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Bragg resonance of waves in a two-layer fluid
propagating over bottom ripples.
Part II. Numerical simulation.
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We develop a direct numerical method to study the general problem of nonlinear
interactions of surface/interfacial waves with variable bottom topography in a two-
layer density stratified fluid. We extend a powerful high-order spectral (HOS) method
for nonlinear gravity wave dynamics in a homogeneous fluid to the case of a two-layer
fluid over non-uniform bottom. The method is capable of capturing the nonlinear
interactions among large number of surface/interfacial wave mode and bottom
ripple components up to an arbitrary high order. The method preserves exponential
convergence with respect to the number of modes of the original HOS and the
(approximately) linear effort with respect to mode number and interaction order. The
method is validated through systematic convergence tests and comparison to a semi-
analytic solution we obtain for an exact nonlinear Stokes waves on a two-layer fluid
(in uniform depth). We apply the numerical method to the three classes of generalized
Bragg resonances studied in Alam, Liu & Yue (J. Fluid Mech., vol. 624, 2009, p. 225),
and compare the perturbation predictions obtained there with the direct simulation
results. An important finding is possibly the important effect of even higher-order
nonlinear interactions not accounted for in the leading-order perturbation analyses.
To illustrate the efficacy of the numerical method to the general problem, we consider
a somewhat more complicated case involving two incident waves and three bottom
ripple components with wavenumbers that lead to the possibility of multiple Bragg
resonances. It is shown that the ensuing multiple (near) resonant interactions result
in the generation of multiple new transmitted/reflected waves that fill a broad
wavenumber band eventually leading to the loss of order and chaotic motion.

1. Introduction
Our main objective is the general high-order and multiple Bragg resonance interac-

tions of surface/internal waves in a two-layer stratified fluid propagating over a patch
of wavy bottom. This is a follow-on work of part I on this subject (Alam, Liu &
Yue 2009), which is motivated by the need for a better understanding of the origin of
internal waves in lakes and on continental shelves (e.g. Miropol’sky 2001). Alam et al.
(2009) present a possible mechanism where bottom ripples play a role, and show,
among other things, that conditions for two-layer Bragg resonance can be obtained
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which may explain observations of internal waves in shallower stratified waters (e.g.
Boegman et al. 2003; Cummins et al. 2003).

In Alam et al. (2009), we develop perturbation analyses for three different classes
of Bragg resonances that obtain when interactions up to third order in wave/bottom
steepness are considered. At second order, class I Bragg resonance involves two
surface/internal waves and one bottom ripple component. At third order, classes
II and III Bragg resonance involve quartets of components: two surface/internal
and two bottom ripple components, and three surface/internal waves and one
bottom ripple component, respectively. Alam et al. (2009) enumerate the multiple
possible combinations and cases under these resonance classes, elucidate the different
mechanisms and obtain predictions of the (initial) growth/evolution of the resonant
wave. While perturbation analyses provide the essential framework and understand
specific predictions, the general problem of interest involving multiple (resonantly)
interacting surface/internal/bottom components up to high (possibly more than
third) order becomes quickly intractable analytically, and numerical solutions must
be sought. This is the subject of the present paper.

In this paper, we extend a powerful high-order spectral method (HOS), originally
developed for nonlinear wave–wave and wave–bottom interactions in a one-layer
fluid (Dommermuth & Yue 1987; Liu & Yue 1998), to the case of a two-layer density
stratified fluid. HOS is the extension of Zakharov (1968) mode coupling idea in a
direct computational approach. This method computationally accounts for nonlinear
wave–wave and wave–bottom interactions up to an arbitrary high-order M in the
wave (or bottom) steepness, and follows the (time) evolution of a large number of
wave modes, say N = O(103) per horizontal dimension. By using the fast transform
techniques, the computational effort is (approximately) linearly proportional to M

and N . For moderately steep waves and bottom ripples, the method achieves an
exponential convergence of the solution with respect to M and N . The extension of
HOS to a two-layer fluid over non-uniform bottom preserves these computational
properties and is extremely efficient and effective (in some sense ideal) for the problem
at hand.

The mathematical formulation of the HOS method for a two-layer fluid in the
presence of variable bottom topography is described in § 2. In § 3, we discuss
the implementation issues and present a validation of the method by testing the
convergence with different numerical parameters (including N and M) using the
fully nonlinear Stokes wave solution in a two-layer fluid as the benchmark. In § 4,
direct numerical simulations are used to investigate nonlinear resonant interactions of
surface/internal waves and bottom undulations. In order to relate the present time-
domain simulation to the theoretical results in the frequency domain, we develop (in
Appendix C) a robust algorithm for the decomposition of Fourier wave components
of a nonlinear wave field from the time history of the wave field evolution.

We obtain quantitative comparison between the numerical prediction and
perturbation solution and characterize the higher-order effects (not accounted for
in the theory). The three classes of Bragg resonance of surface/internal waves over
bottom ripples are studied in § § 4.1, 4.2 and 4.3, respectively. In each case, the present
HOS predictions are validated and compared against the theoretical predictions of
Alam et al. (2009). The effects of greater steepness and higher-order interactions on
the resonances are then quantified and characterized. Finally, in § 4.4, we consider
a somewhat more complicated problem involving multiple Bragg resonances with a
bottom containing two different (sinusoidal) ripple components. We study the long-
time evolution over such a bottom of a biharmonic incident surface wave chosen to
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Figure 1. Definition sketch.

(initially) satisfy class III Bragg resonance condition. Because of the presence of the
additional (resonant) bottom wavenumbers, multiple higher-order resonances ensue
as predicted by theory and confirmed numerically. As time increases, these resonant
interactions spread the energy in the initial incident waves over a broad range of
frequencies, and the wave motion is shown to become chaotic.

2. Mathematical formulation
In this section, we describe the mathematical formulation of a numerical method for

the computation of nonlinear interactions of gravity surface and interfacial waves with
varying bottom topography. This method is a direct extension of the HOS method
for the simulation of nonlinear wave–wave and wave–bottom interactions in a single
layer fluid (Dommermuth & Yue 1987; Liu & Yue 1998). The extended method is
capable of accounting for nonlinear interactions of broadband wave components on
the surface, interface and the bottom up to an arbitrary high order in the wave/bottom
steepness.

2.1. Initial boundary-value problem

We consider the motion of a two-layer fluid over a variable bottom topography. A
Cartesian coordinate system is defined with the x-axis on the mean free surface and
the z-axis positive upward, as shown in figure 1. The upper and lower layers of fluid
have, respectively, depths and densities of hu, ρu and h�, ρ� (hereafter subscripts u and
� are used to denote upper and lower layer quantities, respectively), and the bottom
elevation is given by ηb = ηb(x). In each layer, we assume that the fluid is homogeneous,
incompressible, immiscible and inviscid, and the motion irrotational and described by
the velocity potential φu(x, z, t) or φ�(x, z, t). The equations governing the motion of
a two-layer fluid are (ignoring surface tension)

∇2φu = 0, −hu + η� < z < ηu, (2.1a)

∇2φ� = 0, −hu − h� + ηb < z < −hu + η�, (2.1b)

ηu,t + ηu,xφu,x − φu,z = 0, z = ηu, (2.1c)

φu,t +
1

2

(
φ2

u,x + φ2
u,z

)
+ gηu = 0, z = ηu, (2.1d)

η�,t + η�,xφu,x − φu,z = 0, z = −hu + η�, (2.1e)
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η�,t + η�,xφ�,x − φ�,z = 0, z = −hu + η�, (2.1f)

ρu

[
φu,t + 1

2

(
φ2

u,x + φ2
u,z

)
+ gη�

]
− ρ�

[
φ�,t + 1

2
(φ2

�,x + φ2
�,z) + gη�

]
= 0, z = −hu + η�, (2.1g)

ηb,xφ�,x − φ�,z = 0, z = −hu − h� + ηb, (2.1h)

where ηu = ηu(x, t), η� = η�(x, t), are respectively the free surface and interface wave
elevations and g the gravitational acceleration. For an initial-value problem, the
conditions are prescribed at initial time (t =0) for the surface and interface elevations
(ηu(x, 0), η�(x, 0)) and velocity potentials (φu(x, ηu(x, 0), 0), φu(x, −hu + η�(x, 0), 0),
φ�(x, −hu + η�(x, 0), 0)) are specified. For computation, periodic boundary condition
in the horizontal direction is assumed.

2.2. Evolution equations

We define the surface potential φS
u for the upper layer, and the interface potentials

for the upper and lower layers φI
u and φI

� as follows:

φS
u (x, t) ≡ φu(x, ηu(x, t), t) and φI

u/�(x, t) ≡ φu/�(x, −hu + η�(x, t), t). (2.2)

In the neighbourhood of the interface, for convenience, we define a new potential
ψ(x, z, t) ≡ φ�(x, z, t) − Rφu(x, z, t), where R ≡ ρu/ρ�. We further define ψI to be the
value of ψ evaluated on the interface

ψI (x, t) ≡ φI
� (x, t) − RφI

u(x, t). (2.3)

In terms of these quantities, we rewrite the kinematic and dynamic boundary
conditions on the surface (2.1c) and (2.1d) and interface (2.1e) and (2.1g) in the
forms

ηu,t = −ηu,xφ
S
u,x +

(
1 + η2

u,x

)
φu,z, z = ηu, (2.4)

φS
u,t = −gηu − 1

2

(
φS

u,x

)2
+ 1

2

(
1 + η2

u,x

)
φ2

u,z, z = ηu, (2.5)

η�,t = −η�,xφ
I
u,x +

(
1 + η2

�,x

)
φu,z, z = −hu + η�,

ψI
,t = 1

2

[
R(φI

u,x)
2 −

(
φI

�,x

)2]
(2.6)

+ 1
2

(
1 + η2

�,x

)(
φ2

�,z − Rφ2
u,z

)
− gη�(1 − R), z = −hu + η�. (2.7)

In the HOS approach, (2.4)–(2.7) are the evolution equations for ηu, φS
u , η� and ψI .

These depend on the vertical surface velocity φu,z(x, ηu, t), and the vertical interface
velocities φu,z(x, −hu + η�, t) and φ�,z(x, −hu + η�, t), which are obtained from the
boundary-value problem solution.

2.3. Perturbation expansions

To solve the boundary-value problem, we assume that φu, φ�, ηu, η� and ηb and all
their derivatives are O(ε), where ε is a small quantity that measures the steepness of
the free surface, interface and bottom. We expand φu and φ� in perturbation series
up to an arbitrary order M in ε

φu(x, z, t) =

M∑
m=1

φ(m)
u (x, z, t), φ�(x, z, t) =

M∑
m=1

φ
(m)
� (x, z, t), (2.8)

where the superscript (m) represents a quantity of O(εm).
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On the free surface, as in a one-layer fluid, we expand the surface potential φS
u (x, t)

in a Taylor series with respect to the mean free surface z = 0

φS
u (x, t) =

M∑
m=1

φ(m)
u (x, ηu, t) =

M∑
m=1

M−m∑
k=0

ηk
u

k!

∂k

∂zk
φ(m)

u (x, z, t)
∣∣
z=0

. (2.9)

At each time t , ηu and φS
u are considered to be known from time integration of (2.4)

and (2.5). From (2.9), we now obtain a sequence of Dirichlet boundary conditions on
z = 0 for φ(m)

u

φ(m)
u (x, 0, t) = f (m)

u (2.10)

with

f (1)
u = φS

u , (2.11)

f (m)
u = −

m−1∑
k=1

ηk
u

k!

∂k

∂zk
φ(m−k)

u (x, z, t)
∣∣
z=0

, m = 2, 3, . . . , M. (2.12)

Similarly, on the interface, we expand ψI in a Taylor series with respect to the
mean position of the interface z = −hu

ψI (x, t) =

M∑
m=1

ψ (m)(x, −hu + η�, t) =

M∑
m=1

M−m∑
k=0

ηk
�

k!

∂k

∂zk
ψ (m)(x, z, t)

∣∣
z=−hu

. (2.13)

As on the free surface, at any time t , η� and ψI are given from integrating (2.6) and
(2.7). From (2.13), we again obtain a sequence of Dirichlet boundary conditions on
z = −hu for ψ (m)

ψ (m)(x, −hu, t) = f
(m)
�1 (2.14)

with

f
(1)
�1 = ψI , (2.15)

f
(m)
�1 = −

m−1∑
k=1

ηk
�

k!

∂k

∂zk
ψ (m−k)(x, z, t)

∣∣
z=−hu

, m = 2, 3, . . . , M. (2.16)

On the interface, there are two kinematic boundary conditions (2.1e) and (2.1f ). In
addition to (2.6) used as the evolution equation for η�, the other one can be rewritten
as

Φ,z(x, z, t) = η�,xΦ,x, z = −hu + η�, (2.17)

where Φ ≡ φu(x, z, t)−φ�(x, z, t). Note that (2.17) is the difference of (2.1e) and (2.1f).
Upon expanding Φ(x, z, t) on the interface z = −hu +η� in a Taylor series with respect
to z = −hu, we have

Φ(x, −hu + η�, t) =

M∑
m=1

Φ (m)(x, −hu + η�, t)

=

M∑
m=1

M−m∑
k=0

ηk
�

k!

∂k

∂zk
Φ (m)(x, z, t)

∣∣
z=−hu

. (2.18)

Substituting (2.18) into (2.17) and collecting terms at each order, we obtain a sequence
of Neumann boundary conditions at z = −hu for Φ (m)

Φ (m)
,z (x, −hu, t) = f

(m)
�2 (2.19)
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with

f
(1)
�2 = 0, (2.20)

f
(m)
�2 =

m−1∑
k=1

∂

∂x

[
ηk

�

k!

∂ (k−1)

∂z(k−1)
Φ (m−k)

,x (x, z, t)
∣∣
z=−hu

]
, (2.21)

for m = 2, 3, . . . , M .
On the bottom z = −hu −h� +ηb, we expand φ� in a Taylor series with respect to the

mean bottom position z = −hu −h�. Upon substituting the expansion into the bottom
boundary condition (2.1h), we obtain a sequence of Neumann boundary conditions
at z = −hu − h� for φ

(m)
�

φ
(m)
�,z (x, −hu − h�, t) = f

(m)
b (2.22)

with

f
(1)
b = 0, (2.23)

f
(m)
b =

m−1∑
k=1

∂

∂x

[
ηk

b

k!

∂ (k−1)

∂z(k−1)
φ

(m−k)
�,x (x, z, t)

∣∣
z=−hu−h�

]
, m = 2, 3, . . . , M. (2.24)

With these expansions, we now obtain a sequence of linearized boundary-value prob-
lems for the perturbed potentials φ(m)

u and φ
(m)
� , m = 1, 2, . . . , M . Specifically, at each

order m, φ(m)
u and φ

(m)
� satisfy Laplace’s equation respectively in the regions 0 � z � −hu

and −hu � z � − hu − h� with the boundary conditions: (i) φ(m)
u (x, 0, t) = f (m)

u ; (ii)

ψ (m)(x, −hu, t) = f
(m)
�1 ; (iii) Φ (m)

,z (x, −hu, t) = f
(m)
�2 ; (iv) φ

(m)
�,z (x, −hu − h�, t) = f

(m)
b ; and

(v) φ(m)
u and φ

(m)
� are periodic in x. These boundary-value problems can be solved

sequentially up to an arbitrary order M starting from m =1.

2.4. Spectral solution for φ(m)
u and φ

(m)
�

We apply the spectral method to solve the boundary-value problems for φ(m)
u and

φ
(m)
� , m = 1, 2, . . . , M . At each order m, we construct the solutions of φ(m)

u and φ
(m)
� in

terms of Fourier basis functions:

φ(m)
u (x, z, t) =

N−1∑
n=−N

{
A(m)

n (t)
cosh[kn(z + hu)]

cosh(knhu)
+ B (m)

n (t)
sinh(knz)

cosh(knhu)

}
eiknx, (2.25)

φ
(m)
� (x, z, t) =

N−1∑
n=−N

{
C(m)

n (t)
cosh[kn(z + hu + h�)]

cosh(knh�)

+ D(m)
n (t)

sinh[kn(z + hu + h�)]

cosh(knh�)

}
eiknx, (2.26)

where kn=2πn/Lx with Lx being the length of the computational domain, and A(m)
n ,

B (m)
n , C(m)

n and D(m)
n are the complex modal amplitudes. One notes that for sufficiently

smooth φ(m)
u and φ

(m)
� , A(m)

n , B (m)
n , C(m)

n and D(m)
n decay exponentially in magnitude with

|n|. Clearly, φ(m)
u and φ

(m)
� in (2.25) and (2.26) are harmonic and satisfy the boundary

condition (v). The unknown amplitudes A(m)
n , B (m)

n , C(m)
n and D(m)

n are determined by
the imposition of the other four boundary conditions (i), (ii), (iii) and (iv) to φ(m)

u and

φ
(m)
� in (2.25) and (2.26).
Specifically, A(m)

n is determined from the boundary condition (i), D(m)
n from the

boundary condition (iv) and B (m)
n and C(m)

n from the boundary conditions (ii) and (iii).
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Upon substitution, we have

A(m)
n = f̃ (m)

un , (2.27a)

B (m)
n =

[
knf̃

(m)
un R sinh knh� + f̃

(m)
bn cosh knhu + knf̃

(m)
�1n sinh knh� cosh knhu

+ f̃
(m)
�2n cosh knhu cosh knh�

]
/
n, (2.27b)

C(m)
n = − cosh knh�

[
−knf̃

(m)
un R + f̃

(m)
bn (R sinh knhu cosh knh� + sinh knh� cosh knhu)

− knf̃
(m)
�1n cosh knhu + f̃

(m)
�2nR sinh knhu

]
/
n, (2.27c)

D(m)
n =

cosh(knh�)

kn

f̃
(m)
bn , (2.27d)

for n= 0, ±1, . . . , ±N . In (2.27), 
n ≡ kn(cosh knhu cosh knh� + R sinh knhu sinh knh�),
and f̃ (m)

un , f̃
(m)
�1n, f̃

(m)
�2n and f̃

(m)
bn are respectively the nth Fourier modal amplitudes of

f (m)
u , f

(m)
�1 , f

(m)
�2 and f

(m)
b .

2.5. Evaluation of the interface potentials and surface/interface vertical velocities

Once the boundary-value solution at order m is obtained, the vertical velocities of the
fluid on the mean free surface and interface at that order are obtained from (2.25)
and (2.26)

φ(m)
u,z (x, 0, t) =

N∑
n=−N

kn

[
A(m)

n (t) tanh(knhu) + B (m)
n (t)

]
eiknx, (2.28a)

φ(m)
u,z (x, −hu, t) =

N∑
n=−N

knB
(m)
n (t)eiknx, (2.28b)

φ
(m)
�,z (x, −hu, t) =

N∑
n=−N

kn

[
C(m)

n (t) tanh(knhu) + D(m)
n (t)

]
eiknx, (2.28c)

for m = 1, 2, . . . , M .
After the boundary-value solution is obtained up to the specified order M , the

interface potentials and the surface/interface vertical velocities are evaluated by

φI
u(x, t) =

M∑
m=1

M−m∑
k=0

ηk
u

k!

∂k

∂zk
φ(m)

u (x, −hu, t), (2.29a)

φI
� (x, t) =

M∑
m=1

M−m∑
k=0

ηk
u

k!

∂k

∂zk
φ

(m)
� (x, −hu, t), (2.29b)

φu,z(x, ηu, t) =

M∑
m=1

M−m∑
k=0

ηk
u

k!

∂ (k+1)

∂z(k+1)
φ(m)

u (x, 0, t), (2.29c)

φu,z(x, −hu + η�, t) =

M∑
m=1

M−m∑
k=0

ηk
�

k!

∂ (k+1)

∂z(k+1)
φ(m)

u (x, −hu, t), (2.29d)

φ�,z(x, −hu + η�, t) =

M∑
m=1

M−m∑
k=0

ηk
�

k!

∂ (k+1)

∂z(k+1)
φ

(m)
� (x, −hu, t), (2.29e)
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in which the higher z-derivatives of φ
(m)
u/� are evaluated by converting into x-derivatives

using Laplace’s equation, e.g. φ
(m)
u/�,zz = −φ

(m)
u/�,xx , φ

(m)
u/�,zzz = −φ

(m)
u/�,zxx , etc. The x-

derivatives are evaluated easily in the Fourier space.

3. Implementation and validation
3.1. Implementation

The time simulation of nonlinear interactions of surface and interfacial waves with
variable bottom topography up to a specified order M consists of two main steps:
(a) at each time t , given the surface and interface elevations (ηu, η�), surface
potential (φS) and a weighted potential combination at the interface (ψI =φI

� − RφI
u),

solve the boundary-value problems for φu and φ� up to the specified order M and
evaluate the surface velocity φu,z(x, ηu, t) and interface velocities φu,z(x, −hu + η�, t)
and φ�,z(x, −hu + η�, t); and (b) integrate the evolution equations (2.4)–(2.7), in
time to obtain the new values of ηu, η�, φS and ψI at time t + 
t , where 
t

is the time step. The two steps (a) and (b) are repeated starting from initial
values.

In the present method, the boundary-value problems for φu and φ� are solved
up to the specified order M by a pseudo-spectral approach. Specifically, all spatial
derivatives (of quantities such as φ(m)

u , ψ (m) and Φ (m)) are evaluated in wavenumber
space while nonlinear terms and products are calculated in physical space at a discrete
set of points xj , j = 1, 2, . . . , 2N on the mean surface and interface. For Fourier basis
functions used, the collocation points xj , j = 1, 2, . . . , 2N , are equally spaced, and fast
Fourier transform (FFT) is used to project between the wavenumber and physical
domain. For time integration, the fourth-order Runge–Kutta scheme is employed.
Overall, the operation count for the solution of the complete problem up to order M

is O(MN lnN) per time step.
We note that in the present implementation, for simplicity, the perturbation

expansions of φu and φ� are constructed assuming the free surface, interface and
bottom steepnesses to be of the same order, i.e. εs ∼ εi ∼ εb = O(ε). The treatment
for the potentially interesting case when εs , εi and εb are not of the same order (e.g.
Ardhuin & Magne 2007) is a straightforward extension in the HOS method (see Liu &
Yue 1998). In addition, the spectral expansions in (2.25) and (2.26) for φ(m)

u and φ
(m)
�

at each order m enable highly efficient transformations between the wavenumber and
physical spaces via fast transforms. When different spectral expansions (such as the
one satisfying the exact bottom boundary condition in Athanassoulis & Belibassakis
1999) are used, this computation efficiency might not be retained. Furthermore, the
present numerical scheme is capable of accounting for interactions of broadband
wave components. The extremely high efficiency of the scheme (i.e. approximately
linear computational effort with N and M) enables the consideration of large values
of N (and M ), necessary for the problems involving large wavelength and time-period
ratios.

For specific simulations, the bottom ripples are typically placed in a patch centred in
the computational domain. The disturbance generated by interactions among surface
waves, interfacial waves and bottom ripples propagates towards the side boundaries
of the computational domain in time. For a fixed length of the computational
domain, the simulation is stopped before these disturbances reach the side boundaries
(this is checked by repeating the simulation in a larger computational domain).
The simulation time for a given domain can be extended by employing a tapering
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Figure 2. Profiles of a steady internal-mode Stokes wave in a two-layer density stratified fluid
for the normalized free surface and interface elevations: ηu(x, t) and η�(x, t); the normalized
velocity potentials on the free surface and interface: φS

u and φI
u , φI

� . The plotted curves are the
initial guess (- - -), the solution after 50 iterations (——) and the averaged error as a function
of the number of iterations (· · ·). The physical parameters are kb =0.07, where b is the initial
amplitude measured on the interface hu/h� =1/2, khu = 1 and R = 0.5.

technique of Dommermuth & Yue (1988) where the solutions are multiplied by a
function that tapers smoothly to zero at the two boundaries.

3.2. Convergence tests using a two-layer fluid Stokes wave solution

The HOS method for a one-layer fluid on a rippled bottom has been validated
extensively (Liu & Yue 1998). To check the correctness and accuracy of the extension
to a two-layer fluid, we use a fully nonlinear solution of a Stokes wave in a two-layer
fluid (on a uniform bottom) as a benchmark. The benchmark solution is obtained
using Newton’s iterative method (see Appendix A). As an example, figure 2 shows
the profiles of surface/interface elevations and velocity potentials for a two-layer
fluid Stokes wave of the internal mode. The decrease in the error with respect to the
number of Newton iterations is also shown. For moderate wave steepness, the error is
generally smaller than 10−14 after 50 iterations. The benchmark solution used below
for the validation of the HOS computations is accurate to 14 decimal places and is
hereafter considered to be the ‘exact’ solution. We first show the convergence of the
boundary-value problem solution with respect to the perturbation order M and the
number of spectral modes per wavelength N . We specify the boundary conditions on
the surface and the interface from the (exact) nonlinear solution of a Stokes wave,
and solve for the surface and interface vertical velocities using the HOS approach.
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N M = 1 M = 2 M = 3 M = 4 M = 6 M = 8

4 0.55 × 10−2 0.13 × 10−2 0.70 × 10−3 0.69 × 10−3 0.69 × 10−3 0.69 × 10−3

8 0.90 × 10−3 0.12 × 10−3 0.86 × 10−5 0.21 × 10−5 0.17 × 10−5 0.17 × 10−5

16 0.64 × 10−3 0.85 × 10−4 0.60 × 10−5 0.78 × 10−6 0.83 × 10−8 0.67 × 10−9

32 0.45 × 10−3 0.60 × 10−4 0.42 × 10−5 0.55 × 10−6 0.55 × 10−8 0.56 × 10−10

Table 1. Maximum error of the normalized vertical velocity of upper layer fluid at the
interface, φu,z(x, −hu + η�, 0)(ghu)

1/2/ga, for a Stokes wave in a two-layer fluid with ε = 0.1,
h�/hu =1, and R = 0.5.

T/
t

t/T 30 40 50 100 200

1 0.18 × 10−2 0.72 × 10−3 0.36 × 10−3 0.43 × 10−4 0.53 × 10−5

10 0.38 × 10−2 0.14 × 10−2 0.62 × 10−3 0.59 × 10−4 0.65 × 10−5

Table 2. Maximum error of the normalized vertical velocity of the upper layer fluid at the
interface, φu,z(x, −hu + η�, t)(ghu)

1/2/ga, for a Stokes wave in a two-layer fluid with ε = 0.1,
h�/hu =1, and R = 0.5 after time integration of t/T =1, 10 with different time steps. The HOS
parameters are N = 32, M = 3.

The steepness of the nonlinear solution ε is defined as the product of the wavenumber
and half the crest–trough height. A typical result is given in table 1 for the maximum
error in the interface vertical velocity with increasing M and N . For sufficiently large
M , the error decays exponentially fast with increasing N . For sufficiently large N ,
exponential convergence with M is also obtained.

To test the accuracy of the time integration, we use HOS to simulate the nonlinear
evolution of the two-layer fluid Stokes wavetrain using the exact solution as initial
conditions. Table 2 shows the maximum absolute error in the interface vertical velo-
city after an evolution of t/T = 1 and 10 with different time steps. Here T is the
fundamental period of the Stokes wave. For these computations, N = 32 (per
wavelength) and M = 3 are used to ensure that the error in solving the boundary-value
problem itself is negligible (see table 1). For the fourth-order Runge–Kutta scheme,
the global error decreases as O((
t/T )4) after a time integration t/T = O(1).

4. Numerical results
The extended HOS method of § 2 is used to perform direct numerical simulations of

the nonlinear interactions of surface/interfacial waves with bottom undulations. For
further validation, comparisons of the numerical results with theoretical predictions
for the second-order two-layer fluid resonant interaction problem with a flat bottom
(e.g. Ball 1964; Wen 1995) and experiments of Joyce (1974) are given in Appendix B.

All of the cases identified in Alam et al. (2009) for classes I, II and III resonances
can and have been investigated by direct HOS simulation (Alam 2008). In addition
to further validation of the numerical method (and the theory), of special interest
is the effect of higher-order nonlinearities not accounted for in the perturbation
theory. It is shown that, in general, high nonlinearity decreases the modulation
wavelength/period and amplitude of incident and resonant waves, and down shifts
the wavenumber of peak resonance amplitude by altering the dispersion relation. In
this section, we focus on the illustrative case studies identified in § 5 of Alam et al.
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Figure 3. Spatial variation of the transmission coefficient of the incident surface-mode
wave (Ainc) and the resonance generated internal-mode wave (Tsi) over a patch of bottom
ripples under class I Bragg resonance condition. Physical parameters: (a) R = 0.96, kshu = 0.1
(ω2hu/g = 0.016), εs =0.0005 and (b) R = 0.5, kshu = 0.35 (ω2hu/g = 0.19), εs = 0.004. Common
parameters are h�/hu = 1, εb =0.04, Mb = 40, and computational parameters: N = 2048,
M = 2, 3, T/
t = 64 and TS/T = 100. Results plotted are numerical simulation (——) and
predictions from regular perturbation (Alam et al. 2009, (3.16), – · –) and multiple-scale
analyses (Alam et al. 2009, (4.6), - - -).

(2009), obtaining direct quantitative comparisons. Finally, as an illustration of the
efficacy and application of the numerical method, we use HOS to study the case
of long-time interactions involving multiple resonances among the surface, internal
and bottom wave components. As time increases, it is shown that the wave motion
eventually becomes chaotic.

4.1. Class I Bragg resonance

We apply HOS time simulation to class I Bragg resonant interactions of surface
and interfacial waves with a patch of bottom ripples. In addition to cross-validation
with the perturbation analysis of Alam et al. (2009) for the leading-order effect, we
focus also on the effects of higher-order interactions associated with the wave/ripple
steepness and the length of the rippled bottom.

When an inter-mode resonance occurs, a new wave-mode is generated. For example,
a surface-mode wave may appear on an otherwise flat free surface due to resonant
interaction of an internal-mode wave with bottom ripples, and an internal-mode wave
can be generated when a surface-mode wave interacts resonantly with bottom ripples.

In the resonance of inter-modes in transmission, the resonant wave travels in the
same direction as the incident wave. According to Alam et al. (2009), this type of
class I Bragg resonance occurs if the bottom wavenumber kb satisfies the condition
kb = ki −ks , where ki and ks are the wavenumbers of internal and surface-mode waves
for any specified frequency ω. Both ki and ks are related to ω by the dispersion
relation D(ki, ω) = D(ks, ω) = 0. There are two cases for this type of resonance: one
is with the surface-mode wave as the incident wave and the internal-mode wave as

the resonance generated wave (Sc

kb→ IT ) and the other with the internal-mode wave

as the incident wave and the surface-mode wave as the generated wave (Ic

kb→ ST ).

For Sc

kb→ IT , figure 3(a) shows a sample computational result for the variation of the
amplitudes of the incident surface-mode wave and the generated internal-mode wave
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over a patch of bottom ripples after the steady state of the wave–bottom interaction
is reached. Transmission wave amplitudes are extracted from the steady state
surface/interface elevations, ηu, η� (see Appendix C). In this simulation, we use the
physical parameters: incident wave steepness εs ≡ ksa = 0.0005, depth ratio h�/hu =1,
density ratio R = 0.96, kshu = 0.1 (ω2hu/g = 0.016), bottom wavenumber kb/ks = 10,
bottom steepness εb ≡ kbd = 0.04 and length of the rippled bottom Mb = 2L/λb = 40;
and computational parameters: length of the computational domain Lx = 2π, total
number of spectral modes N = 2048, order of nonlinearity M =2 and 3, time step
T/
t = 64 and simulation time TS/T =100, where T =2π/ω is the period of the
incident surface-mode wave (which is equal to the period of the resonance generated
wave in class I Bragg resonance). The HOS results are compared to the theoretical
predictions of Alam et al. (2009) which are second-order regular perturbation theory
and multiple-scale analysis. Numerical results agree well with the multiple scales
solution and regular perturbation where the latter two are in a good agreement too.

To see a full modulation of the wave amplitudes, the length of the periodic bottom
(or the amplitude of incident wave or bottom undulation) has to be greater than
that in figure 3(a) (Mb > O(102)). On the other hand, the amplitude of the resonant
transmitted internal wave would become exceedingly large and possibly invalidates the
assumptions of the perturbation expansions. Physically, the conditions of Mb (relative
to wave and bottom steepnesses) required for a full modulation may also be unlikely
to obtain in the ocean (see Ball 1964). To show a case where there is substantial
amplitude modulation over a smaller distance and to obtain a clearer picture of
such modulation, we consider a stronger stratification of R = 0.5 in figure 3(b) where
the HOS results are compared to the theoretical predictions of Alam et al. (2009).
The direct computational result, which is convergent with M at M = 2, compares
well with the regular perturbation solution for x/λb < O(10). Beyond this region, the
regular perturbation solution substantially overestimates the growth of the resonant
wave. On the other hand, the computational result agrees very well with the solution
of the multiple-scale analysis for both incident and resonant waves over the entire
patch of bottom ripples. In this case, the amplitude of the resonant (internal mode)
wave increases from 0 to ∼1.6a after a distance of x ∼ 25λb, taking almost all of the
incident wave energy and then decreases (returning energy to the incident wave).

To show the effect of high-order (in wave and/or bottom steepness) interactions
not accounted for in the theory of Alam et al. (2009), figure 4 shows a similar case
as figure 3(b) but with much greater εs =0.04 (all other physical parameters are
identical). For HOS, the results for orders M = 2, 3 and 4 are given. The numerical
results using M = 3 have evidently converged and are graphically indistinguishable
from those using M = 4. The difference between the results for M = 2 and those for
larger values of M represents the higher-order effects in the wave–bottom interaction
not accounted for in the leading order triad class I theory. Clearly, the effect can be
appreciable even over relatively short interaction lengths manifest in the reduction
in amplitude variations of the incident and the resonant (transmitted) waves, and
in the decrease of the (spatial) modulation wavelengths of these interacting wave
amplitudes. Note that, because of the higher order nonlinearity, the vanishing of the
incident wave amplitude at some interaction distance (as the resonated wave reaches
maximum) predicted by the multiple-scale theory analysis does not obtain.

It is of some interest to address the complementary problem of the temporal growth
of the resonant wave amplitude over a very long bottom patch. As computation effort
increases (linearly) with N , the direct numerical solution of this problem using HOS
eventually becomes impractical. If the interactions near the (two) edges of the bottom
patch are not of primary concern, the problem can be recast in terms of the time
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Figure 4. Spatial variation of (a) the transmission coefficient of the resonance generated
internal-mode wave (Tsi ) and (b) the amplitude of the incident surface-mode wave (Ainc),
over a patch of bottom ripples under class I Bragg resonance condition. Physical parameters
are h�/hu = 1, R = 0.5, kshu = 0.35 (ω2hu/g = 0.19), kb/ks = 1.47, Mb = 40, εb = 0.04, εs = 0.04
and computational parameters: N = 2048, M = 2, 3 and 4, T/
t = 60 and TS/T = 80. Results
plotted are numerical simulation (——) and predictions from regular perturbation (Alam et al.
2009, (3.16), – · –) and multiple-scale analyses (Alam et al. 2009, (4.6), - - -).

0.150 0.155 0.160 0.165 0.170 0.175
0

1

2

3

4

5

6

7

8

9

10

T
si

2ks /kb
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Bragg resonance as a function of wavenumber detuning 2ks/kb . Physical parameters
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numerical simulation (——) and predictions from regular perturbation (Alam et al. 2009,
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evolution of waves travelling over a periodic bottom ripple domain (see Alam et al.
2009, (B9)). A further discussion and sample simulation results for two cases with
R = 0.96 exhibiting full amplitude modulations are given in Appendix D.

As in a one-layer fluid, the nonlinear interactions among the surface and interfacial
waves and bottom ripples also change the dispersion relation, and the nonlinear
Bragg resonance condition for the interacting wavenumbers is shifted from that given
by the linearized dispersion relation. To illustrate this, figure 5 plots the reflection
coefficient of the generated wave in the neighbourhood of the class I resonance
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t = 64 and TS/T = 120. Results plotted are the prediction from regular perturbation
analysis (Alam et al. 2009, (3.22), – · –) and direct computation (——).

condition. Both the numerical simulation result (with M = 4) and the theoretical
prediction of the regular perturbation and multiple-scale analyses are shown. These
results are obtained for h�/hu = 0.5, R = 0.96, kshu = 0.16 (ω2hu/g = 0.04), εs =0.005,
d/h� = 0.1, Mb =20, and computational parameters: N = 2048, M =4, T/
t =64 and
TS/T = 80. The numerical result shows the distinct down shift of the peak amplitude
wavenumber 2ks/kb compared to regular and multiple-scale perturbation predictions,
with a magnitude that is found to increase with the bottom steepness. As for the value
of the maximum amplitude itself, the HOS result is seen to be somewhat lower than
that predicted from regular perturbation and multiple-scale theory. One notes that

features of the results for Ic

kb→ SR including comparisons of HOS computations and
perturbation analyses and higher-order interaction effects are qualitatively similar to

the above for Sc

kb→ IR , and are not repeated.

4.2. Class II Bragg resonance

Alam et al. (2009) discussed the condition for class II Bragg resonance involving
third-order interactions among one surface (or internal) mode wave and two bottom
ripple components given by D(kr, ω) = 0 with kr = k ± (kb1 ± kb2), where k, kr , kb1

and kb2 are, respectively, the wavenumbers of the incident wave (of frequency ω),
the resonance generated wave and the bottom ripple components. This is a direct
extension of class I resonance to the third order, and, as in that case, may similarly
involve a resonance generated wave that is transmitted or reflected, and is in the same
or different mode as the incident wave.

Figure 6 shows the numerical simulation result for the variation of the transmission
coefficients of an incident surface-mode wave and resonance generated internal-mode
wave over a patch of bottom ripples under the exact class II Bragg condition. The
physical parameters are: h�/hu = 0.5, R = 0.96, Mb = 200, kshu = 0.16 (ω2hu/g = 0.04),
εs = 0.005 and εb =0.05 where the bottom ripple component is counted twice in the
class II Bragg resonance interaction. Computational parameters are N =2048, M =4,
T/
t = 64 and TS/T = 120. For comparison, the regular perturbation prediction of
Alam et al. (2009) is also plotted. As expected, the numerical and perturbation results
agree during the initial growth of the resonance generated wave. As the interaction
distance increases, the numerical solution deviates from the linear growth predicted
by theory, and eventually decreases after reaching a maximum.
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by HOS for resonant internal wave generation under class III Bragg resonance (Sc1+Sc2
kb→ IR).

Physical parameters are h�/hu = 0.42, R = 0.96, ks1hu = 4.3, ks1as1 = 0.2, ks2/ks1 = 0.84,
ks2as2 = 0.2, εb = 0.2 and computational parameters: N = 2048, M = 4, 5 and T/
t = 64.

4.3. Class III Bragg resonance

Class III Bragg resonance occurs when two incident wave components interact with
one bottom ripple component to generate a third wave. The major importance of
class III Bragg resonance is that, unlike classes I and II, the resonance generated
wave has a frequency in general different from those of the incident waves.

For illustration we numerically consider the case of § 5.4 of Alam et al. (2009) where
two incident surface-mode waves upon interacting with bottom undulations resonate

an internal-mode wave (Sc1 + Sc2

kb→ IR). Numerical simulation is performed in time
domain (over a long patch) and with the physical parameters: h�/hu = 0.42, R = 0.96,
ks1hu = 4.3 (ω2hu/g =4.3), ks1as1 = 0.2, ks2/ks1 = 0.84, ks2as2 = 0.2 and εb =0.2 and
computational parameters: N = 2048, M = 4, 5 and T/
t = 64. Figure 7 shows the
growth of the amplitude of resonance generated internal-mode wave due to class III
Bragg resonance.

In a realistic ocean situation, the above result can be interpreted as follows. In a total
water depth of H = 100 m with the thermocline at hu = 70 m, two typical ocean sur-
face waves with periods Ts1, Ts2 = 8.00, 8.75 s and amplitudes as1 � as2 � 3 m in the pre-
sence of bottom ripples of λb � 160 m and amplitude d � 5 m, can resonate a train of
relatively high-frequency internal waves (T � 2 min) with amplitude up to ar � 1.5 m.
The generated interfacial wave moves in the opposite direction of incident waves and
hence scatters back the forward travelling energy of the incident waves.

Features of higher-nonlinearity effects are qualitatively similar to those of class I.
They are studied in detail via a number of illustrative examples in Alam (2008).

4.4. Multiple resonance

In practical applications, the incident wave field and/or the bottom topography con-
tain multiple components and combinations that may satisfy the resonance conditions.
As these resonant waves are generated, they themselves may satisfy and engage
in multiple resonances with the incident/bottom components. While theoretical
considerations such as those in Alam et al. (2009) provide valuable guidance and
fundamental understanding (and results for comparisons for specific cases such as
those considered above), extensions beyond these become very complex and the
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general problem is intractable. This is one of the main objectives for the development
here of the direct numerical simulation capability.

As illustration, we consider a generalized but still relatively simple problem where
an incident wave composed of two linearly superimposed wavetrains interacts with
a rippled bottom containing two wavenumber components. Our interest is the
features associated with the development of multiple resonances and long-time
evolutions. For specificity, we choose a configuration with h�/hu = 2.3, R = 0.96 and
two surface-mode incident waves with ks1hu = 0.26 (ω2

s1hu/g = 0.19), εs1 = 0.03 and
ks2hu =0.24 (ω2

s1hu/g = 0.15), εs1 = 0.01. We consider a bottom ripple patch containing
two wavenumber components with dimensionless wavenumbers kb1hu = 0.25 and
kb2hu =0.20 and kb3hu =0.77 and with the same bottom component amplitudes
d/h� = 0.2.

For these conditions, it is seen that ks1 − ks2 + kb2 = kit and ks1 − ks2 − kb1 = kir (both
with the frequency ωi = ωs1 −ωs2) satisfy class III Bragg resonance condition with the
resonance generated internal-mode wave with wavenumber kithu = kirhu = 0.22. With
these new internal-mode wave and the same bottom components, at the fourth order,
two new resonances occur

ks5 = ks1 + kir + kb1 = 0.30/hu, ωs5 = 2ωs1 − ωs2 (4.1)

and

ks6 = ks2 − kit + kb2 = 0.21/hu, ωs6 = 2ωs2 − ωs1. (4.2)

Note that resonant energy exchange may also occur near the exact resonance points
(cf. figures 5). In this case, for instance, the combination of the incident waves ks1 and
kb1 at the third order gives ks1 − 2kb1 = −0.24/hu with associated frequency ωs1 that
does not satisfy the dispersion relation, but is very close to the pair (−ks1, ωs1) which
is a resonance point and therefore permits resonant energy exchanges. Figure 8 shows
the location of the component of this example on Ball’s diagram for the dispersion
relationship. In a direct numerical simulation, we use, as initial conditions, the linear
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solution for the incident surface waves, and computational parameters N = 1024,
M = 6 and dimensionless domain length Lx =2π. Figure 9 shows the growth of the
amplitudes of the resonance generated waves of ki , ks5 and ks6 during the initial stage
of the evolution (t < 100T ). Modulation in time can be observed in the incident and
resonance generated waves. A rough correlation can be seen between the minimum of
the amplitude of the incident wave and maximum of the amplitude of the resonance
generated waves.

Figure 10 plots the spectrum of the nonlinear wave field at t = 100T , in which all
wave components including both free and locked waves are identified. Note that some
of the locked waves are close to the resonant points, and can then be significantly
developed in the evolution. Because of this, the wave field becomes increasingly
complex as the nonlinear interactions continue. Figure 11(a) shows the time evolution
of the amplitude of the first incident surface-mode wave (as1) and the resonant
internal-mode wave (ai , associated with the class III Bragg resonance). After some
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Figure 11. Time variation of the amplitudes of (a) the incident wave (as1/a0) and (b) the
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location in the wave domain with a flat bottom (——) and a rippled bottom (· · ·).

regular oscillations during which energy is exchanged between waves (as expected
from the perturbation analysis), the variation of the amplitudes of these waves starts to
behave irregularly at t/T ∼ 1500. The loss of order can also be seen in the frequency
amplitude spectrum of the free-surface elevation (figure 12), for the free-surface
elevation at a fixed point x =0 in the time period 2500 < t/T < 3500. The energy of
the wave field, initially confined to two incident free waves (and their higher-order
locked-wave harmonics), is now distributed, by multiple resonance and near-resonance
interactions with the bottom ripples and among waves, to cover a broadband
spectrum. For comparison, and as an independent check, the spectrum of the wave
field evolved over the same time with the same initial condition but a flat bottom is
obtained also by direct HOS simulation and shown. Figure 13 is the evolution of the
amplitude of the incident surface-mode wave (counterpart of figure 11a) when there
is no stratification (i.e. R = 1). As can be seen, in the same time frame no (qualitative)
loss of order is observed. To quantify the chaotic behaviour of the wave motion, we
compute the Lyapunov exponent of this system. We obtain the maximum Lyapunov
exponent from the motion history of points on the free surface following classical
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Figure 13. Time variation of the amplitudes of the incident wave (Ainc = as1/a0) for the
same setup as in figure 11(a) but with R = 1.
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Figure 14. Maximum Lyapunov exponent as a function of time for a flat bottom (- - -) and
a rippled bottom (——) for (a) R = 0.96 compared also with no stratification (R = 1, – · –)
case and (b) R = 0.5.

methods (e.g. Argyris, Faust & Haase 1994). Figure 14 shows the time evolution of this
maximum Lyapunov exponent. The exponent becomes positive after a short initial
phase of evolution and approaches an asymptotic (constant) value of λmax � 0.9 as
the evolution continues. In contrast, in the case of uniform depth or no stratification
(R = 1), this Lyapunov exponent is non-positive and reaches zero asymptotically.

Initiation of chaos in high-dimensional dynamical systems can be due to a variety
of mechanisms (e.g. Temam 1997). The initiation of chaotic behaviour in the present
case evidently comes from the mode-coupling of multiple (exact/near) resonances.
Figure 15 shows the initial sequence of Bragg resonances and their couplings (using
the notation of Alam et al. 2009, figures 3 and 4). Also indicated in the figure are the
amplitudes associated with the spectrum of figure 10. As these resonances develop
and the amplitudes of new resonant waves become appreciable, they participate in yet
new interactions of exact and near classes I, II and III (and higher) Bragg resonances
as well as (non-Bragg) wave–wave resonances. The final result over increasingly



244 M.-R. Alam, Y. Liu and D. K. P. Yue

ks1

kb1

kb1

kb2

kb2

kb1

kb2

ks2

ks1

kir

...

...

(d)

(c)

ks2

(c)

ks2

(c)

ks2

(c)

(d)

ks1

(d)

ks1

(d)

ks5

(e)

ks5

(e)

kir

(b)

kir

(b)

kit

(b)

kit

(b)

ks6

(b)

ks8

(b)

ks7

( f )

kit

(b)

ks6
(b)

(b)

Figure 15. Initial sequence of multiple (exact and near) Bragg resonances that eventually lead
to chaotic wave motion over long time. The specific Bragg mechanisms for the present case
study are indicated using the notation of Alam et al. (2009) figures 3 and 4, and the amplitudes
of the participating wave modes corresponding to the spectrum in figure 10 are indicated with
the letter notation used therein.

greater time scale is the observed irregular wave behaviour with broadband amplitude
spectrum.

The observed features of multiple resonances among surface/internal/bottom wave
components leading to chaotic wave motion are found to be obtained for broad
ranges of physical parameters. In particular, as the stratification strengthens, the time
to chaotic motion decreases and the strength of the chaotic behaviour increases.
Figure 14(b) shows the maximum Lyapunov exponent for a case with R = 0.5
involving initially a single surface-mode incident wave (with h�/hu = 1, kshu =0.30,
εs = 0.03) travelling over a bottom ripple patch containing multiple wavenumber
components. The conjugate of this incident wave is an internal-mode wave with
wavenumber kihu = 0.73. Multiple resonances involving different Bragg mechanisms
occur for selected sets of bottom component wavenumbers. Figure 14(b) corresponds
to a case of a bottom with three wavenumbers given by kb1hu = 0.36, kb2hu = 0.43 and
kb3hu =0.77 and with the same dimensionless amplitude d/hu = 0.094.

For these conditions, it is seen that ks + kb2 = ki satisfies a class I Bragg resonance
condition with the resonance generated internal-mode wave with wavenumber
kihu = 0.73 (see figure 16). With this new internal-mode wave and the other two
bottom components, two class III Bragg resonances occur ks3 = ks +ki −kb1 = 0.67/hu

(ωs3 = 2ω) and ki3 = ks + ki + kb3 = 1.8/hu (ωi3 = 2ω) where subscripts s3, i3 refer to
third-order resonant surface-mode and internal-mode waves. At the fourth order, the
interaction among the incident wave ks , the generated internal wave ki and two ripple
components (kb1 and kb2) is nearly resonant and generates an internal-mode wave
component with wavenumber ki4 = ks + ki + kb1 + kb2 = 1.82/hu (ωi4 = 2ω).

Figure 17 shows the time evolution of the amplitude of the incident surface-mode
wave and the transmitted resonant internal-mode wave in this example. Here the
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Figure 16. Location of multiple resonance points on Ball’s diagram.

100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1.0

A
in

c

100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1.0

t/T

T
r

(a)

(b)

Figure 17. Time variation of the amplitudes of (a) the incident wave (Ainc) and (b) the trans-
mitted class I resonant internal-mode wave (Tr ) with wavenumber kihu = 0.73 and frequency
ω2hu/g = 0.14.

variation of the amplitudes of these waves starts to behave irregularly at a much
shorter time of t/T ∼ 200 (cf. figure 11a). Figure 14(b) shows that the steady-state
value of the maximum Lyapunov exponent is higher than that for R = 0.96 case
which is an indication of higher strength chaotic behaviour.

5. Conclusion
To complement the perturbation analyses of Alam et al. (2009), an efficient and

accurate computational method is developed for the study of general nonlinear
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interactions of surface/interfacial waves with variable bottom topography in a two-
layer density stratified fluid. The method is based on the extension, to include
interfacial waves, of a powerful HOS method originally developed for the study of
nonlinear gravity wave–wave and wave–bottom interactions in a homogeneous fluid.
The method we developed accounts for nonlinear interactions of surface/interfacial
waves with bottom ripples up to an arbitrary high-order M and, as with the
original HOS, achieves an exponential convergence with respect to the number of
spectral modes N used (for the surface, interfacial and bottom), and an almost linear
computational effort with respect to N and M . Systematic validation and convergence
tests are performed including the direct comparison to the exact solution of a fully
nonlinear two-layer Stokes wave.

The numerical method is used to study a number of canonical problems cor-
responding to different classes of Bragg resonances and the results are compared to
the perturbation results of Alam et al. (2009) for these cases. The comparisons are
excellent within the region of validity of the perturbation results, deviating typically
for longer interaction distance and greater wave/bottom steepness, highlighting the
importance of (even) higher order nonlinear interactions not accounted for in the
theory.

As a final example, we consider more general but still relatively simple cases
involving a single or two incident wave(s) propagating over a rippled bottom
containing three/two wavenumber components. By selecting these wavenumbers,
conditions for multiple resonances obtained with the resulting evolution leading to
the creation of many new Bragg transmitted/reflected waves and eventually chaotic
motion after some time.

Although the formulation of our numerical scheme presented here is for two
dimensions, the extension to three dimensions in the HOS context is relatively
straightforward. This extension has been obtained, for example, for the direct
simulation of Bragg resonance in a homogeneous fluid (Liu & Yue 1998) and for the
interaction of ambient and Kelvin ship wave (Zhu, Liu & Yue 2008). Oblique class
I Bragg resonance is known to be less important than the normal incidence in both
a homogeneous fluid (Liu & Yue 1998) and in a two-layer density stratified fluid
(Alam 2008). However, this is not necessarily the case for classes II and III Bragg
resonance. As in the case of internal wave resonant interactions without bottom
effects (e.g. Hill & Foda 1998) and Bragg resonance for a one-layer fluid (Liu &
Yue 1998), higher order three dimensional (oblique) Bragg resonance in two-layer
stratified fluid may be important and worth further attention.

This research is supported financially by grants from the Office of Naval Research.

Appendix A. Stokes wave for a two-layer fluid using Newton’s iterative method
Newton’s iterative method can be used to solve the system of nonlinear equations

(2.1a)–(2.1h) for the nonlinear permanent wave form (Stokes wave) in a two-layer
fluid over a flat horizontal bottom. For convenience, we rewrite (2.1a)–(2.1h) to refer
to a coordinate system moving at the phase speed c of the wave and assume a steady
solution in this moving frame:

∇2φu = 0 − hu + η� < z < ηu (A 1a)

∇2φ� = 0 − hu − h� + ηb < z < −hu + η� (A 1b)

f1 ≡ −cηu,x + ηu,xφu,x − φu,z = 0 z = ηu (A 1c)

f2 ≡ −cφu,x + 1
2
(φ2

u,x + φ2
u,z) + gηu = 0 z = ηu (A 1d)
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f3 ≡ −cη�,x + η�,xφu,x − φu,z = 0 z = −hu + η� (A 1e)

f4 ≡ −cη�,x + η�,xφ�,x − φ�,z = 0 z = −hu + η� (A 1f)

f5 ≡ ρu

[
− cφu,x + 1

2

(
φ2

u,x + φ2
u,z

)
+ gη�

]
−ρ�

[
− cφ�,x + 1

2

(
φ2

�,x + φ2
�,z

)
+ gη�

]
= 0 z = −hu + η� (A 1g)

f6 ≡ φ�,z = 0 z = −hu − h�. (A 1h)

The solution can be written in the general form which satisfies the respective Laplace
equations and the bottom boundary condition:

ηu(x, t) =

N∑
n=1

ηune
iknx + c.c., η�(x, t) =

N∑
n=1

η�ne
iknx + c.c., (A 2a)

φu(x, z, t) =

N∑
n=1

[
φc

un

cosh kn(z − hu)

cosh(knhu)
+ φs

un

sinh kn(z − hu)

cosh knhu

]
eiknx + c.c., (A 2b)

φ�(x, z, t) =

N∑
n=1

φ�n

cosh kn(z + hu + h�)

cosh knh�

eiknx + c.c., (A 2c)

where N is the number of Fourier modes. The unknown modal amplitudes, ηun, η�n,
φc

un, φs
un and φ�n, n= 1, . . . , N , and the unknown phase speed of the wave c are to be

determined from the five boundary conditions on the free surface and interface.
To do that, we rewrite these boundary conditions in a symbolic form:

F(X) = 0, (A 3)

where F ≡ { f 1, f 2, f 3, f 4, f 5} and the unknown vector X is

X = {ηu1, . . . , ηuN−1, c, η�1, . . . , η�N, φc
u1, . . . , φ

c
uN, φs

u1, . . . , φ
s
uN, φ�1, . . . , φ�N}. (A 4)

Finally, to complete the system, we set ηuN = 0. Newton’s iterative method is applied
to solve the system of nonlinear equations (A 3) for the unknown vector X . For an
initial guess, the linearized solution is used.

Appendix B. Resonance of waves in a two-layer fluid on uniform depth
Triad resonances in a two-layer density stratified fluid over a flat bottom are known

to happen between two surface-mode waves and an internal-mode wave (Ball 1964),
and between two internal-mode waves and one surface-mode wave (Wen 1995; Hill
& Foda 1996). Here existing theoretical results are invoked to further validate our
numerical technique.

Let (a1, k1, ω1) and (a2, k2, ω2) represent the wave amplitudes, wavenumbers and
frequencies of the two incident surface waves. The wavenumber and frequency of
each wave satisfies the dispersion relation (Alam et al. in press (2.7)):

D(k, ω) = ω4(R +coth khu coth kh�) − ω2gk(coth khu +coth kh�)+ g2k2(1 − R). (B 1)

If these two incident waves satisfy the resonance condition, i.e. D(kr, ωr ) = 0 with
kr = k1 + k2 and ωr =ω1 + ω2, a free internal-mode wave with wavenumber kr and
frequency ωr will be resonated. The amplitude of the resonant wave initially grows
linearly with time. This initial growth can be predicted using regular perturbation
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Figure 18. Time evolution of the amplitudes of two incident surface-mode waves (wave-
number k1, k2) and the resonance generated internal-mode wave (wavenumber kr ) undergoing
resonant triad interaction obtained using the present numerical method (——). Plotted for
comparison is the regular perturbation prediction for the initial growth of the resonant
wave amplitude ((B 2), - - -). Chosen parameters are R = 0.5, h�/hu = 0.5, k1hu =0.060
(ω2

1hu/g = 0.005), a1/hu = 0.005, a2/a1 = 2, k2/k1 = 2.2 (ω2
2hu/g = 0.025) and simulation

parameters are Lx = 2π, N = 512, M = 4 and T1/
t = 128.

analysis to the second order and is given by∣∣η(2)
�

∣∣ = γ t + non-growing terms, (B 2)

where η� represents the interfacial wave elevation. Expression for the growth rate γ is
algebraically complicated and for finite depth is given by, for example, Jamali (1998)
and Alam (2008).

Figure 18 shows the variation of the amplitudes of the two (incident) surface-mode
waves and the generated internal-mode wave as a function of dimensionless time t/T1

under the triad resonance condition. The regular perturbation solution gives a growth
rate of γ /(a1/T1) = 1.3 × 10−3 for the generated wave where T1 is the period of the k1

wavenumber wave.
For the second resonance, in figure 19, we plot the variation of the amplitudes

of the two incident internal-mode waves and the generated surface-mode wave as a
function of time. For this example the growth rate of the generated surface-mode
wave predicted by regular perturbation analysis is γ /(a1/T1) = 2.8 × 10−3, which is
shown in the figure for comparison. As expected, the present numerical computation
and the regular perturbation analysis match well at the initial stage of the interaction,
but again deviate at large time as the regular perturbation solution fails.

As a further validation, we compare our numerical results with experiments of
Joyce (1974). In set E1 of the experiments, two standing surface-mode waves are set
up in a long tank which subsequently generate an internal-mode resonant third wave.
Figure 20 compares Joyce (1974) experimental and approximate theoretical results
to the present HOS simulation. The initial growth agrees well with the experiment
and approximate theoretical results. However, the curves deviate as time grows. In
the experiment, the surface waves are continuously forced by a paddle, hence the
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Figure 19. Time evolution of the amplitudes of two incident internal-mode waves
(wavenumber k1, k2) and the resonance generated surface-mode wave (wavenumber kr )
undergoing resonant triad interaction obtained using the present numerical method (——).
Plotted for comparison is the regular perturbation prediction for the initial growth of
the resonant wave amplitude (derived similarly to (B 2), - - -). Chosen parameters are
R = 0.5, h�/hu = 0.5, k1hu = 0.13 (ω2

1hu/g =7 × 10−4), a1/hu = 0.005, a2/a1 = 2, k2/k1 = 0.45

(ω2
2hu/g = 3 × 10−3) and for numerical simulation Lx = 2π, N = 512, M = 4 and T1/
t = 512.
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Figure 20. Time evolution of the amplitudes of the resonant (standing) internal-mode wave
corresponds to the experiment E1 of Joyce (1974) with two standing surface-mode waves of
ω1 = 18.20 rad s−1 and ω2 = 17.72 rad s−1 in a 2 m long tank with R = 1.000/1.049 =0.953
and h�/hu = 0.6/0.3 = 2.0 and with initial amplitude of a1 = 3.77 mm and a2 = 2.68 mm. An
internal-mode wave of frequency ωr = 0.484 rad s−1 will satisfy a triad resonance condition,
hence its amplitude will grow with time (shown in this figure). For the simulation the total
length of the tank is assumed to be 18 m and NDX = 1024, M = 4 and T/
t =1024. Plotted
are theoretical (——) and experimental (�) results of Joyce (1974) and numerical simulation
with HOS (- - -). The discrepancy at large times comes from the assumption of constant
surface wave amplitude in Joyce (1974) work.

amplitude of the two forcing surface waves remain constant. In the HOS simulation,
we start with the same initial condition as of the experiment, but do not add
external energy to the domain. Therefore, as expected, the forcing and resonant wave
amplitudes exhibit modulation in time as energy goes back and forth among them.
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Appendix C. Determination of reflection and transmission coefficients
Our objective is to obtain the numerical predictions of quantities such as the

spatially varying reflection and transmission coefficients and compare these to existing
theoretical results. The HOS simulation captures the nonlinear interactions among all
the surface/interfacial wave and bottom ripple components (up to the specified order
M) as they evolve in time. The HOS wave field (in space and time) thus contains wave
components that include surface and internal-mode free and locked waves associated
with the incident and the resonance generated waves, including those that have the
same frequencies but different wavenumbers, etc. It should also be pointed out that
because of nonlinearity in the simulations, these components in general do not satisfy
(exactly) linear dispersion relationships. We describe here a robust scheme to extract
the quantities of interest from such wave fields.

Our approach is an extension/improvement of the method of Goda & Suzuki (1976),
which we find to be not sufficiently robust for the present application. Without loss
of generality, assume a wave field containing two surface wave components with the
same frequency ω but different wavenumbers k1 and k2 given by

η(x, t) = a1(x) cos(k1x − ωt + ψ1) + a2(x) cos(k2x − ωt + ψ2), (C 1)

where a1, a2 and ψ1, ψ2 are respectively the (slowly varying) amplitudes and phases
of the two waves. Given η(x, t) in the computational domain over a certain period
of time, the objective is to determine a1(x) and a2(x) for (C 1). To capture the slowly
varying a1(x) and a2(x), we first represented them by Chebyshev polynomials

a1(x) =

NT∑
n=1

α1nTn−1(x), a2(x) =

NT∑
n=1

α2nTn−1(x), (C 2)

where Tn is the nth order Chebyshev polynomial of the first kind, α1n and α2n the
unknown modal amplitudes and NT the number of Chebyshev modes retained in the
expansion. The unknown coefficients α1n and α2n can be obtained from known values
of a1(xj ) and a2(xj ) at collocation points xj for the Chebyshev polynomial.

To find a1(xj ) and a2(xj ) at some collocation point xj , we choose a small window
Wj centred at x = xj with a length of 
� generally much smaller than the length
of the entire wave field. Inside this window, we again represent a1(x) and a2(x) in
expansions of the form of (C 2) using NTj terms where NTj can be somewhat smaller
than NT . For the present work, we find that typical values of NT = 6 or 7, and NTj

= 2
or 3 adequate to obtain accurate (smooth) predictions of the transmission/reflection
coefficients. We now define q =1, . . . , Lj uniformly spaced points in Wj and write

η(xq, t) = ηc
j (xq) cos(ωt) + ηs

j (xq) sin(ωt), q = 1, . . . , Lj , xq ∈ Wj. (C 3)

At each xq within Wj , the amplitudes ηc(xq) and ηs(xq) are obtained using Fourier
transform in time of the wave field time histories at that point. Note that ηc

j (x) and
ηs

j (x) contain fast dependence on x. Substituting the expansions for the amplitudes
in Wj into (C 1) and equating the result with (C 3), we obtain for each xq two
equations for the unknown modal amplitudes at that point. For the window Wj ,
we have together a system of 2Lj linear equations for 2NTj unknown Chebyshev
coefficients and two phases for that window. This system is typically over-determined
with Lj 	 NTj , and the unknown amplitudes (and phases) are obtained using least
squares. With these modal amplitudes determined, we obtain a1(xj ) and a2(xj ) at the
centre of Wj .
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Figure 21. Spatial variations of the slowly varying amplitudes of a two-component wavetrain
obtained using the present scheme (– · –) and the method of Goda & Suzuki (1976) (——),
compared with the exact solution (· · ·). Note that the solution using the present scheme is
graphically indistinguishable from the exact solution.

We repeat this process for a large number of collocation points (relative to NT )
for a1(xj ) and a2(xj ) from which the expansion coefficients α1n and α2n in (C 2) can
be obtained, say, by using the orthogonality of Chevbyshev polynomials. We remark
that the scheme of Goda & Suzuki (1976) corresponds to the local (Wj ) step only
(without (C 2)) of the present scheme with the simplest choice of NTj =1 and Lj = 2.

As an illustration, we consider a sample synthetic wave field given by the
superposition of two wave components with wavenumbers k1, k2 = 32, 72, and slowly
varying amplitudes a1(x) and a2(x) given by the ‘exact’ curves in figure 21. Since in
practice the wavenumbers are not exactly known/given, to show the robustness of the
scheme, we do not use the exact but instead approximate values of the wavenumbers
k̃1, k̃2 = 30, 76 in the assumed decomposition (C 1). Figure 21 shows the predicted
amplitudes a1(x), a2(x) obtained using the present algorithm and those using the
method of Goda & Suzuki (1976) as compared to the exact functions. In this case,
the Goda & Suzuki (1976) predictions show highly oscillatory behaviour with mean
values deviating somewhat from the exact curve. In contrast, the predictions using
the present scheme are graphically indistinguishable from the exact result.

Appendix D. Simulation over long patches
The case of wave evolution over a very long bottom patch of (periodic) ripples

is discussed analytically in Alam et al. (2009), § B.2. Figure 22 shows numerical
simulation of such a case for an incident surface-mode wave, where the time variations
of amplitudes of the incident (surface mode) and resonance generated (internal
mode) waves obtained by numerical simulations, and comparison to those from
perturbation analyses. The physical parameters are h�/hu =0.5, R = 0.96, kshu = 0.16
(ω2hu/g = 0.04), εb, =0.1 and for two incident wave steepnesses εs = 0.0005 and
0.0050. Note that although the initial surface steepness is small, since the transmission
coefficient is greater than unity, the steepness of resonant internal reaches high values
(εi > 0.2) where the effect of nonlinearity becomes important. The results in figure 22
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Figure 22. Temporal variation of (a) the amplitude of the incident surface-mode wave (Ainc)
and (b) the transmission coefficient of resonance generated internal-mode wave (Tsi) over a
periodic patch of bottom ripples under class I Bragg resonance condition. Physical parameters
are h�/hu = 0.5, R = 0.96, kshu = 0.16 (ω2hu/g = 0.04), εb = 0.1 and computational parameters:
N = 2048, M =4, T/
t = 64. Results plotted are: numerical simulation (——) for εs = 0.0005
and 0.0050 and predictions from regular perturbation (derived from Alam et al. 2009, (3.16),
– · –) and multiple-scale analyses (Alam et al. 2009, (B9), - - -).

display similar features to those for the spatial variations of the amplitudes over
a finite patch of bottom ripples. The regular perturbation solution, which predicts
a linear growth with time for the resonant wave and a constant amplitude for the
incident wave, compares well with the multiple-scale analysis and the nonlinear HOS
computation in the initial evolution for t/T < 10. Beyond the initial development, the
regular perturbation solution of the resonant wave amplitude diverges as t increases
while the multiple-scale analysis and HOS computation show periodic oscillatory
time variations for the amplitudes of both incident and resonant waves. For relatively
mild incident waves, the prediction of the multiple-scale analysis matches perfectly
to the HOS computation. As the incident wave steepness increases, the HOS result
deviates from the (leading-order) multiple-scale analysis prediction with decreases in
both the amplitude and period of the time modulations. This effect of higher-order
nonlinear interactions on the evolution appears consistent with all the other cases we
considered.
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