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Remote Sensing of the Roughness of a Fractal Sea Surface 
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One use of radar altimeters is to measure surface wind speeds through their effect on the roughness of the 
sea surface. The specular point reflection model is only appropriate for surfaces with roughness on acal½s 
which are large in relation to the radar wavelength. This may not be the case for ocean surfaces. Here we 
model the sea surface as a fractal on the relevant scales. This is based on Hasselmann's model for nonlinear 
wave action transfer. The radar cross section for nadir backscatter is derived and its dependence on the radar 
frequency is determined. The results are compared with the cross section obtained by the specular point model 
for a smoothed surface, yielding the appropriate cutoff wavenumber. Some existing measurements of the sea 
surface by altimeter and stereophotogrammetry are discussed, suggesting a smaller fractal dimension for short 
gravity waves. Dual-frequency altimeters may help determine the synoptic spectral shape. 

1. INTRODUCTION AND PHYSICAL BACKGROUND 

The small-scale roughness of the sea surface is an important 
oceanographic parameter which is observable by a number of 
remote-sensing devices: the radar altimeter, the scatterometer 
and the synthetic-aperture radar (SAR). Here we shall only 
discuss the altimeter, which is nadir viewing. The approach qan 
be extended to other devices. 

The sea surface roughness is observed through its effect on 
the radar cross section (RCS). The RCS data can be utilized to 
derive surface wind speeds [Mognard and Lago, 1979]. 

The traditional specular point model [Barrick, 1974] relates 
the radar cross section to the mean square slope (MSS) of the 
ocean surface (which, in turn, is related to the wind speed). 

In this respect there are two difficulties related to the high- 
wavenumber end of the ocean wave spectrum. One difficulty is 
that the radar cross section dependence on the surface 
roughness based on the geometrical optics model is insensitive 

to the radar wavelength )•. This is only expected to be true at 
the limit of very short radar wavelength (compared with the 
smallest scale of roughness of the sea surface). Indeed, 

experimental data exhibit )• dependence. The second difficulty 
is that the decay of the spectrum at high wavenumbers is such 
that the MSS diverges and is very sensitive to the range of 
wavenumbers considered. Stiassnie [1988] has shown that over 
a range of scales comparable with the radar altimeter 
wavelength the sea surface may be described as a fractal surface. 
Fractal surfaces have no defined slope and hence no MSS. 

Roughness on scales which are small compared with )• is not 
expected to have a significant effect on the RCS, yet it has a 
dominant contribution to the MSS. Therefore a naive usage of 
the MSS to calculate the RCS is inadequate. 

Barrick and Lipa [1985] addressed this issue early on, 
suggesting a cutoff proportional to )•. Using the full wave 
theory, Bahar et al. [1983] have discussed the determination 

of an appropriate high wavenumber cutoff, k d, to be used in the 
MSS evaluation. Their result for the SEASAT altimeter is 

k d = 85 m -1 and is quite insensitive to the wind speed. Using 
this result and the wind speed dependence of the RCS found by 
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Chelton and McCabe [ 1985], Barrick and Bahar [ 1986] derive a 
spectral law for the wavenumber spectrum, with a power of 
-3.86. 

Glazman [1990] gives a qualitative analysis of the 
dependence of the spectral power law dependence on a 
nondimensional fetch parameter, i.e., the degree of 
development of the sea. He models the spectral density by a 
power law and introduces an exponential high-wavenumber 
decay at an intrinsic microscale of 0.4 m which corresponds to 

kd=2.5 m -1 and a rapid low-wavenumber cutoff. He then 
determines the range over which the geometrical optics result 
yields a good approximation. 

Simple analytic forms for the RCS are obtainable in two 
distinct ways. One approach is to introduce a cutoff scale that 

is related to )• [Glazman, 1986]. This is equivalent to taking a 
smoothed surface. Alternatively, the smaller scales may be 
taken into account through theories for "diffractal echoes" - 
waves scattered from fractal surfaces [Berry, 1979; Berry and 
Blackwell, 1981]. 

In this paper these two approaches are applied to the 
problem of measuring the sea surface roughness by near-nadir 
radar observations. The results of the two approaches are 
compared, and the implications for the dependence of the RCS 
on the wave spectrum for different radar frequencies is 
discussed. The results can be utilized in dual-frequency 
altimetry. 

Knowledge of the spatial structure of the sea surface has 
been increasing but is still lacking, especially at the small 
scales. Banner et al. [1989] discuss some existing 
measurements. In their study they have used 
stereophotogrammetry to determine the wavenumber spectrum 
of the sea for wavelengths in the range 0.2-1.6 m. The spectra 
they obtained were nearly isotropic. They also determined the 
power law dependence, which will be discussed in section 6, 
and discussed possible theories for the equilibrium between 
nonlinear wave interaction and dissipation mechanisms (cf. 
also Phillips [1985]). 

The analysis for scattering from a rough surface (including 
the fractal case) is most readily applied to isotropic or to 
corrugated surfaces. Banner et al. note that waves shorter and 
longer than those studied by them are often nearly 
unidirectional. Such waves can also be treated by a simple 
theory. In order to simplify the analysis we focus here on the 
isotropic case. 
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It is generally accepted that at small scales the spectrum has 
a faster falloff rate than in the equilibrium range. This is due to 
the larger role played by surface tension and by dissipation and 
may also be related to coupling with the airflow. It is the small 
scales that dominate the RCS. Rather than truncate the 

spectrum, we model it as a fractal on the relevant scales. This 
allows us to evaluate in full the Kirchhoff approximation (the 
specular point result is a further approximation, using the 
method of steepest descent, which is valid only for smooth 
surfaces). 

We note that in this modeling of the sea surface as a fractal, 
the basic premise of the Kirchhoff approximation, of small 
enough curvature, need not be violated, since at the smallest 
scales the surface is, of course, differentiable (on capillary 
wave scale it is a subfractal, cf. Stiassnie et al., [1991]). See 
Glazman [1990] for a discussion of the curvature criterion. The 
'fractal' model of the sea surface is limited to a finite range of 
scales. Geometrically, the sea surface is smooth, and its waves 
propagate in the familiar way. 

In section 2 we calculate the radar cross section for a 

smoothed sea surface. Section 3 is a discussion of the fractal 

nature of the sea surface; in section 4 the radar cross section of 
a fractal surface is obtained. In section 5 the smooth and fractal 

results are compared and the self-affinity of the surface is used 
to derive a consistent cutoff criterion. Section 6 is a discussion 

of the implications of the results for the measurement of the 
roughness of gravity waves and the derivation of surface 
winds. In the conclusion the application of dual-frequency 
altimetry is discussed. 

2. THE ROUOHNESS OF A DIFFERENTIABLE SURFACE 

kdK 

ffl k SO 4-tz 4-tx SO _ [[2= 31]/dkd0 = 2• 4-'•• d -k0-)-_.=2• 4_•-'k• d o) 

The specular point model gives the following expression 
for the RCS 

(Is = 1/[[ 2 

[Barrick, 1974]. So that 

os = 2•rs ø (5) 

3. A FRACTAL MODEL OF THE SEA SURFACE 

Stiassnie [1988] has shown that the spectrum of isotropic 
gravity waves in equilibrium due to quartet nonlinear 
interactions corresponds to a sea surface of fractal dimension 
21/4 or 21/3 . We briefly explain the principal ideas. 

The wave action transfer equation is given by Hasselmann 
[1962] as 

3N =64sll I N(_k,2)N(•3)[N(•+N•I)]_N(.•)N•I)• k•)+N•3)] } at { 

* [(T(.•k,,k_2,k3)]2b•+_k,-k.k.•-•)b(•%-m2- m3)•, %d• (6) 
Let the random sea surface be given by the following 

stochastic model [Pierson, 1955]: 

q (x, Y,t)=Ilcos [k(xcos 0+ys in0)-n/-• t+e(k ,0)l•]•t(k, 0)kdkd0 
0-• 

O) 

*! is the free surface elevation, (x,y) are the horizontal 
coordinates and t is the time. In this model the ocean surface 

is composed of an inf'•te number of waves each with its own 

wavenumber k = (kcos0,ksin0), frequency to= n/•'•, and a 
random phase shift e, uniformly distributed over [-•:, •:]. 

We consider an isotropic wavenumber spectrum ll/of the 
form 

V = So k-a k o < k (2) 

where S O is the spectral constant. This is a common spectral 
shape for the high-wavenumber end of the spectrum, which 
determines the radar cross section. 

For gravity waves 
ct<4 

for which the MSS is not deftned. If we smooth the surface by 
truncating the spectrum for 

k > k d >> k 0 

we get the mean slope [[2: 

where •(k) is related to the wave action spectral density N(k) 
by 

•t(_•) = [N•)+N(-k)] k • (7) 

The kernel T 2 is the square of the kernel in the Zakharov 
equation [see Stiassnie and Sheruer , 1984]. 
Consider an isotropic regime 

N•) = N(k) 

Zakharov and Zaslavskii [1982] have obtained two 
stationary isotropic solutions for equation (6): 

N(k) o• k -a 6t = 23/6, 4 (8) 

Equations (7) and (8) and the dispersion relation for gravity 
waves yield 

•t s0 k-a = a = 10/3, 7/2 (9) 

Sections of the surface are obtained after substituting these 
spectra in equation (1): 

Ti(r ) = q, Icos(kr+œ(k))•k-akdk 
o 

00) 
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These surface sections are fractals of dimensions 

D1 =-• = 4/3, 5/4 (11) 

[cf. Stiassnie et al., 1991, section 2]. The fractal dimension 
of the sea surface itself is thus 

D=Dl+l=8-•=2• -, 2•- (12) 

The value D = 21/4 which corresponds to a = 3•/2 is in 
agreement with the results of several field and laboratory 
investigations presented by Phillips [1985] over the range of 
scales from 15 m to about 0.1 m. 

4. SCATTERING BY A FRACTAL SEA SURFACE 

For smooth diffracting objects, geometrical optics applies. 

Roughness on scales much smaller than the radar wavelength )• 
does not affect the scattering. When there is no roughness on 

scales near )•, the surface may be treated as smooth. Otherwise, 
different tools are required. 

If the structure of the surface is self-affine over a range of 

scales which are comparable with )•, the theory of diffractals 
[Berry, 1979, Berry and Blackwell, 1981] applies. 

For a fractal surface the mean square slope is undefined. We 
will see that the diffracted field is written in terms of the mean 

square increment 

A(r) -- <(rl + D- rl o3) 

where angle brackets stand for ensemble average. For fractal 
surfaces of dimension D, A has a cusp at r=0: 

A(r_.) •> L2D-4r 6-2D 
r-->0 

2• (14) 

multiple scattering. This is a good assumption when making 
the 'Fresnel' or 'paraxial' approximation, which requires that 
the main incident and scattered contributions make small 

angles with the vertical. These conditions are definitely 
satisfied in satellite altimetry. 

The Kirchhoff approximation gives the RCS as 
2 

•J = 2•k-•• •ldr-e-2k•aOD = 4qJ r e-2k•a•dr (17) 
where k•. is the radar wavenumber. 

For radar scatter from the ocean surface, k2;A(r) is zero at 
r =0 and is finite but large at large r. The value of •J is 
dominated by values of r for which 

(r) = 0(1) 
This is because the contribution of very large scales is 

exponentially small. Yordanov and Stoyanov [1989] have 
shown that for a fractal surface, a small wavenumber cutoff has 

a very small effect on the RCS. The details of the falloff of A(r) 

to zero at small r, too, hardly affect the value of •.This can be 
seen graphically: In Figure l a two structure functions are 
shown. One for a fractal surface and the other quadratic. The 
corresponding integrarids on the right-hand side of Eq. (17) are 
plotted in Figure lb. The area under the curve represents the 
RCS. We see that for a fractal structure extending to scales of 

the order of 0.1 m and a topothesy much smaller than •, (i.e. s o 
not too large), the two integrands are very close over the small 
scales. The contribution from very large r is small and can be 
disregarded, since in practice, the integration range is limited 
by the altimeter beam form and the curvature of the Earth and 
the radar wave front, which have been neglected due to the 
short pulse of the altimeter [cf. Barrick and Lipa, 1985]. 

Substituting the mean square increment from Eq. (14) into 
Eq. (17) gives the RCS in closed form: 

L, the topothesy, is a characteristic length scale of the 
fractal. L is the distance r over which chords joining points 

on the surface have an rms slope of one tad. L is related to s o 
by 

4-a 4s 0 
L - _ • F(3_e0sin(•_(3_a)) B ( 1•_, •1•) (15) 

as shown in the appendix. 
For a smooth surface D=2, 

/X(r) 2r2 
r-->0 (16) 

2 

2D-4 

1 (,/'• I•L) 3-D F(31..•) (18) 3-D - 

In the limit D --> 2, L 2D-4 is replaced by [12, and o F 
reduces to Os = 1/[•2' When the surface is fractal, OF is a 
function of k)•. 

5. AFFINrrY ANALYSIS AND SPECTRAL SPLITTING 

There is no topothesy, and [12 is the MSS (equation 3). 
Berry and Blackwell [1981] applied the Kirchhoff 

approximation to the problem of backscatter at nadir 
incidence. This approximation neglects shadowing and 

In this section we address the question of what should be the 
criterion for selecting a cutoff wavenumber if one wishes to 
approximate the fractal surface by a smoothed one. It is 
emphasized that this smoothing is not necessary in view of 
the solution for the RCS of a fractal surface presented in 



12,776 AONON AND STIASSNIE: REMOTE SENSING OF A FRACTAL SEA 

- 

! 

- / 

I 

..... r . ,i i i ,i,, 
I 2 $ 4 5 

r(cm) 

Fig. 1. (a) The mean square increment versus r. Solid line: fractal regime D = 2.25, s o = 5x10 '3 m0'5). 
Dashed line: quadratic form. (b) The integrand on the right hand side of equation (17). Solid line: using 
fractal shape. Dashe line: using the quadratic function for all scales (3, = 6 cm). 

section 4. However, physical insight may be gained by 
refering the results to the smoothed surface results. 

The simplest cutoff, which has been in use, is one 

proportional to k)•: 

kdOC kx (19) 

Using equation (5) gives 

O s •: s•lk• 4-ct) (20) 

For o F we found (equations (12) and (18)) 

2D-4 8-2a 

3-D ct-2 

%o, : 
_-2/(e-2),_-(8-2e)/(e-2) 

oe S0 K• (21) 

from that of o F except for •t = 4 (D=2). This is because a fractal 
surface is self-affine rather than self-similar: Different factors of 

stretching apply in the horizontal and in the vertical directions. 
To find the correct dependence of the cutoff wavenumber k d on 

k)• and s 0, we note that in the Kirchhoff approximation, the 
determining factor is the phase dependence in the ensemble 
average, (see equation (4.8) of Berry and Blackwell [1981]). 
This is of the form 

kx(n(r:)-n(r2)) (22) 

To find the dependence of k on k•., we fix s o (no vertical d 

stretching of the sea surface). Now replace k• by 

k•. = T-lkx (23) 
To maintain the same phase dependence, q(rl)-q(r2) should be 

increased T-fold. This can be achieved by shifting the cutoff k d. 
Self-affinity gives 

an(•mr) = ?A•(r) (24) 

where Aq(r) is the distribution of differences in q over a 
distance r and 

2 (25) 
[cf. Stiassnie et al., 1991, section 2].This means that we should 

replace r by •/Hr. Thus if the cutoff appropriate for k•. is k d, 

the cutoff for 1• should be 

2 

k'd = T- 1/Hkd = ¾ ø[-2kd (26) 

To f'md the dependence of k d on So, we fix k ß Now replace s o 

and qby 

s•) = yls0 ' q'(r:) = ¾1/2q(rl) (27) 

In order to maintain 

kxAq'(r' ) = lc•Aq(r) (28) 

we must use the mapping 

r' = y1/2Hr 
Hence the appropriate cutoff is modified to 

(29) 

1 

(30) 
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The combined dependence of k d on s o and kk 
1 2 

k d = c(•) s•-2k• -2 

is 

(31) 

where c(a) is a dimensionless coefficient. 

When calculating the RCS for the smoothed surface with a 
cutoff determined in this way we f'md 

2 

(is o• s0 ø•2 lc• (32) 

this is the same form found for o F (equation (21)). 

We may determine c(a) in (31) by comparing {I s from 

equation (5) with {I F from equation (18): 

-(4-a) 2 8-2a 

4-a kJ*•0 (4-a)c(a) -•5' 0.2 c, = 2ns0 = 2•r So • (33) 

so 

[5 0 2rs 0 _ -(or-2) 

4k2; = <T]R2> = or-2 kd 
1 1 2 

kd=( 8/I; )a-2 or-2, a-2 [50(ø[- 1) s o tc; 

(37) 

(38) 

This is exactly the form obtained in equation (31). 

6. REMOTE SENSING OF THE SEA SURFACE ROUOI-INF•S 

Finally, we wish to examine the relation of the radar cross 
section to the wind speed through the small-scale roughness. 
Much work has been done on relating measured cross sections 
with wind speed since the early work of Cox and Munk [1954] 
who studied photographs of the sun glitter. The use of remote 
sensing to derive the wind speed from the small-scale 
roughness relies on the model employed for relating the RCS 
to the surface roughness. A form that is commonly used is 

(IF=GU I• (39) 

2I)-4 2 8-211 

- (34) 

where G and g are constants and u is the wind speed at the 
given elevation. 

From Phillips [1985] we get the following relation for the 
spectral constant: 

where 

-----• 2 

2 2 2 1 --•-)F(3-e0) o•2,.,, 2 . q(ot)--•_--•2 a_2 sin•-'(3-a)B( T' lt•-"•-2) 
q(a) has the value 3.5 x 10 -2 for ot = 3.5. In order to make 
(is = (IF for a particular case, say ;• = 0.03 m and 
s o = 10 -3 m 0'5 (which corresponds to a wind speed of about 
9 m/s at 10 m above sea level), we need to set c(3.5) = 4.99. 

This yields a cutoff wavelength of 0.11 m. 

Bahar et al. (1983) have studied the question of spectral 
splitting: the decoupling between large-scale and small-scale 
roughness. The criterion they used was 

2 2 
4k x<riR> = [1o = const. (35) 

where 

k>k a (36) 

is the rms of the remainder surface elevation with scales 

smaller than 2•r/lc d. This corresponds to the requirement of 
neglecting small roughness. Bahar et al. have not studied a 
power law spectrum. 

s 0 o• u./ (40) 

where u , the friction velocity, is nearly proportional to the 

wind speed u. This would imply 

(41) 

We have found (equations (12) and (21)) 

2 2 

(I F oc S O •2 = SO 6-2D (42) 

Equation (40) which is specific to a = 3.5, may be extended 

using the affinity analysis (as well as through dimensional 
arguments) with the result that s o should be of the form 

s0 = q,(a)(•) 4'a (43) 

where ql(a) is a dimensionless function (which for ot = 3.5 
corresponds to 1/4s of the coefficient denoted ot by Phillips 
[1985]. For a = 3.5 equation (43) reduces to the form (40). 

Combining (34) and (43) we get 
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•F = q2 (OtX 1•) 

wh•e 

2 

q2(ot) = q(O0q l(Ot) 

In particular, we have 

(44) 

(45) 

•JF • u•0'468 k• 0'234 for {x = 3.79 (46c) 

This is consistent with the results of Banner et al. [1989], 
who found a spectral dependence on the wind speed in the form 
of (43). They obtained values corresponding to ot =3.91 _+ 0.09 
with confidence limits of 95%. We recall that Barrick and 

Bahar [1986] have obtained ot = 3.86. The value of ot _= 3.8 

appearing in (46c) corresponds to a fractal dimension of 2.1 in 
the range of decimeter gravity waves. 

1 

ou:4K (46a) 

1 

OF o• u•2 k• 1 , for o•-- 3•- (46b) 

Using the expression (44) the friction velocity u, may be 

determined from measurements of o ß This requires that we 
F 

assume a given value for or, say 3.5. For this case the data 

from Phillips [1985] correspond to ql = 0.01 and q2 = 16. 
Using a dual-frequency altimeter, measuring the RCS for two 
radars with different frequencies should allow the estimation 

of ot as well as u,. This is the case when both frequencies are 

in the range in which scattering is dominated by gravity 
waves in the equilibrium range. 

We stress that caution is required in determining the parts 
of the spectrum that affect the radar scatter for a given radar 
frequency: 

1. The scatter process is related to the vertical scales of 
the surface (which are smaller than the horizontal scales). 
This is manifested by the role pla}?ed by the structure function 
A (or the topothesy, in the fractal regime). If the surface is 
rougher, smaller horizontal scales become important. 

2. The value of the structure function itself, for a given 
horizontal separation r, is determined by the whole spectrum, 
notably by waves with wavelength 2r. 

These two considerations imply that the relevant 
wavelengths of the surface waves need not coincide with the 
radar wavelength. 

Short ocean waves (from perhaps 3 cm wavelength) are 
affected by surface tension and tend to be directional. This 
regime is less understood than the gravity wave equilibrium 
range. The contribution from shortwaves becomes more 
important for higher radar frequency and higher sea states. 

Another source of uncertainty stems from the effect of the 
degree of development of the sea, which is related to the fetch 
[cf. Glazman, 1990]. Partially developed seas have a faster 
falloff rate and hence a smaller fractal dimension. Averaging 
over different conditions should result in some average 
values. As an illustration, let us examine available altimeter 

measurements in the K u band. These are affected by shorter 
ocean waves which have a faster falloff rate (larger {x), By 
(44) this would imply a weaker wind dependence. Indeed, wind 
dependence was found to be rather weak [Brown, 1979]. The 
RCS dependence on u found by Chelton and McCabe [1985] is 

0 oc u -0A68 

From (44) this corresponds to ot = 3.79: 

7. CONCLUSION 

We have examined the scattering of radar waves from 
isotropic rough sea surfaces with power law spectra. The 
'specular point' and the 'diffractal' models were compared. 
Using affinity analysis, it was shown that some features of the 
fractal model may be simulated by artificially introducing a 
high-wavenumber spectral cutoff to the specular point model. 

For K u- band altimeters, it was shown that both remote 
sensing results [Chelton and McCabe, 1985] and 
stereophotogrammetry [Banner et al., 1989] indicate a 
possible fractal dimension of 2.1. More measurements are 
required to determine the structure of the sea surface on 
centimeter and decimeter scales. Remote-sensing techniques 
hold great promise in obtaining such data. If the fractal 
dimension of the surface is assumed to be known, a single 
frequency measurement of the RCS can yield the spectral 
constant and subsequently the wind speed. The simplified 
model obtained here (or further refinements) and the use of 
dual-frequency altimeters are expected to yield the fractal 
dimension as well. Future applications can include underwater 
acoustic measurement of the wind speed, as well as off-nadir 
scattering. 

APPENDIX: THE TOPOTHESY OF THE SEA SURFACE 

From Figure 3 of Phillips [1985], which gives a 
dimensionless plot of field and laboratory measurements of the 
frequency spectrum in the equilibrium range (ot=3.5), we 

calculated the constant s o in (9) and found that for u*=0.37 

m/s, s o _= 10'3m ø'5. The mean square increment, defined in (13), 
can be calculated from the spectrum •t(k) via 

A(r) = 2ffdk•t(_•)(1-cos•or)) (A1) 

Substituting (9) into (A1), integrating by parts, and then 
using equations 3.761(4) and 8.380(2) of Gradshteyn and 
Ryzhik [1980] yield 

4So . n 1 
a(r) = (A2) 

where F, B are the Gamma and Beta functions, respectively. 

From (14), (12) and (A2) the topothesy L of the sea surface 

r!(x) is given by 
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For ot = 3.5 the last equation gives L = 1.3 x 10 -4 m. This 
seemingly small value is due to the der'tuition of the topothesy 
as the distance over which joining chords have rms slope of 1 
tad. 
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