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Abstract

The distribution of nonlinear wave crests is examined on the basis of a theoretical probability
density previously given elsewhere (J. Eng. Mech. 120 (1994) 1009). Certain errors contained
in the original theoretical density are corrected, and the corresponding exceedance distribution
is derived. The resulting theoretical forms of the probability density and exceedance distri-
bution are then slightly simplified and compared with nonlinear wave data gathered under
hurricane conditions. The results indicate that the proposed theoretical forms describe the
observed distributions of large wave crests better than the Rayleigh law. However, the quanti-
tative accuracy of the predictions is somewhat poor, as is typical of approximate theories based
on Gram–Charlier-type expansions. 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The vertically skewed profile of nonlinear waves is characterized by higher, more
pointed crests and shallower, more rounded troughs. An accurate prediction of these
features has theoretical importance and practical relevance in ocean engineering
design. In particular, the distribution of nonlinear crests coupled with stillwater levels
would be a principal factor affecting the freeboard design levels, and also wave-
induced runup and overtopping of structures.

The exact theoretical form of the distribution of nonlinear wave crests is not known
under a general setting involving directional waves and wave spectra representative
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of wind-generated seas. A theoretical approximation based on Edgeworth’s form of
the Gram–Charlier distribution was derived some years ago by Longuet-Higgins
(1964). The approximation requires knowledge of six third-order joint cumulants of
the surface elevation, its first and second time derivatives. The complicated theoreti-
cal forms of these cumulants and the intricacies of estimating them from actual
measurements have so far rendered the Longuet-Higgins (1964) result too difficult
to explore either theoretically or practically. Nonetheless, the two leading terms of
the nonlinear approximation correspond identically to those of Cartwright and Long-
uet-Higgins (1956) in the linear case, as would be expected. However, in the narrow-
band limit, the nonlinear corrections vanish, and the Rayleigh density appropriate to
linear waves is obtained. This result is somewhat unexpected since it tends to contra-
dict observations and also other relatively more recent theoretical models (Tayfun
1980, 1986; Huang et al., 1983; Langley, 1987; Tayfun and Lo, 1988; Dawson et
al., 1993; Kriebel and Dawson, 1993a,b; Askar and Tayfun, 1999; Jha and Win-
terstein, 2000).

Several theoretical and/or empirical approximations currently exist for describing
the distribution of nonlinear wave crests. Approximations based on the narrow-band
model of sea waves (Tayfun 1980, 1986) include those described by Huang et al.
(1983), Dawson et al. (1993), Kriebel and Dawson (1993a,b), Askar and Tayfun
(1999), and others. Some of these seem particularly useful for describing the distri-
bution of laboratory-generated wave crests (Dawson et al., 1993; Kriebel and Daw-
son, 1993a,b). Others appear to do somewhat better for oceanic observations (Askar
and Tayfun, 1999; Jha and Winterstein, 2000). Laboratory-generated data typically
display far more pronounced skewness and kurtosis values than oceanic data (Huang
et al., 1983; Jha and Winterstein, 2000), possibly due to the presence of side walls,
reflections, and scale effects.

More recently, the use of a Gram–Charlier type of distribution has led Tayfun
(1994) to derive a number of theoretical results on nonlinear wave envelopes and
phases without any restrictive assumptions concerning the directional or spectral
properties of waves. The relative validity of these theoretical results was demon-
strated for nonlinear wave envelopes and phases through comparisons with empirical
data. Theoretical forms of the probability densities of upper and lower envelopes
over the crest and through segments of the surface profile were also derived, but not
compared with data. In the following, these are re-examined briefly, correcting cer-
tain algebraic errors in the original expressions. The corresponding exceedance distri-
butions are derived, indicating how these and the associated densities can be simpli-
fied further. Subsequently, the resulting theoretical forms for nonlinear wave crests
are compared with measurements gathered during hurricane Camille in the Gulf of
Mexico in 1969.

2. Review of previous theory and corrections

The nonlinear surface elevation from the mean-zero level is described as a function
of time t by (Tayfun, 1994):
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h(t) � A(t) cos f(t) (1)

where A represents the random amplitude or envelope function, and f(t) the random
phase. Within the context of second-order nonlinear wave theory and under general
conditions in deep water, the joint density of the scaled envelope z � A /Arms and f
has the form:

p(z,f) �
1

2p�1 �
�2

3
l3z(z2�2) cos f�p(z) (2)

where z�0, 0�f � 2p, l3 is the skewness coefficient of h, and

p(z) � 2z exp(�z2) (3)

corresponds to the Rayleigh density. Further, Arms � (2m0)1 /2 with m0 being the zero-
order spectral moment, or simply the variance of h.

Various aspects of these results have previously been discussed by Tayfun (1994).
It will suffice here to reiterate that A is Rayleigh distributed as in Eq. (3), but the
marginal density of f is given by:

p(f) �
1

2p�1�
1
6�
p
2
l3 cos f� (4)

In addition, wave crests or segments where h � 0 correspond to 0�f�p /2 and
3p /2�f�2p in Eq. (1). Similarly, segments or wave troughs where h � 0 coincide
with p /2�f�3p /2. Clearly, as l3→0, then p(f)→1/2p appropriate to linear waves.

For linear waves, the surface profile is equally likely both above and below the
mean-zero level. This is not so in the nonlinear case due to the vertical asymmetry
of the wave profile. The time during which the profile stays above the mean-zero
level is slightly shorter than that for which it is below the mean-zero level. The
corresponding probabilities, say P(�) � Prob (h � 0) for which 0�f�p /2 and
3p /2�f�2p, and P(�) � Prob (h � 0) for which p /2�f�3p /2, follow by inte-
gration from Eq. (4) as

P( ± ) �
1
2�1�

l3

3�2p
� (5)

Again, as l3→0, then P( ± )→1 /2, as is expected. In general, however, P(�) �
1/2 and P(�) � 1/2 so that P(�) � P(�) � 1.

The conditional densities of z, given that h � 0 or h � 0, will be defined as p+(z)
and p�(z), respectively. These serve to describe the distribution of z over the crest
and through segments. Their theoretical forms routinely follow from equations (48a)
and (48b) of Tayfun (1994) as

p±(z) �
1 ± c1l3z(z2�2)

1�c0l3

p(z) (6)

where, for simplicity
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c0 �
1

3�2p
, c1 �

2�2

3p
(7)

are the corrections required in p± of Tayfun (1994). Also note that as l3→0, then
p ± →p, as should be the case for linear waves. The theoretical forms of p+ of interest
here are illustrated in Fig. 1 for l3 � 0.0, 0.1, 0.2 and 0.3. The case l3 � 0.0 is
identical with the Rayleigh density p given by Eq. (3). For l3 � 0, p+ deviates from
p noticeably, showing an excess toward the large z values and a corresponding
deficiency over the mid-range. These features seem consistent with the vertically
skewed wave profile characterized by higher and more pointed crests.

The mean and mean-square values associated with p± are given in a corrected
form by

� z � ± �
1

1�c0l3

�p
2

(8)

� z2 � ± �
1 ± c2f3

1�c0l3

(9)

where c2 � 1/8 �2. Again, note that as l3→0, then � z � ± → � z � � �p /2
and � z2 � ± → � z2 � � 1 appropriate to the linear case.

Fig. 1. Theoretical probability density p+ given by Eq. (6) for various l3. Case l3 � 0.0 (heavy curve)
coincides with the Rayleigh form of Eq. (3).
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3. Exceedance distributions and approximations

The exceedance distribution E � Prob (A /Arms � z) corresponding to p+ or p�

follows by integration from Eq. (6) as

E±(z) �

1 ± c1l3z�z2�
1
2��c0l3 erfc(z) exp(z2)

1�c0l3
E(z) (10)

where z�0, erfc() is the standard complimentary error function, and

E(z) � exp(�z2) (11)

As l3→0, then E � →E, i.e. the Rayleigh form of the exceedance distribution in the
linear case. For the general case l3 � 0, it can be shown that E � � E and E� �
E always for any z � 0. The theoretical forms of E+ are shown in Fig. 2 for the

same l3 values as those in Fig. 1.
Many of the expressions above can be rewritten in slightly simplified forms, using

the expansion

1
1�c0l3

� 1 ± c0l3 � O(l2
3) (12)

Fig. 2. Theoretical exceedance probability E+ given by Eq. (10) for various l3. Case l3 � 0.0 (heavy
curve) coincides with the Rayleigh form of Eq. (11).
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In particular,

p±(z) � [1 ± c0l3 ± c1l3z(z2�2)]p(z) (13)

E±(z) � �1 ± c0l3 ± c1l3z�z2�
1
2��c0l3 erfc(z) exp(z2)�E(z) (14)

correct to O(l3). Numerical computations indicate that these are essentially identical
to Eqs. (6) and (10) for 0 � l3 � 0.3 as a typical range of values in deep water.

For linear waves, the Rayleigh density p describes the distribution of wave envel-
opes in the most general case. By definition, envelope elevations always equal or
exceed the surface elevations, including the positive maxima or wave crests. The
distribution of positive maxima is more complicated and also slightly shifted toward
lower values as compared to those implied by the Rayleigh form (Rice, 1944; Cart-
wright and Longuet-Higgins, 1956). On this basis, the corresponding exceedance
distribution E represents an upper bound to the distribution of crest amplitudes of
linear waves. Furthermore, because the wave envelope passes through all maxima
exactly in the narrow-band limit, the distribution of crest amplitudes converges to
the Rayleigh form. Thus, E is in fact a least upper bound to the distribution of wave
crests in general, irrespective of bandwidth considerations.

In the most general nonlinear case, no exact results similar to those of Rice (1944)
or Cartwright and Longuet-Higgins (1956) exist. In the narrow-band limit, the density
p+ and the corresponding E+ should serve to describe the distribution of wave crests
approximately, as was suggested previously in Tayfun (1994). In general, if p+ and
E+ were exact, then it would be correct to expect E+ to behave as a least upper bound
to the distribution of nonlinear wave crests. Unfortunately, both are approximations
since the underlying model, namely Eq. (2), is based on a truncated form of the
Gram–Charlier distribution of h and its Hilbert transform (Tayfun, 1994).

4. Comparisons with data

The wave data utilized in the present comparisons were collected with the Ocean
Data Gathering Program during hurricane Camille in the Gulf of Mexico on August
17, 1969 (Hamilton and Ward, 1974). Camille was an intense storm, with maximum
wind speeds in excess of 300 km/h, moving toward the measurement site, station
1—South Pass 62A. The wave field was non-stationary, building up and reaching
an extreme as the hurricane approached the site. Before the eventual failure of the
wave gauge, some wave heights become as large as 22 m, with crest elevations
rising nearly to 14 m above the mean-zero level. In view of its extreme nature, these
data are ideally suited for testing the relative validity of some of the theoretical
approximations here.

In the present comparisons, measurements covering three consecutive hourly seg-
ments, namely files designated as camwave.13, 14 and 15 are considered. These
yield a time series of 10 800 surface elevations digitized at a constant sampling
interval of 1 s and represent the most extreme conditions preceding the failure of
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Fig. 3. Variation in the estimates of m0 with time for camwave.13, 14 and 15 combined, and computed
from 15-minute segments.

the wave gauge. The data segment was initially split into twelve 15-minute sections.
These shorter data were then used to estimate the two parameters m0 and l3 segmen-
tally, as shown in Figs. 3 and 4 respectively. The non-stationarity of the wave field
is evident in both of these figures. Non-stationarity in terms of m0 does not present
a major problem in this case since crests are scaled by (2m0)1/2, using the segmental
m0. However, the same rationale does not apply to l3. All theoretical expressions
critically depend on the actual segmental l3 values. Thus, only segments with nearly

Fig. 4. Variation in the estimates of l3 with time for camwave.13, 14, and 15 combined, and computed
from 15-minute segments. The composite data segments to be used in comparisons of p+ and E+ are
indicated as A and B.
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Fig. 5. Probability P(�) � Prob (h � 0) versus l3. The solid line is Eq. (5), and the points are the
empirical data estimated from 15-minute segments of camwave.13, 14 and 15 combined. The linear
regression to data is dashed.

the same l3 values can be grouped together to enlarge the underlying data base. In
the present case, two data sets shown as A and B in Fig. 4 seem to satisfy this
requirement, and so will be used in the following comparisons.

The observed parameters of the composite data sets A and B are summarized in
Table 1. Crest counts in both cases include all positive local maxima rather than just
the largest value in a given crest segment. Clearly, set A comprises two consecutive
15-minute segments, and set B three 15-minute segments. The parameter m0 varies
for each 15-minute segment, as can be seen in Fig. 3. Thus, the crest elevations
were scaled by (2m0)1/2 based on the 15-minute segmental m0 values for both data

Table 1
Observed parameters of composite data sets A and B

Data set Length (s) Wave counta Crest countb m0 (m2) l3

A 1800 181 226 7.444 0.196
B 2700 283 323 8.120 0.272

aSame as wave crest count for comparisons based on ‘fi ltered’ data.
bIncludes all positive maxima or crests.
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Fig. 6. Comparison between the probability density p+ (heavy curve, l3 � 0.196), Rayleigh density p
(light curve), and estimates from the composite data set A (points) including all positive maxima or crests.

sets A and B. Table 1 lists only the average m0 values representative of the whole
data set A or B. The observed values of l3 computed from 15-minute segments do
not vary appreciably from the average l3 values listed in the table for either set A
or B, as Fig. 4 illustrates.

The comparison between P(�) � Prob (h � 0) given by Eq. (5) and the empirical
values computed from 15-minute segments is shown in Fig. 5. The same figure also
contains the linear regression implied by the empirical points. In this case, the theor-
etical approximation predicts the empirical values fairly well relative to the
regression line.

The comparisons between the theoretical density p+ and the observed values are
shown in Figs. 6 and 7 for data sets A and B, respectively. The Rayleigh density p
is also included in both of these figures. In both cases, the approximate theory p+

compares more favorably with the data, particularly over the mid-range and also
toward the large wave tail. The comparisons between the theoretical exceedance
distribution E+ and the observed data are given in Figs. 8 and 9, together with the
Rayleigh form E. In both cases, the Rayleigh curve underpredicts the observed crests
in a pronounced manner over the large-wave range. The approximation E+ does
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Fig. 7. Comparison between the probability density p+ (heavy curve, l3 � 0.272), Rayleigh density p
(light curve), and estimates from the composite data set B (points) including all positive maxima or crests.

noticeably better over the same range, but still underestimates the large crests some-
what.

To explore the effect of excluding secondary crests, the theoretical curves E and
E+ of Figs. 8 and 9 were reproduced in Figs. 10 and 11, this time together with the
‘fi ltered’ data sets A and B for comparison. The filtered data set A comprises 181
crest elevations, excluding 45 (=226�181) secondary crests counted in the prior
analysis. Similarly, the filtered set B contains 283 crest elevations, excluding 40
(=323�283) secondary crests. Both figures show that the data are slightly shifted
toward the larger crest values. As a result, the discrepancy between the theoretical
predictions and the data becomes somewhat more pronounced over the range of
large waves.

5. Concluding remarks

The distribution of nonlinear wave crests based on the corrected form of a theoreti-
cal approximation previously given by Tayfun (1994) was compared with the Ray-
leigh theory and observed data. Comparisons suggest that the approximate nonlinear
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Fig. 8. Comparison between the exceedance probability E+ (heavy upper curve, l3 � 0.196), Rayleigh
form E (lower curve), and estimates from the composite data set A (points) including all positive maxima
or crests.

theory qualitatively describes the observed data well, particularly over the range of
large waves. However, the quantitative accuracy of the predictions is not entirely
satisfactory. Large wave crests of design interest are underestimated. The overall
nature of these results is consistent with other approximate theories derived from a
truncated form of the Gram–Charlier distribution, including those employed to
describe the distribution of nonlinear surface elevations (Huang and Long, 1980;
Bitner, 1980). Typically, the qualitative effects of nonlinearities are predicted well,
but the quantitative comparisons with data are for the most part less than satisfactory.

The data used for the comparisons are relatively old. The sampling rate employed
(1 Hz) is somewhat low, suggesting that the observed values may underestimate the
actual crest elevations by 1–3% on the average. The obvious nonlinearity of the data
makes them ideally suited for the present comparisons. However, the wave field is
also non-stationary, making a rigorous analysis practically difficult. This was heuris-
tically remedied in the present case by considering 15-minute segments to balance
the conflicting requirements between the use of shorter time histories to avoid non-
stationarity and the preference for larger samples to ensure statistical stability.
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Fig. 9. Comparison between the exceedance probability E+ (heavy upper curve, l3 � 0.272), Rayleigh
form E (lower curve), and estimates from the composite data set B (points) including all positive maxima
or crests.
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Fig. 10. Same as Fig. 8 except for the ‘fi ltered’ data set A, excluding secondary positive maxima from
analysis.
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Fig. 11. Same as Fig. 9 except for the ‘fi ltered’ data set B, excluding secondary positive maxima from
analysis.
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