hence to achieve any instability at all. 
Thus the wave randomness acts to reduce or eliminate the exponential wave growth 
of instabilities at wave angles approaching 35.26?. 

Another figure of merit to aid in interpreting the effect of wavetrain randomness 
on the B-F instability process, is the ratio of the modulational length scale for 
maximum amplification (ca. 27t/Kmax) and the correlation length scale, Lcorr 11/0', 
for the random process, i.e. 

Lmodulation c _ o l )k 

Lcorrelation Kmax (ko2 a2)' 

We note that a quasi-deterministic wave system (orr = 0) has, by definition, an 
infinite correlation length. Also by virtue of the D-S scaling, the modulation length 
scale for the B-F type instability is of the order of (2i/ko)/(k2a2)i. As the band- 
width of the wavetrain spectrum increases, the correlation length scale is reduced 
(in inverse proportions), hence the ratio (equation (5.5)) of the modulation to 
correlation length scales increases. At the same time, the maximum amplification 
rate of the instability diminishes as shown in figure 1. When the correlation length 
scale is reduced to the order of the modulational length scale (or when Limod increases 
to the order of Lcorr) the instability diminishes to zero, vanishing when equation 
(5.3) is satisfied. Thus decorrelation of the wave system, or alternatively decor- 
relation of the phases of the wave envelope, leads to stabilization of the wavetrain. 
One might say that it is the phase-mixing of the random composite wave system 
which leads to a weakening in those wavetrain links which are necessary to support 
the basic B-F instability mechanism, thus leading to stability for a wave system 
with a finite spectral bandwidth. 

Finally, one may ask whether actual ocean-wave spectra are stable, or unstable, 
according to the bandwidth instability criterion given by equation (5.3). In this 
context it is useful to examine the frequency spectra measurements of Hasselmann 
et al. (I973), which provide details of the development of ocean wave spectra in the 
North Sea with increasing fetch, under conditions of nearly steady off-shore winds. 
These spectral measurements indicate a narrowing of the spectral bandwidth with 
increasing fetch, for distances ranging from 10 to 80km. 

To evaluate the stability of ocean spectra, one needs to estimate first the para- 
meter (koao)o, and second the spectral bandwidth. The wave-amplitude parameter, 
(k0ao)i, can be shown, on the basis of a similarity spectrum, to be equal to a constant, 
independent of fetch. Based on data correlations given in Phillips (i977), 
(k0ao)i f 0.066. 

As shown by Fox (1976), the width of a narrow-band spectrum in frequency space 
[c/o-,o] is half the width in wavenumber space [oc/ko]. Hence the one-dimensional 
instability criterion, according to equation (5.3), becomes 

o-oJ% < (k2ao2 ) 0.066 (for instability). 
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The following estimated values of the frequency bandwidth are found for the two 
non-symmetrical JONSWAP (Joint North Sea Wave Project) spectra examined by 
Fox, 

JONSWAP spectrum JN5: crj/wo 0.075, 

JONSWAP spectrum R3C: o/o0 t 0.082, 

where or/w0 is based on the width of the spectral peak at half its maximum intensity. 
These empirical estimates indicate that the JN5 and R3C spectra are just stable, 

according to the present criterion,t and are close to the neutral stability condition. 
On the basis of this brief empirical observation of the stability of ocean wave 

spectra, one may conjecture that perhaps a quasi-stationary limit exists for the 

narrowing of any initially broad-band wave spectrum, and that this limit is given 
by the present bandwidth stability criterion. To prove such a hypothesis would 

require one to show that the bandwidth of an initially 'narrow' spectrum will 

eventually broaden, either as a result of the instability process itself, or as the 
result of the weaker nonlinear wave-wave interaction process described by Longuet- 
Higgins (1976). 

The calculation of the long-time evolution of an initially unstable spectrum is 

beyond the scope of the present stability analysis, and would probably require an 
efficient numerical algorithm for integrating equation (3.14). Such numerical 
methods have already been developed for integrating the 'similar looking' Vlasov 

equation of plasma physics and hence could be readily applied to the integration 
of equation (3.14). 

A direct application of our derived spectral transport equation to actual ocean- 
wave dynamics is, of course, formally outside the bounds of our weakly nonlinear 

analysis. It is evident that we have not considered in the analysis such phenomena 
as wind energy input to the waves, or wave breaking. However, equation (3.14) 
can readily be amended to include suitable source and sink energy terms, which 
model these wave processes, hence leading to a useful transport equation for 

studying the evolution of non-homogeneous ocean-wave spectra. 

I am greatly appreciative of the support and encouragement given to me by 
Professor K. Stewartson, F.R.S., without whose help this paper would not have 
been published. I also wish to acknowledge and sincerely thank the Science Research 
Council for their financial support during my research at University College, 
London. 

t To formally obtain the stability criterion for an asymmetric spectrum (such as JN5) 
one would have to solve (perhaps by numerical means) the integral equation (4.16), for 
some given non-symmetric spectrum Fo(P). 
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