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We consider a class of higher order (quartet) Bragg resonance involving two
incident wave components and a bottom ripple component (so called class III
Bragg resonance). In this case, unlike class I/II Bragg resonance involving a single
incident wave and one/two bottom ripple components, the frequency of the resonant
wave, which can be reflected or transmitted, is a sum or difference of the incident
wave frequencies. In addition to transferring energy across the spectrum leading to
potentially significant spectral transformation, such resonances may generate long
(infragravity) waves of special importance to coastal processes and engineering
applications. Of particular interest here is the case where the incident waves are oblique
to the bottom undulations (or to each other) which leads to new and unexpected
wave configurations. We elucidate the general conditions for such resonances, offering
a simple geometric construction for obtaining these. Perturbation analysis results are
obtained for these resonances predicting the evolutions of the resonant and incident
wave amplitudes. We investigate special cases using numerical simulations (applying
a high-order spectral method) and compare the results to perturbation theory:
infragravity wave generation by co- and counter-propagating incident waves normal
to bottom undulations; longshore long waves generated by (bottom) oblique incident
waves; and propagating–standing resonant waves due to (bottom) parallel incident
waves. Finally, we consider a case of multiple resonance due to oblique incident waves
on bottom ripples which leads to complex wave creation and transformations not
easily tractable with perturbation theory. These new wave resonance mechanisms can
be of potential importance on continental shelves and in littoral zones, contributing
to wave spectral evolution and bottom processes such as sandbar formation.
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1. Introduction
Resonant wave-bottom interactions affect the development of the wave spectrum

in the coastal regions and continental shelves (e.g. Hara & Mei 1987; Mei, Hara &
Naciri 1988), modify bottom sandbars (e.g. Heathershaw & Davies 1985; Yu & Mei
2000b) and generate waves that are of concern, for example, to ocean vehicles moored
in shallow basins (e.g. Renaud et al. 2008), and possibly to microseismic noise (e.g.
Babcock, Kirkendall & Orcutt 1994).

† Email address for correspondence: yue@mit.edu
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We consider sub- and super-harmonic third-order (quartet class III) Bragg
resonance involving three surface waves and one bottom ripple component in a general
three-dimensional context. This problem differs from class I/II Bragg resonances
which obtain at second/third order involving two monochromatic surface waves and
one/two bottom components (e.g. Davies & Heathershaw 1984; Naciri & Mei 1988;
Liu & Yue 1998 where different classes of Bragg resonance are discussed; Ardhuin &
Herbers 2002; Madsen & Fuhrman 2006) in that the resonant wave is sub- or super-
harmonic in frequency (equal to the difference or sum of the two incident wave
frequencies). Furthermore, in the special case of collinear waves and bottom ripples,
the resonant wave in class III resonance can be transmitted or reflected whereas only
the latter obtains in class I and II resonances.

Class I and II Bragg resonance of surface waves due to bottom undulations has
been measured (e.g. Elgar, Raubenheimer & Herbers 2003); studied experimentally
(e.g. Heathershaw 1982; Davies & Heathershaw 1984; Hara & Mei 1987; Guazzelli,
Rey & Belzons 1991); theoretically using regular (Davies 1982) and multiple-scale
(Mei 1985) perturbation, mild slope equation (Kirby 1986; Porter & Porter 2001);
and numerically using direct simulations (Liu & Yue 1998).

In this work, we focus on third-order class III Bragg resonances in the general three-
dimensional case. Of special interest are the conditions under which these obtain and
the resulting wave configurations that may be of importance. We discuss the general
resonant conditions and introduce a simple geometric construction for obtaining
these (§ 2). § 3 presents a multiple-scale analysis for the evolution of the resonant and
incident wave amplitudes. Perturbation predictions are useful for isolated resonance
conditions, but, for general wave and bottom environments for which possibly many
frequency/wavenumber components are present and hence multiple resonances occur,
direct numerical simulations are effective. In § 4, we present numerical results, using
the direct simulation method of Liu & Yue (1998), for a number of illustrative
scenarios. The results compare well with the perturbation predictions.

These scenarios show that, under realistic but suitable incident wave conditions in
the presence of periodic bottom ripples, class III sub- and super-harmonic resonance
can result in the generation of wave systems distinct and not obtained in class I
and II Bragg reflection. Of particular interest is the possibility of new sub-harmonic
transmitted and reflected shore-normal (§ 4.1) and shore-parallel (§ 4.2) resonance
waves that can be of significantly longer wavelengths (and lower frequencies) than
the incident waves. When longshore incident waves (normal to the bottom ripples) are
present, class III resonance can result in super-harmonic standing waves parallel to
and of the same wavelength as the bottom ripple (§ 4.3). Under normal conditions, in-
cident waves may contain multiple frequencies (and be oblique to the bottom ripples).
We consider such a case in § 4.4, and show how three-dimensional multiple class III
resonances can lead to highly complex wave systems. These features of nonlinear
wave-bottom resonant interactions may have important implications to mooring of
ships and near-shore structures, and to coastal processes such as sandbar formation.

2. Resonance condition
We consider the irrotational motion of a homogeneous inviscid incompressible fluid

with a free surface ignoring surface tension. We assume constant (mean) water depth,
h, with bottom ripples of wavenumber kb and incidents waves of wavenumber k and
frequency ω, both of relatively mild slope so that perturbation theory applies.

The linearized dispersion relationship can be written as D(k, ω) ≡ ω2 −
gk tanh kh = 0, where k = |k|, or simply F(ω) = k. From perturbation analysis (see e.g.
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Figure 1. Geometric construction for conditions for (a) subharmonic and (b) superharmonic
class III quartet Bragg resonance.

Mei 1985; Liu & Yue 1998), at the second order, an incident wave of wavenumber k1

is resonantly reflected by bottom ripples kb if the so-called class I Bragg resonance
condition, F(ω1) = |k1 ± kb|, is satisfied. The resonant reflected wave is then given
by (kr , ωr ) = (k1 ± kb, ω1). Class I Bragg resonance has been studied extensively (e.g.
Davies 1982; Mei 1985; Kirby 1986; Liu & Yue 1998; Ardhuin & Magne 2007).

At the third order, resonance interactions occur among quartet of propagating
waves and bottom components. We classify the case involving two surface (k1, kr )
and two bottom wavenumber (kb1, kb2) components as class II Bragg resonance; and
that involving three surface (k1, k2, kr ) and one bottom wavenumber (kb) components
as class III Bragg resonance (see Liu & Yue 1998; Madsen & Fuhrman 2006). Class
II resonance is a direct extension of class I to the third order, with kb replaced by
kb1 ± kb2 in the resonance condition, i.e. F(ω1) = |k ± kb1 ± kb2|, with the reflected
wave given by (kr , ωr ) = (k1 ± kb1 ± kb2, ω1).

Our present interest is class III Bragg resonance which has the general
condition: F(ω1 ± ω2) = |k1 ± k2 ± kb|, resulting in a resonant wave (kr , ωr ) =
(k1 ± k2 ± kb, ω1 ± ω2). Note that, in contrast to class I and II where ωr =ω1, the
resonant wave frequency now equals to the sum and difference of the two incident
wave frequencies.

We offer, in figure 1, simple geometric constructions for class III Bragg resonance
for general finite depth for separately the sub- and super-harmonic cases. For the
subharmonic case (figure 1a): for given k1 and k2 (without loss of generality we
assume k1 = k1 î and k1 = |k1| > |k2| = k2), a bottom component kb that connects the
end of k1 − k2 to the resonance circle (circle of radius kr = |kr | centred at the origin)
forms a class III Bragg quartet among k1, k2 and kr (in figure 1, θij is the angle
between ki and kj ). A similar graphical solution obtains for superharmonic class III
resonance (figure 1b). In figure 1(a, b) the radius of the kr circle decreases/increases
as k2 increases in such a way that the k2 circle (of radius k2 centred at the tip of
k1) is always outside/inside the kr circle. Note that in either figures, since kb has no
frequency, cases with θb1 and π ± θb1 have identical solutions. From figure 1(a, b), it
is also seen that θr1 can in general vary between 0 and 2π, i.e. the resonant wave can
be reflected or transmitted.

3. Perturbation solution
Perturbation solution for class I and II Bragg reflection are now well known (e.g.

Mei 1985; Kirby 1986). The extension to class III is somewhat straightforward (see
Liu & Yue 1998; Madsen & Fuhrman 2006, for the solution in a special case).
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For completeness, we outline here the general class III multiple-scale perturbation
solution.

In a class III Bragg resonance three surface waves exchange energy via a bottom
topography components. To obtain the time evolution (similar argument can be given
for the spatial evolution), consider three surface waves travelling on water depth
h over a long patch of bottom ripples (amplitude b, wavenumber kb). Because of
third-order interactions, the surface wave amplitudes vary slowly with time t: an(τ ),
n=1, 2, 3 where τ = ε2t and ε � 1 is a measure of surface steepness. The total energy
density per unit area given by E0 = ρg(a2

1 + a2
2 + a2

3)/2 is constant in time (ρ and g

are the water density and gravitational acceleration, respectively). Hence,

a1

da1

dτ
+ a2

da2

dτ
+ a3

da3

dτ
= 0. (3.1)

Therefore we have, in general,

da1

dτ
= α1a2a3,

da2

dτ
= α2a1a3,

da3

dτ
= α3a1a2. (3.2)

where the growth rates αn, n= 1, 2, 3 are constants with α1 + α2 + α3 = 0. These
coefficients can be derived from regular perturbation solution at the third order. The
derivation is lengthy but standard by now and is omitted. The coefficient of the
resonant wave is α3 ≡ αr = b(P cosh krh − gQ)/(2g cosh krh) where

P =
∑
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(3.3)

Q = A12 [(k1 + k2) · kr ] /2, (3.4)

where j = 2, 1 respectively when i = 1, 2, and

A12 = −M/
[
cosh k12h

(
ω2

12 − gk12 tanh k12h
)]

,

Aib = Ni/
[
kib cosh kibh

(
ω2

i − gkib tanh kibh
)]

, (3.5)

Ni =
g (ki · kib)

2ωi cosh kih
, i = 1, 2, (3.6)

M = g2 ω1k
2
2 + ω2k

2
1 + 2(k1 · k2)(ω1 + ω2)

2ω1ω2

− ω1ω2(ω1 + ω2) −
(
ω3

1 + ω3
2

)
/2. (3.7)

Here k12 = k1 + k2, ω12 = ω1 + ω2, kib = ki + kb for i = 1, 2, kr = k1 + k2 + kb and
ωr = ω1 +ω2. Coefficients α1 and α2 are similarly obtained by permutating k1, k2 and
kr in the above equations.

The coefficient αr measuring the strength of the resonance depends linearly
on the bottom ripple amplitude; and nonlinearly on the participant wave
frequencies/wavenumbers as well as the direction of the wavenumbers of the
interacting components. Figure 2 shows the dependence of αr on θ21 and θr1. Figure 2
shows that for sub(superharmonic) class III resonance, the largest growth rate occurs
when k1, k2 (k1, kr ) are (nearly) aligned. This general behaviour is found to obtain
over broad ranges of the underlying parameters.

The solution to (3.2) can be written in terms of Jacobi elliptic functions. Assuming
initial amplitudes a10

, a20
�= 0 and a30

= 0, we have two solution cases: (i) α1α2 > 0;
and (ii) α2α3 > 0. For case (i), we define m = a10

/a20

√
α2/α1. If m � 1, then

a1(τ ) = −a10
cn(γ τ ), a2(τ ) = a20

dn(γ τ ), a3(τ ) = a10

√
−α3/α1 sn(γ τ ), (3.8)
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Figure 2. Dimensionless growth rate αr (b
√

g/h5)−1 as a function of θ21 and θr1 for: (a)
subharmonic and (b) superharmonic resonance; for fixed k1h = 3.13, k2h = 2.06 (therefore
krh = 0.364).

where γ = a10

√−α2α3/m = a20

√−α1α3, and m is the modulus of the elliptic function.
From (3.8), it is seen that the amplitude of the resonant wave has a maximum of
a3,max = a10

√
−α3/α1. If m < 1, then

a1(τ ) = − a10
dn(γ τ ), a2(τ ) = a20

cn(γ τ ), a3(τ ) = a10
/m

√
−α3/α1 sn(γ τ ), (3.9)

where γ = a10

√−α2α3 = ma20

√−α1α3, and now 1/m is the modulus of the elliptic
function. One interesting case is when m =1. In this case, after some finite time, the
amplitudes of the two initial waves vanish and the amplitude of the resonant wave
reaches a finite value. Since no subsequent interactions occur, the constant-amplitude
resonant wave is the only wave that remains after this time.

For case (ii), α2α3 > 0, then

a1(τ ) = −a10
snϕ, a2(τ ) = a20

/ cos β dnϕ, a3(τ ) = a10

√
−α3/α1 cnϕ, (3.10)

where ϕ = γ τ −K and K is the complete elliptic integral of the first kind, i.e. snK = 1.
We define m = sinβ where tan2 β = (a10

/a20
)2(−α2/α1), then γ = a20

√−α1α3/ cosβ =
−a10

√
α2α3/ sinβ . This last solution is also given by Ball (1964) for triad resonance

between surface and interfacial waves. In all cases studied above, the period
of amplitude modulation is T̃ = 4K/γ . It can be shown that ar,max does not
depend on the direction of propagation of waves, therefore, the frequency of
modulation of amplitudes γ follows the same pattern as that of the growth rate in
figure 2(a, b).

4. Numerical results
To illustrate the features of sub- and super-harmonic Class III Bragg resonance, we

consider selected scenarios using the theoretical solution of § 3 and direct numerical
simulation (Liu & Yue 1998). The latter is a high-order (pseudo) spectral (HOS)
method originally developed for nonlinear wave–wave interactions (Dommermuth &
Yue 1987), and later extended to include bottom undulations (Liu & Yue 1998).

The direct numerical simulation uses periodic boundary conditions and considers
the time evolution of the wave amplitudes (the results can be interpreted in terms
of spatial evolution of the same, see Liu & Yue 1998). In the simulations, we use
a rectangular domain of Lx × Ly , Nx × Ny Fourier wave modes, and Nt = T1/δt

(fourth-order Runge–Kutta) time steps per period of the k1 incident wave. In all
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Figure 3. Evolution of amplitudes of incident and subharmonic class III Bragg
resonant waves: (a) two copropagating surface waves k1,2h = 3.13, 2.06 (initial steepnesses
ε1,2 = 0.09, 0.03) over a bottom ripple with kbh = 0.71 (εb = 0.08) resonate a transmitted wave of
krh = 0.36. The amplitudes plotted are ãi = ai/a10, i = 1, 2, r . The HOS results (——, obtained
with Lx =172λ1, Nx = 2048, Nt =32) are compared with perturbation predictions (- - -) of § 3.
(b) Resonance of two counter-propagating surface waves k1,2h = 2.02, 1.33 (ε1,2 = 0.1, 0.13)
over a bottom ripple with kbh = 3.03 (εb = 0.37), resonate a subharmonic wave of krh = 0.32.
The HOS results (——) are obtained with Lx = 100λ1, Nx = 2048, Nt = 32.

the simulations below, we use nonlinear order M = 4. For the parameters used, the
numerical results are typically converged to < O(1 %) (see Liu & Yue 1998, for
extensive convergence tests and validations).

4.1. Subharmonic resonance in normal incidence

Any copropagating wave pairs (k1, ω1),(k2, ω2) in an incident wave spectrum that
satisfy F(|ω1−ω2|) = |k1−k2|−kb are in resonance with a subharmonic wave (kr, ωr ) =
(|k1 − k2| − kb, |ω1 − ω2|). For near-shore sandbars of typical wavelength λb = O(10–
100) m (see e.g. Mei, Stiassnie & Yue 2005; Yu & Mei 2000b), this mechanism
can transfer energy from short incident waves to resonant reflected and transmitted
waves of O(10) times greater wavelength. Figure 3(a) shows numerical results for
such a case compared to the perturbation predictions (§ 3). The amplitudes show
the growth/decrease and subsequent modulations as energy is exchanged among the
three resonant interacting waves. The perturbation theory and HOS compare well
initially but eventually deviate after long time as other (near resonant and non-
resonant) nonlinear interactions enter the numerical simulation. For h = 5 m, say, the
parameters in figure 3(a) correspond to λb =44 m, λ1,2 = 10, 15 m and λr = 86 m. At
t/T1 ∼ 100, when ar ∼ 0.3ar,max (ar,max ∼ 0.4a10 for εb = 0.08 say), the resonant wave
has propagated over a distance of ∼ 38λb; while at peak modulation (maximum
ar ) t/T1 ∼ 500, this corresponds to a bottom patch of ∼ 185λb, which is probably
unrealistic.

In the presence of (partial) reflection at the shore, counter-propagating waves (of
different frequencies) may be present and participate in resonance interactions with
the bottom (e.g. Yu & Mei 2000a). The presence of (generalized) Bragg resonance
reflections themselves offers additional mechanisms for such scenarios (for instance,
if kbh = 1.43 in figure 3(a) with the same incident waves, a subharmonic resonant
wave of the same wavelength would be reflected). Figure 3(b) shows a class III
subharmonic resonance due to a pair of counter-propagating surface waves. Compared
with figure 3(a), the amplitude and period of modulations are smaller. In dimensional
terms for h = 30 m say, the parameters in figure 3(b) correspond to λb = 63 m,
λ1,2 = 94, 143 m and Tr = 34.7 s, λr = 586 m which is in the (shorter) range of typical
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infragravity waves. Such low frequency long waves may be of practical and significant
concern to mooring of coastal vessels (e.g. Renaud et al. 2008).

From the theoretical results, (3.2), it can be shown that for the conditions of
figure 3(a) the initial growth rate αr and frequency of amplitude modulation γ of
the resonance generated subharmonic wave for co-propagating incident waves are an
order of magnitude higher than those for counter-propagating incident waves. This
can be seen from figure 2(a) for the subharmonic case, in which the magnitude of αr

for θ21 = 0 and θr1 = 0 is much larger than that for θ21 close to π.

4.2. Oblique subharmonic resonance of longshore waves

The origin of infragravity waves in the power spectra in inner surf zones has been
a matter of dispute (Munk 1949; Huntley 1976; Lippmann, Holman & Bowen
1997; Henderson et al. 2006). Field measurements have shown that these waves are
predominantly longshore (Herbers, Elgar & Guza 1995). Leading order bottom effects
are known to be important in the scattering of these waves (Chen & Guza 1999).

We show here how class III subharmonic resonance can generate long longshore
waves due to a pair of incident waves (slightly) oblique to the bottom ripples.
Consider a pair of waves incident at an oblique angle θb1 relative to kb. If F(|ω1 −
ω2|) = kb tan θb1, a subharmonic longshore wave of kr = |k1 − k2| sin θb1 = kb tan θb1 is
generated. Figure 4 shows the amplitude evolutions and (instantaneous) wave pattern
corresponding to such a scenario for θb1 = 0.3 with kr/k1 ≈ 0.1. Relative to figure 3
case, the strength of the (initial) resonance growth is stronger than figure 3(a) and
substantially so compared to the counter-propagating case. This trend is consistent
with the theoretical value of the growth rate coefficient, αr = α3 in (3.2), and is a result
of the choice of shorter initial waves compared to figure 3. In fact, it can be shown
from (3.2) that for the same incident wave parameters and depth, the growth rate
of the resonant wave in oblique incidence is generally smaller than that in normal
incidence. The wave pattern (figure 4b) shows the short-crested wave feature due to
the modulation by the longshore waves. In physical terms, for h = 30 m, λb = 94 m,
λ1,2 = 42, 78 m and λr =304 m propagating parallel to the bottom contours.

4.3. Oblique superharmonic resonance of standing–propagating waves

Incident waves can, on occasion, propagate parallel to the shoreline (e.g. Herbers et al.
1995), and, as we suggest in § 4.2, possibly from class III oblique resonance. We show
here that a pair of shore parallel propagating waves can generate Bragg resonance
waves that are oblique to the bottom ripples via a class III superharmonic mechanism.
Consider two incident waves (ki , i = 1, 2) propagating perpendicular to the bottom
ripples kb, ki · kb = 0. If k1, k2 satisfy F(ω1 +ω2) = |k1 + k2 + kb|, two superharmonic
oblique resonance waves given by (k±

r , ωr ) = (k1 + k2 ± kb, ω1 +ω2) are generated with

θ
±
r1 = ± arctan[kb/(k1 + k2)] (by symmetry, figure 1b with ki⊥kb). Since there is no

preferred direction, energy equally distributes between the k±
r resonant waves resulting

in a standing–propagating wave in the shore normal-parallel directions. Figure 5
shows such a case with k2/k1 = 0.63, kb/k1 = 1.49; and superharmonic kr/k1 = 2.21
with θ

±
r1 = ± 0.74. The amplitude ar grows monotonically initially while a1 and a2

oscillate and decrease. The resonance is relatively strong and ar/a10 ∼ 20 % after
t/T1 = 50. The instantaneous free surface (figure 5b) show a (longshore propagating)
egg-crate feature, characteristic of a standing–propagating wave (say, created by
a perfectly reflected oblique wave). The physical parameters for figure 5 are not
unrealistic (Mei et al. 2005): for example, for h = 24 m, λb =100 m, λ1,2 = 240, 150 m
(T1,2 = 16.6, 11.2 s), and kr is superharmonic with Tr = 6.7 s and λr = 68 m. Note
that the resonant standing wave has a shore-normal wavelength equal to λb. Such
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shore-normal standing waves likely contribute to the formation/deformation of
sandbars (Yu & Mei 2000b; Landry, Hancock & Mei 2007; Hancock, Landry &
Mei 2008).

4.4. Multiple resonances

In the most general context, ocean surface waves and bottom undulations contain
many frequency and wavenumber components participating in multiple Bragg
resonances resulting in resonant waves which themselves satisfy Bragg resonance
conditions. Such a scenario is analytically intractable over time but ideally suited to
direct simulations such as HOS.

Figure 6 shows such a result highlighting the role of (oblique) class III interactions
in the multiple Bragg resonances. The simulation is set up initially with three
co-propagating incoming waves, k1,2,3h = 1, 0.3, 0.5 obliquely incident with θb1 = 0.57
containing three wavenumber components kb1,b2,b3h = 1.06, 0.72, 0.34. With these
values, two separate quartet interactions immediately obtain with (obliquely) reflected
kr1h = 0.60, θr11 = 2.5 due to k1, k2 and kb1, and kr2h =0.40, θr21 = 2.4 due to k1,
k3 and kb2. After some time, kr1, kr2 and kb3 form a resonant quartet with a new
transmitted wave component kr3h = 0.20, θr31 = 0.58 which is (almost) parallel to k1,2,3.
The multiple resonances then continue. In figure 6(a), we focus on the evolutions of
the first three quartet resonant waves (only) showing the (modulated) growth of these
amplitudes. In this case, the amplitude of modulation of ar3 (which has zero slope
initially) is greater than those of ar1, ar2, so that ar3 > ar1, ar2 after relatively short
time t/T1 � 20; and ar3,max ∼ 0.4a10 at t/T1 ∼ 50. Figure 6(b) shows the instantaneous
free surface at that time, where much of the coherence is lost.

5. Conclusion
We consider oblique quartet (third-order) class III Bragg resonance interaction

of three surface wave with one bottom ripple component. Unlike class I and II
Bragg resonances (involving two monochromatic surface and respectively one and
two bottom components), class III resonance occurs at the sum and difference of the
incident wave frequencies with wavenumber vectors that can vary broadly depending
on the problem. We study the general problem, considering theoretically the resonance
condition and the amplitude evolution. These are complemented by direct numerical
simulation using a high-order spectral methods.

Real ocean surface is composed of a spectrum of wave frequencies (and directions).
Bottom topography likewise may contain multiple wavenumbers. Oblique sub/super-
harmonic class III resonances offer important mechanisms for wave energy transfer
in frequency and direction. We show, using illustrative cases, such scenarios.
These include subharmonic shore-normal transmissions for normal incident waves,
subharmonic long longshore wave generation for oblique incident waves, and
superharmonic standing-propagating waves due to longshore incident waves. Finally,
we consider a case of multiple Bragg resonance where class III interactions play a
critical role. Our considerations suggest that, under specific but realistic conditions
involving bottom ripples, class III energy transfer across the frequency-directional
wave spectrum can be significant, with potential implications to coastal engineering
and the study of near-shore processes. We finally note that the generation, growth
and modulation of class III Bragg resonant waves would, in general, be affected by
other physical phenomena such as wave breaking and bottom dissipation which are
not considered here.
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