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Directional wave spectra generally exhibit several peaks due to the coexistence of wind sea generated by
local wind conditions and swells originating from distant weather systems. This paper proposes a new
algorithm for partitioning such spectra and retrieving the various systems which compose a complex
sea-state. It is based on a sequential Monte-Carlo algorithm which allows to follow the time evolution of
the various systems. The proposed methodology is validated on both synthetic and real spectra and the
results are compared with a method commonly used in the literature.
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1. Introduction

For a wide range of marine activities (structural design, marine
energy exploitation, forecasting, climate assessment, etc.), an
accurate description of the sea states, or more generally of wave
climate, is crucial. The waves existing at a specific location are
generally classified as wind sea when they are generated locally by
the wind or swell when they are radiated from distant wind
systems. The resulting sea state can be described by a spectrum
which provides information about the energy transmitted by all
existing wave systems. Fig. 1 shows an example of series of
directional spectra considered in this work. This set of spectra
show the time evolution of the distribution of wave energy as a
function of the frequency and direction at a fixed location. Such
spectra are not easy to handle (nor to store) and it is often more
convenient to extract synthetic parameters which characterize
their main features. During the last decades, several partitioning
algorithms have been proposed in order to identify the wave
systems as well as their features from time series of directional
wave spectra.

Most partitioning methods [4,3] are based on Gerling's [1] and
Hasselman's [7,6]) works and consist in a three steps algorithm. In
the first step, the spectrum is separated in several areas, each of
them being associated with a spectral energy peak. In [1], a time-
consuming recursive algorithm, which assigns each spectrum
value to a path of steepest ascent associated with a local peak, is
used. All paths leading to the same peak are assigned to a distinct
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spectral partition. In more recent works [5,16], this step is
improved using efficient image processing routines developed in
topographic imagery for making watershed delineations [17,18].
Although this approach is now used in most of the partitioning
algorithms, some authors [2,11] propose an alternative method to
identify the most important energy peaks of a spectrum; they first
locate the peaks within the spectrum looking for the global
maximum, then associate each peak to an area delimited around
it and the process is repeated for the next maximum, etc. (see for
instance [20] for a comparison of the two methods). Once the
partition is obtained, each area is associated with a wave system
which can be characterized by synthetic parameters such as the
corresponding significant wave height, the position of the peak in
frequency and direction and sometimes also some frequential and
directional spreading parameters. Unrealistic wave systems, asso-
ciated for example with noise in the spectrum, are sometimes
identified. Specific procedures allow merging these artifacts with
the identified physical wave systems. The following step of the
partitioning process consists in identifying wind sea and swell
systems. First, the wind sea is identified using local wave age
criteria as in [19]. This approach has also been implemented in [14]
where specific cases for which the method may fail to correctly
separate wind sea and swell are highlighted. This problem is
further discussed and improved in [8]. Then swell systems with
close peaks are merged and the areas with low total energy are
neglected. Some algorithms such as the spectral partitioning for
operational parameters identification (denoted SPOP in the sequel)
algorithm (see [10]), perform an additional step where specific
parametric spectrum models are fitted in order to improve the
values of the parameters associated to each system and to insure
that the total energy of the resulting spectrum is equal to the one
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Fig. 1. Time series of WWIII spectra (6 h between successive spectra). The time given in the titles corresponds to the number of hours since the beginning of 2009.

of the reference (observed) spectrum. The last step is a clustering
task which allows to track the systems in time and link together
the wave systems identified at successive time steps. Cross-
assignment is usually performed on the system parameters using
classical clustering algorithms.

Most of the partitioning methods proposed in the literature are
very similar and their differences mostly lie in the tuning of some
of the algorithm's parameters such as the definition of the
closeness of two swell peaks. A limitation of the watershed
delineations approach is that it may fail to separate systems with
close frequencies and directions. For instance, Fig. 2 shows the
spectrum obtained when mixing two Jownswap spectra which
parameters correspond respectively to typical values for swell and
wind sea systems. The resulting spectrum exhibits only one local
maximum and thus standard partitioning methods will not be able
to retrieve the two systems except if the directional distribution
provides extra-information. Fig. 1 provides another example of
such situation. The first spectra in the sequence clearly exhibit two
well separated wave systems: a swell propagating from the west-
north-west and a wind sea propagating from the north with wider
directional and spectral spreading and with higher peak frequency.
The distance between the two peaks decreases progressively so
that the last spectrum has only one local maximum although it is
likely that the two wave systems are still present. In such situation,
using the partition obtained at the previous time step may help
retrieving the two wave systems. In the methodology introduced
in this paper, this is done by assuming that the synthetic spectral
parameters associated to the various wave systems follow simple
stochastic models. Since these spectral parameters are not obser-
vable, they are introduced as a hidden process and the sequence of
observed spectra is related to the hidden sequence using standard
parametric models for wave spectrum. The tracking of the various
wave systems becomes a natural output of the algorithm such that
no post treatment is required; this is another expected advantage
of our methodology over watershed delineations approaches.

The performance of the algorithm is illustrated using a time
series of wave spectra in the North East Atlantic (5W,45N)
retrieved from the wind-wave model WWIII run by the ARGOSS
company. The time series covers the period from January to March
2009 with a spectrum every hour. A short part of the sequence is
shown on Fig. 1.

0 0.1 0.2 0.3 0.4 0.5
(Hz)
Fig. 2. Spectrum (solid line) obtained by mixing a JONSWAP spectrum with

parameters H;=3m, T, =8s and y=5 (dotted line) and a JONSWAP spectrum
with parameters Hs=1m, T, =5 s and y =2 (dashed line).

The partitioning algorithm is described in Section 2. Then in
Section 3, the stochastic models used to describe the time
evolution of the wave systems are detailed. In Section 4, numerical
results are first presented for a synthetic sequence of spectra. Then
the results obtained on the WWIII spectra are discussed and
compared to the results obtained using the SPOP algorithm.
Conclusions and perspectives are given in Section 5.

2. Methodology

A directional wave spectrum S(w, ; t) is a scalar function which
provides information about the distribution of the wave energy as
a function of the frequency w and the direction ¢ at the observa-
tion time tefl, ..., T}. Many engineering studies rely on synthetic
sea-state parameters which summarize the information contained
in the directional wave spectra such as the significant wave height
H,, the peak period T, and the mean wave direction 6. Various
parametric models have also been proposed in the literature for
reconstructing directional spectra from the synthetic sea-state
parameters (see e.g. [12]). Hereafter, we denote Syqr(w,6;X) the
directional spectrum obtained by multiplying a JONSWAP spec-
trum with shape parameter y for the frequency distribution and a
cos? function for the angular distribution with X = (Hs, Tp, 7, 0m,S).
This parametric form has been chosen in this work because it is
probably the most common one and it can accommodate a wide
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range of spectrum shapes but the method proposed hereafter can
easily handle other parametric models.

Sea-states are generally composed of several superimposed
wave systems and the usual unimodal parametric models such as
the one introduced above are not appropriate in such cases. Here-
after we thus assume that

Kt
S(,0;)=Y Spar(w,0; XP(1)) + Sres(w, 0; ) 1
k=1

with K, the number of wave systems at time t and X®(t) = (H®(t),
T;,’o(t), y®(0), 68(t), s©(t)) the synthetic parameters associated with
the system number k at time t. Sys(w, 6; t) represents the difference
between the observed and the parametric spectra and may model the
observation error but also the error due to a bad specification of the
parametric model. Finally, we denote X(t) = (X (), ..., X*?(t)) and

Spar(@, 6; X () = % Spar(w,6;X® (1) )
k=1

the parametric spectrum associated to X(t). (X(1),...,X(T)) is an
unobserved time series of synthetic sea-sate parameters that we
would like to retrieve from the sequence of observed spectra.

The algorithm proposed in this paper computes successive
approximations of X, by cycling through the following steps.

Simulation of a large number of possible scenarios (also called
particles in the sequel) at time t coherent with the systems
identified at the previous time step i.e. X;_;. In practice, we make
the assumptions described hereafter.

® Each of the K,_; systems present at time t—1 can persist, merge
with another system or vanish at time t. When they persist, the
parameters of the systems are assumed to evolve according to
the simple stochastic models described in Section 3 which can
be easily simulated.

® New swell and wind sea systems may appear between time t—1
and time t. The distributions used to generate the spectral
parameters of the new systems are described in Section 3.

In this work, we have limited the number of new wave systems to
one of each type (i.e. one swell and one wind sea) at each time step
but this assumption could easily be relaxed. This leads to a
maximum number of K,_; +2 wave systems, and each of these
wave systems can actually be present or not at time t. We have
P, = 2%-1%2 possible combinations of wave systems which will be

Table 1
Graph summarizing the different steps of the algorithm.

denoted My, ..., Mp,. Step 1 of the algorithm (see Table 1) consists
in listing these possibilities. In Step 2.a, N possible values of the
spectral parameters for each combination of wave systems are
generated. These values are denoted X; ., (t) for i€{1,...,N} and
pe{1,...,P:} and the stochastic models which are used to generate
these NP, scenarios are described more precisely in Section 3.

Weighting of the scenarios simulated in the previous step (Step
2.b). The weights are linked to the distance between the observed
spectrum and the spectrum associated to the simulated spectral
parameters and are given by

i my () = P(SC, 0); Sipg, (5 ), 2) 3)

where S(:, t) denotes a vector which contains the observed spectrum,
Sim, (i, t) the parametric spectrum reconstructed from X; v, () at the
same frequencies and directions than the observed spectrum and
¢(.; u, ) the probability density function of a multivariate Gaussian
distribution with mean x and covariance matrix £ (see Eq. (9) for
more details). According to Eq. (1), the weight z;,,(t) can be
interpreted as the probability of observing S(w, 6; t) if X; 4, (t) is the
correct partition at time t and Sys(:, t) is a Gaussian vector with zero
mean and covariance matrix £2. The choice of the Gaussian probability
density function is usual in the statistical literature and in particular
when working with particle filters. It allows the definition of a weight
based on the usual Euclidean distance and associate larger weight to
parametric spectra which are close to the observed ones.

Selection of the best combination of wave systems (Step 3).
Different methods have been tested in order to chose the optimal
combination of wave systems at time t i.e. the best value

po(H)€{1,...,P;}. The first criterion was based on the following
quantities:
I g, x ()T p, (DT 4, (0) “4)

which aimed at estimating the posterior probability of the model
pefl, ..., P} given the data, following standard methods in Bayesian
statistics (see e.g. [15]). In this expression, (ITu1,(t))pe1... p,) IS inter-
preted as a prior distribution on the set of possible combinations of
wave systems at time t and ITx 4, (t) is defined as the mean weight

1N
Tx 0, (8) = N Y 7im, ()
i=1
and may be interpreted as the likelihood of the observed spectrum

if p is the correct combination of wave systems at time t. In practice,
we obtained better results when replacing the mean by a quantile in

Step 1

Steps 2

Step 3

Step 4

List of possible combinations

(M, I, (1)

X

(Mp, g, ()

a. Simulation of the particles

b. Computation of weights

- X1, (€), 11,04, (1))
(XN, (D), g, (£))

XNy (8), 7N, M, (1)

- X1:mp, (), 1,01, (D))
Kanvats, O 7qn 1, (0

K, (0. 73715, (D)

Selection of the best combinations

- XN, My (O TgN My, (D))
XN Mg (D TgN My, (D)

Reestimation

— X<t0) — X
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order to filter out the less likely values of X; v, (¢). In the following,
associated to the probability q and py(t) as the value of p which
maximizes (I, x(t)per,.. p,y Where I, x(t) is defined by Eq. (4).
In practice, the choice of the prior distribution permits to favor or
penalize some combinations of wave systems. This is further
discussed in Section 4.

Reestimation of the spectral parameters (Step 4). The previous
step leads to an estimate of the best combination of wave systems
po(t) together with a set of weighted particles Xi My (O ity (D))
from which we retrieve a first estimate of X; by taking the
weighted mean over the more likely particles

1

X(fo) = miEEA”i,MpOm(t)Xi,Mpo(r,(t)

where A represents the set of the 100(1—q) percent highest values
of i My (- The directional spectrum associated to X‘to) is gen-
erally close to the observed spectrum but we refine the value by
adding a numerical optimization step. The function that we
minimize, defined as

Q’I(S(:, t)’ Spm’(:vxt)v 'Q)

is a distance between the observed and the parametric spectra. We
run the optimization algorithm starting from X%, This leads to an
updated value of the spectral parameters which is close to Xﬁo) but
fits better to the observed spectrum. The systems with very low
energy (significant wave height below 0.1 m) are removed before
going to the next step.

The different steps of the algorithm are summarized in Table 1.
At time t, Step 1 consists in listing all the possible combinations of
sea state systems given the combination selected at t—1. In Step 2, a
large number of particles are simulated for each combination and
weights are associated to the particles. In Step 3 the weights, which
can be interpreted as the likelihoods of the observed spectrum if
the particles give the correct partition, are used to find the best
combination. Finally, Step 4 consists in a numerical optimization
step which permits to improve the parameters of the selected
combination in order to better match with the observed spectrum.

3. Stochastic models for the wave systems

The various tests which we have conducted indicate that the
realism of the stochastic models used to generate new wave
systems and simulate the time evolution of existing wave systems
is a crucial factor to retrieve good partitions. These models must be
designed so as to permit an efficient exploration of the domain of
the spectral parameters. In particular, the simulations should cover
a domain which contains only realistic values given the situation
at the previous time step and the climatology of the point of
interest but which is also large enough to explore all the possible
scenarios. Furthermore, the simulations should not be too much
time consuming.

First partition of the spectra. In order to calibrate these stochastic
models a first partition has been performed using the local wave
age (ratio of wave and wind celerities) criterion. More precisely, we
first compute the separation period (see [8]) Ts = 4 (27/g)U where U
denotes the wind speed and assume that wave components with a
period lower than T; and a direction @ such that cos(¢—@) > 0,
where @ denotes the wind direction, are generated by local winds
whereas others correspond to swells. Spectral parameters (Hs, Tp,...)
are then extracted from each part of the wave spectra. This simple
method permits to retrieve two time series of spectral parameters,
one for the wind seas and one for the swells. These time series have
been used to estimate the parameters of the stochastic models
introduced in this section.

Simulation of the time evolution of the wave systems. If z;_;
denotes the value of one of the spectral parameters with positive
values (i.e. Hs, Ty, y or s) at time t-1, possible values of this
parameter at time t were simulated according to

Zt =S+ |Zt-1—Zmin + €| (5)

where e; denotes a Gaussian variable with zero mean and standard
deviation ¢4y,. The values of zy;,, which correspond to the mini-
mum value of the random variable z, and ¢4y, which describes the
temporal variability of z;, are given in Table 3. Generally z,;, is small
compared to the typical values of z;_y and |z;_1—Zmin + €] > 0. In
this case Eq. 5 reduces the usual random walk model

Zt=2Zt1+6€ (6)

which was used for the directional parameter 6,,. Each spectral
parameter is simulated independently from the others. Using more
realistic models, which take into account for example that T,
decreases with time in swell events (see e.g. Fig. 5) or the strong
relation between H; and T, may help improving the results
obtained with the methodology introduced in this paper and this
has to be further investigated (see e.g. [13]).

Simulation of new swell systems. The new swell systems are
randomly drawn in the time series of swells identified using the
period separation method described above. In order to allow swell
systems with spectral parameters different from the ones identi-
fied using the separation method, a Gaussian noise with zeros
mean and standard deviation o,e, given in Table 3 is added.

Simulation of new wind sea systems. The spectral parameters of
the new wind sea systems are simulated conditionally to the wind
conditions. Various simplified models have been proposed in the
literature to relate the parameters H; and T, of the wind sea to the
local wind speed U and the fetch F. If the local water depth is
sufficiently deep and the wind is blowing long enough, power law
functions of the form

H, = AU“F*, T, =BU’vF¥

are generally used (see e.g. [9] and references therein).
Applying the log-transformation leads to linear models

log(Hs) =10g(A) + ay log(U) + ar log(F) )

log(Ty) =1og(B) + py log(U) + pr log(F) 8)

where the fetch F is an unobserved variable and ay, af, gy and g
are unknown parameters. If we model F as a random variable with
log-normal distribution, we get a usual Gaussian linear model
which parameters can be estimated using standard procedure. It
may also be interesting to include the wind direction in the model
since it may be closely related to the fetch and more generally the
characteristics of the wind field which generates the wave systems.
In practice the wind direction @ may be introduced as a categorical
variable &., (we use 8 sectors of 45°) or as a continuous variable (in
which case we perform regression on cos(®) and sin(®)) in the
linear model.

The various models have been fitted to the data using the least-
square method. According to Table 2, the best model is the most
complicated one where the wind direction is included as a
categorical variable and interaction between wind speed and wind
direction is considered. In this model, distinct linear regression
models of the form (Eqs. (7) and (8)) are fitted in each wind sector
and the parameters values are shown on Fig. 3. These values are
coherent with the ones reported in the literature (see e.g. [9]).

4. Numerical results

In this section, the algorithm introduced in the previous sections
is validated on two datasets. In Section 4.1, we first consider time
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series of synthetic spectra in order to validate the methodology in
an idealized situation where the “true” partitions are known. Then,
in Section 4.2 we focus on the time series of WWIII spectra and
compare the results obtained with the dynamical partitioning and
SPOP algorithms.

4.1. Simulated data

Time series of synthetic spectra have been simulated by adding
a noise to the spectra identified by applying the SPOP algorithm to
the time series of WWIII spectra. More precisely, at each time step
t, a spectrum is simulated using Eq. (1) where X; denotes the
vector of sea state parameters identified at time t using SPOP (see
Fig. 5) and S,.s is simulated from a multivariate Gaussian distribu-
tion with zero mean and covariance matrix £ defined as

= exp( i1 = ~2a(1-c0SO-0)). id=Tona O
0

where {(w;,6)}i = 1..._n, denotes the frequency-direction bands into
which the spectrum is discretized. In practice, we have fixed the
values 11 =0.5 and 1, =10 but let the value of ¢ vary from 0 to
0.03 (the latter case corresponds to an observation error with a Hg
of about 2.32m) in order to check the performance of the
extraction algorithm when the noise to signal ratio increases.
The terms 4, and 1, model respectively the correlation between
the different frequency and direction with 1; =1, =0 correspond-
ing to the independent case.

Table 2

Number of parameters N, (second column) and adjusted R? coefficient (third
column) for the various regression models described in the first column. The sign
‘+’ corresponds to the linear model without interaction and the sign ‘%’ to the linear
model with interactions.

The algorithm is run with N=1000 particles and the number of
wave systems is limited to three systems with a maximum of two
swells and one wind sea. This corresponds to physically realistic
values for the location considered in this work. The weights Eq. (3)
are computed with the covariance matrix Eq. (9) and the values
0=0.1, =05 and 41, =10. We use a different value of ¢ to
generate the spectra and for the extraction algorithm since this
value is generally unknown for practical applications. In the
selection step (see Section 3), we consider the quantiles of order
q=0.95 to select the best particles for each combination of sea-
states. The prior distribution is defined so as to promote persisting
systems and penalize the arrival of new swells when swell systems
already exist. More precisely, the prior probability of a combina-
tion with at least one persisting system is 1.4 times higher than the
probability of the other combinations, the prior probability of a
combination with two persisting swells is 1.1 times higher and the
prior probability of a combination where a new swell is added
when one swell is already existing is 1.4 times smaller than the
probability of the other combinations. Finally, in the reestimation
step, we impose the constraints given in Table 3 on the parameters
in order to avoid convergence to unrealistic values.

At each time step t, we obtain three different spectra: the “true”
spectrum Sspop(t) reconstructed using Eq. (2) and the sea state
parameters obtained using the SPOP algorithm, the noisy spec-
trum Ss;(t) obtained by adding a noise to Sspop(t), which has been
used as input to the dynamical partition algorithm and the
spectrum Spyn(t) reconstructed using Eq. (2) and the sea state
parameters identified by the dynamical partition algorithm.
In order to measure the distance between these different spectra,

Table 3
Value of the parameters used to simulate the time evolution of the spectral
parameters (s and agy,, see Section 3) and the arrival of new systems (opew, see

Model Ny jo Section 3) and constraints imposed on the parameters values in the
reeestimation step.
log(Hs)~log(U) 2 0.7498
log(H;s)~log(U) + cos(®) + sin(d) 4 0.7784 Parameter Hg(m) Tp(s) Y O (rad) s
log(Hs)~log(U) + ®cqr 13 0.7885
log(Hs)~log(U)%®car 24 0.8080 Zmin 0 0 1 NA 1
Gayn (swell) 03 0.3 0.5 0.1 1
log(T)~log(U) , 2 0.4054 o (wind sea) 0.3 03 07 01 25
log(Tp)~log(U) + cos(®) + sin(®) 4 0.4854 e (swell) 15 15 4 03 15
log(Tp)~log(U) + Pcar 13 0.5233
log(Tp)~log(U)s®ear 24 0.5711 Constraints [020]  [\/H;/0.1,20] [1100]  [0,27] [1,100]
-2.0 2.2
5 - _
[ -1 _
g -3.5 - g 1.6
£ | -
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Wind direction
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Fig. 3. Evolution of the intercept (left panel) and slope (right panel) of the models Eq. (7) (top) and Eq. (8) (bottom) as a function of the wind direction (x-axis). Gray lines are

95% confidence intervals.
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we define

400 27
D(51 ,Sz) = 4\// / |S1 (a), 9; t)—Sz(w, 9; f)| d0 da) (10)
0 0
where S; and S, denote two spectra. This quantity is homogeneous
to a significant wave height (meters). Fig. 4 shows the evolution of
distances D(Spyn(t), Sspop(t)) and D(Spyn(t), Ssiu(t)) as a function of
the noise level D(Sspop(t),Ssmv(t)). It indicates that the recon-
structed spectra Spyn(t) are closer to the true spectra Sspop(t) than
to the noisy ones Ss;(t) and thus that the algorithm is robust to
observation errors. This good behavior lets us expect that the
algorithm will perform well on buoy spectra which are known to
be noisy and thus difficult to analyze with classical extraction
algorithms. Fig. 4 also shows that our methodology tends to
underestimate the number of wave systems when the noise level
is low. We performed visual inspection and found that some wind
sea systems with low energy are not retrieved. It generally occurs
when the wind direction does not match the mean direction of the
wind sea system (see Fig. 5 around time 400 for example). For
higher noise levels, the algorithm tends to identify too many wave

25
%%*
2 *
*
15 XK

Error

0 0.5 1 1.5 2 2.5
Noise level

systems but still identifies the main systems. The extra systems
which are identified have a low energy and the values of y and s
associated with them would correspond to unrealistic spectra with
an important spreading in frequency and direction; a post-
treatment based on these parameters could be easily implemented
to filter out the non-physical systems.

4.2. WWIII data

The algorithm has then been tested on the time series of WWIII
spectra. In practice, we use the same parameters values than in the
previous section except that the number of particles is increased to
N=10000 in order to better explore the space of the spectral
parameters and reduce the sampling variability. This leads to a
significant increase of the CPU time with about 10 h (only 15 min
for SPOP) of computational time on a standard laptop to process three
months of data. Using more realistic dynamical models would permit
to largely reduce the number of particles and the computational time.

The time series of extracted sea state parameters are shown on
Fig. 5. These plots show periods of time with one clearly dominating

£
§ 1.8 **
217
“‘f *
G 4B *o 1
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e}
2 14
3 1.3 " *

1.2

0 0.5 1 15 2 25
Noise level

Fig. 4. Left panel: median of the distances D(Spyn(t), Sspop(t)) (full line) and D(Spyn(t), Ssim(t)) (dashed line) as a function of the median of the noise level D(Sspop(t), Ssim (t))
(x-axis). Right panel: mean number of systems in Spyn(t) (stars) and Sspop(t) (dotted line) as a function of the median of the noise level D(Sspop(t), Ssim(t)) (x-axis).
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Fig. 5. Time series of parameters Hs, Ty, 6,y and s extracted using SPOP (top panels) and extracted using the dynamical partitioning method from simulated spectra time
series without noise (second line), a noise with ¢ = .03 (third line) and from WWIII spectra (bottom panels). The black and dark gray points correspond to swell systems and
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swell which has a smooth temporal evolution. At other periods, two
swell systems with higher temporal variability are extracted. This is
further discussed below. Fig. 6 shows a quantile-quantile plot of the
distances between the reconstructed spectra Spya(t) and the
observed WWIII spectra, denoted Swwift), against the distances
between Sspop(t) and Swwit). The quantiles of the dynamical
partitioning method are significantly smaller than those correspond-
ing to the SPOP method. It means that the dynamical partitioning
method reproduces more accurately the time series of WWIII
spectra, but it also tends to identify a higher number of systems
(2.1 systems in average against 1.6 for SPOP). The visual inspections
we performed confirmed that the dynamical partitioning algorithm
tends to over-estimate the number of systems and sometimes
extracts wave systems with spectral parameters close to each other.
It permits to reproduce the shapes of the WWIII spectra which are
sometimes too complex to be accurately reconstructed with a single
JONSWAP—cos?s spectrum. For instance, Fig. 7 shows the sequence
of spectra identified using the dynamical partitioning algorithm on

10

4 VERIEE

Dynamic extraction

0 5 10
SPOP

Fig. 6. Quantile-quantile plot of D(Spyn(t), Swwm(t)) (y-axis) against D(Sspop(t),
Swwmi(t)) (x-axis).

t =806, H, = 0.99 t=812, H =11

the sequence of WWIII spectra shown on Fig. 1. Three systems are
identified by the algorithm at each time step of this sequence, one for
the swell system which can be reasonably modeled by a single
JONSWAP-cos 2 $ but two for the wind sea system which exhibits a
more complex asymmetric shape. Using more complex parametric
models for the spectra could help solving this issue. Using a post-
treatment to merge the wave systems with spectral parameters close
to each other (see e.g. [10]) may also lead to an improvement of the
outputs of the algorithm and produce more realistic climatologies.

5. Conclusions

A new method for partitioning directional wave spectra has
been introduced. It is based on a state-space formulation which
uses simple stochastic models to describe the dynamics of the
wave systems and parametric models to relate the observed
spectra to the synthetic parameters of the various systems. The
partition obtained at a given time uses the information available at
the previous time step and the method permits in particular to
track automatically the time evolution of the wave systems.

The algorithm has first been validated on time series of synthetic
spectra and the good results which have been obtained indicate
that the model is robust to observation errors. The algorithm has
then been validated on time series of WWIII spectra and the results
have been compared with the ones obtained using an approach
largely discussed in the literature. Again, the results are promising
but the algorithm tends to identify too many systems when the
shape of the spectrum is complex and cannot be modeled as a
mixture of JONSWAP-cos? s spectrum. We believe that this could be
improved by using more flexible parametric models for the direc-
tional spectra. We have also observed that the algorithm is sensitive
to the stochastic models used to describe the dynamics of the wave
systems. The models which are used in this paper are very simple
and refining them could also lead to substantial improvements.
The methodology should now be validated on other datasets
including in situ measurements. We will also consider extending
the approach in a space-time context and using the information
available at other locations to build an a priori distribution. This

t=818,H =1.26 t=824,H =138

0 0

80 80

0, 0,
80 80

Fig. 7. Example of time series of WWIII spectra (first line) and reconstructed spectra (second line). The time given in the titles corresponds to the number of hours since the

beginning of 2009.
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could lead to an improvement of the partitions and also enable a
tracking of the wave systems in space and time.
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