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ABSTRACT

The standard 10-m reference height for computing the drag coefficient over the sea is admittedly arbitrary.

The literature contains occasional suggestions that a scaling length based on the wavelength of the peak waves

lp is a more natural reference height. Attempts to confirm this hypothesis must be done carefully, however,

because of the potential for fictitious correlation between nondimensional dependent and independent

variables. With the DMAJ dataset as an example, this study reviews the issue of fictitious correlation in

analyses that use lp/2 as the reference height for evaluating the drag coefficient and that use kp (52p/lp) as a

scale for the roughness length z0. (The DMAJ dataset is a compilation of four individual datasets; D, M, A,

and J, respectively, identify the lead authors of the four studies: Donelan, Merzi, Anctil, and Janssen.) This

dataset has been used in several previous studies to evaluate the dependence of kpz0 and the drag coefficient

evaluated at lp/2 on the nondimensional wave parameter v* 5 vpu*/g. Here vp is the radian frequency of the

peak in the wind–wave spectrum, u* is the friction velocity, and g is the acceleration of gravity. Because the

DMAJ dataset does not, however, include independent measurements of lp and vp, lp had to be inferred from

measurements of vp through the wave dispersion relation. The presence of vp in both the dependent and

independent variables, therefore, exacerbates the fictitious correlation. One conclusion, thus, is that using lp

to formulate the drag coefficient and the nondimensional roughness length as functions of a nondimensional

variable that includes vp requires a dataset with independent measurements of lp and vp.

1. Introduction

‘‘The study of error is not only in the highest degree

prophylactic, but it serves as a stimulating introduction

to the study of truth.’’ —Walter Lippmann

The idea of basing the drag coefficient over the ocean

on a reference wind speed evaluated at a height deter-

mined by the properties of the wind waves has merit.

After all, the standard 10-m reference height is occa-

sionally under water in high winds.

The literature contains periodic discussions of using the

wind speed evaluated at a reference height based on the

wavelength of the peak of the wavenumber spectrum of

the wind waves lp for parameterizing wave growth and

drag over the ocean (Al-Zanaidi and Hui 1984; Donelan

and Pierson 1987; Pierson 1990; Resio et al. 1999; Oost

et al. 2002; Hwang 2004, 2005a,b,c, 2006). Most of these

studies also use another wave parameter, such as vp, the

radian frequency of the peak in the wave frequency

spectrum, to create nondimensional variables. If lp and

vp are not measured independently, however, such

analyses can suffer from fictitious correlation.

As an example of such hazards, I reanalyze the

DMAJ dataset, which is a compilation from data tables

included in the papers by Donelan (1979), Merzi and

Graf (1985), Anctil and Donelan (1996), and Janssen

(1997). The DMAJ dataset has been used previously to

investigate the behavior of an air–sea drag coefficient

evaluated at lp/2 and the benefits of scaling the

roughness length z0 with kp (52p/lp) (Hwang 2004,

2005a,b,c). In these studies, both kpz0 and the drag

coefficient evaluated at lp/2 were plotted against the

nondimensional wave parameter v* 5 vpu*/g, where

u* is the friction velocity and g (59.81 m s21) is the

acceleration of gravity. In both plots, the correlation was

remarkably tight; the analyses therefore seemed to prove

the value of lp scaling.

Unfortunately, the DMAJ dataset was not adequate

for these analyses. It contains no direct measurements
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of lp; hence, lp values in the dataset came from mea-

surements of vp through the dispersion relation for wind

waves,

v2 5 gk tanh(kD), (1.1)

where v is the wave frequency, k is the wavenumber,

and D is the water depth. As a result, the dependent

variables—kpz0 and the neutral-stability drag coefficient

evaluated at lp/2, CDN,l
p
/2—are based on some of the

same values as the independent variable, v* 5 vpu*/g.

The correlations in scatterplots of these nondimensional

variables are therefore largely fictitious and, thus, no

proof for the validity of wavelength scaling.

Hicks (1978a, 1978b, 1981) and Kenney (1982) first

alerted the oceans and atmospheres community to the

hazards of fictitious correlation 30 years ago, but the

medical community has known about the problems

created by using the same variable for scaling both de-

pendent and independent variables for a hundred years

(Pearson 1897; Pearson et al. 1910). With the DMAJ

dataset as an example, I review the general problem of

fictitious correlation and how to mathematically eval-

uate its potential effect. I do this by developing equa-

tions that predict the best fits for CDN,lp/2 and kpz0 as

functions of v* under the assumption that none of the

measured variables are correlated. Lines fitted to scat-

terplots that are based on this analysis are little different

from lines based on the actual data.

Randomly scrambling the kp values in the DMAJ

dataset reiterates the effects of the fictitious correlation:

plots of both C
DN,lp/2

and kpz0 versus v* still have good

correlation because of the shared variables.

These analyses also imply requirements for the spe-

cific problem of testing the validity of wavelength scaling

for parameterizing air–sea drag or wind–wave growth.

Because the wavelength at the peak of the wavenumber

spectrum is the key variable in such studies, it should be

directly measured.

2. The DMAJ dataset

The sources in the DMAJ dataset include Donelan

(1979) and Anctil and Donelan (1996), who collected

their data in the west end of Lake Ontario; the water

depth was 12 m in the former set and ranged from 2 to

12 m in the latter set. Merzi and Graf (1985) made their

measurements in Lake Geneva (Switzerland) in water

that was 3 m deep. Janssen (1997) obtained his data in

the North Sea in water 18 m deep.

All four sources tabulate eddy-covariance or profile

measurements of the friction velocity. All four sources

also include UN10, the wind speed at a reference height

of 10 m with stratification effects removed. I refer to this

variable as the neutral-stability, 10-m wind speed. From

these data, the neutral-stability, 10-m drag coefficient is

simply

C
DN10

5
u*

U
N10

� �2

. (2.1)

Furthermore, because in neutral stratification the wind

speed profile obeys

U
N

(z) 5
u*
k

ln
z

z
0

� �
, (2.2)

where z is the height and k (50.40) is the von Kármán

constant, the roughness length derives from

z
0

5 10 exp
�kU

N10

u*

� �
. (2.3)

Here, z0 is in meters. Not all four of the sources tabulate

z0, but it can be calculated from (2.3) using the reported

values of u* and UN10.

Finally, on combining (2.1) and (2.2), we obtain the

standard relationship between the drag coefficient and

the roughness length:

C
DN10

5
k

ln(10/z
0
)

� �2
. (2.4)

Here, z0 must be expressed in meters.

The DMAJ dataset is potentially useful for param-

eterizing air–sea momentum exchange because the

individual sources also tabulate wave variables. In par-

ticular, they all report vp; fp (5vp/2p), the cyclic peak

wave frequency; or cp, the phase speed of the peak

waves. From this latter value, vp was derived from the

definition

v
p

5 k
p
c

p
(2.5)

and the dispersion relation in (1.1).

None of the four sources, however, report the key

variable for studying wavelength scaling, the wavelength

of the peak waves. The values for lp in the dataset

therefore came from vp and the dispersion relation in

(1.1). Once we have this quantity, however, we can use it

in (2.1) and (2.2) to estimate the drag coefficient derived

from the neutral-stability wind speed at a reference

height of lp/2:

3012 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39



C
DN,l

p
/2

5
k

ln[p/(k
p
z

0
)]

( )2

, (2.6)

where, remember, kp 5 2p/lp. In effect, these manipu-

lations introduce one of the main independent variables,

vp, into the dependent variable.

The DMAJ dataset has also been used to explore

scaling z0 with kp; plots of the nondimensional variable

kpz0 versus vpu*/g result. Again, vp occurs prominently

in both dependent and independent variables.

Figure 1 compares the vp and kp values in the DMAJ

dataset. The line in the figure is the deep-water disper-

sion relation:

v2
p 5 gk

p
. (2.7)

Donelan’s (1979) and Janssen’s (1997) data follow this

relation almost perfectly; both thus observed deep-

water waves. Merzi and Graf’s (1985) data deviate slightly

from (2.7); their data reflect waves in transition between

deep and shallow water. Most of Anctil and Donelan’s

(1996) observations were in shallow water, where depth

effects cause their data to deviate most from (2.7).

The correlation in Fig. 1, however, is much too good

for vp and kp to be independently measured geophysi-

cal quantities (cf. Donelan 1979). In fact, a plot (not

shown) of the vp values in the DMAJ dataset against

vp values computed from the dispersion relation (1.1)

using the reported kp values is perfectly correlated. In

other words, in the DMAJ dataset, kp comes from vp

through the dispersion relation: they were not measured

independently.

Several reasons exist for doubting that, in a natural

environment, independently measured vp and kp values

will follow (1.1) perfectly. Equation (1.1) is the linear-

ized dispersion relation; its derivation presumes waves

of small amplitude (e.g., Tucker and Pitt 2001, p. 25).

Nonlinear (high amplitude or breaking) waves will cause

discrepancies in (1.1). Second, currents cause Doppler

shifts in v such that it is no longer related to k precisely

as in (1.1) (Massel 2007, p. 41f; Pierson 1990). Third,

because the wave field is an ensemble of many wave

groups and amplitudes, identifying the peak in the fre-

quency spectrum and the peak in the wavenumber spec-

trum is not without ambiguity.

Finally, Plant et al. (2005) state that the true peak

wavenumber will always be smaller than the wave-

number related to the true peak frequency through

(1.1). Plant (2009) proves this result. Briefly, because

frequency [F(v)] and wavenumber [F(k)] spectra are

related by (Tucker and Pitt 2001, p. 33f)

F(k) 5
c

g

k

� �
F(v), (2.8)

where cg is the group velocity, the actual relationship

between kp and vp depends on the shape of the wave

spectrum. As a result, any empirical kp–vp relationship

should demonstrate some randomness.

In light of these several complications, independently

measured vp and kp values would not follow (1.1) or

even the deep-water relation (2.7) exactly and would be

more scattered than the values in Fig. 1.

3. Quantifying the fictitious correlation

Figure 1 hints at the shortcomings in the DMAJ data-

set. Now I mathematically quantify the potential for

fictitious correlation in plots of CDN,lp/2 and kpz0 versus

vpu*/g when vp and lp are not independent. Some of

these mathematical techniques follow Hicks’s (1978a)

suggestions, though the methods in Andreas (2002) and

Andreas et al. (2006) are closer to what I use here. In

essence, the following analysis uses differentials or, in

Margenau and Murphy’s (1956, p. 504ff) terminology,

‘‘residuals.’’

Because of the range of values and the likelihood of

a power-law relation between them, it is common to

plot lnCDN,lp/2 versus lnv* (e.g., Hwang 2004, 2005a,b,c).

Likewise, I consider a plot of lnkpz0 versus lnv*. For

each plot, we look for a least squares fit to the scatterplot

such that

FIG. 1. Scatterplot of the peak wavenumber and the peak fre-

quency from the DMAJ dataset. The curve is the deep-water dis-

persion relation in (2.7). The DMAJ dataset has 142 lines of data;

many of these points do not show up as distinct markers here,

though, because they have the same vp values and, thus, the same

kp values. For example, the Merzi and Graf (1985) set contains 60

observations but only 6 appear in this plot because of duplications

in vp (and therefore in kp).
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y 5 ax 1 b, (3.1)

where y is the dependent variable—either lnC
DN,lp/2

or

lnkpz0—and x is the independent variable, lnv*. The

fitting gives the best slope a and intercept b.

In least squares linear regression, the slope comes

from

a 5
cov[x, y]

s2
x

, (3.2)

where sx
2 denotes the variance in x and cov[x, y] indi-

cates the covariance between x and y. The intercept then

derives from

b 5 y� ax, (3.3)

where the overbars denote the averages of x and y.

From pure mathematics, I can compute a and b from

the DMAJ dataset under the assumption that none of

the fundamental variables—kp, u*, UN10, or D—are

correlated. That is, the covariance between any two of

these is assumed to be zero. In effect, this approach

explores the mathematics of the analysis rather than the

physics of the hypothesis that kp is a useful length scale.

a. Plots of C
DN,lp/2

versus vpu*/g

To begin, I evaluate the relevant differentials. For

lnv*, where

v* 5
v

p
u*

g
, (3.4)

d(lnv*) 5
1

v*

›v*
›v

p

dv
p

1
›v*
›u*

du*

 !
. (3.5)

Here I have ignored any variation in g. Equation (3.4)

yields the partial derivatives:

›v*
›v

p

5
v*
v

p

and (3.6)

›v*
›u*

5
v*
u*

. (3.7)

Hence, (3.5) becomes

d(lnv*) 5
dv

p

v
p

1
du*
u*

. (3.8)

This analysis is more transparent, however, if we use

kp rather than vp as a relevant variable. Then, from

(1.1),

dv
p

5
›v

p

›k
p

dk
p

1
›v

p

›D
dD. (3.9)

From (1.1), the partial derivatives are

›v
p

›k
p

5
v

p

2

1

k
p

1
D sech2(k

p
D)

tanh(k
p
D)

" #
and (3.10)

›v
p

›D
5

v
p
k

p
sech2(k

p
D)

2 tanh(k
p
D)

. (3.11)

Substituting (3.10) and (3.11) into (3.9) and this result

into (3.8) gives

d(lnv*) 5
1

2k
p

1 1
k

p
D sech2(k

p
D)

tanh(k
p
D)

" #
dk

p

1
du*
u*

1
k

p
sech2(k

p
D)

2 tanh(k
p
D)

dD. (3.12)

To simplify the subsequent analysis, I rewrite (3.12) as

d(lnv*) 5 C
v1

dk
p

1 C
v2

du* 1 C
v3

dD, (3.13)

where

C
v1

5
1

2

1

k
p

1
D sech2(k

p
D)

tanh(k
p
D)

" #
, (3.14a)

C
v2

5
1

u*
, and (3.14b)

C
v3

5
k

p
sech2(k

p
D)

2 tanh(k
p
D)

. (3.14c)

In (3.13), I interpret the differentials as deviations

from their respective means and the C coefficients as

averages over the entire DMAJ dataset. Consequently,

under the assumption that kp, u*, and D are not corre-

lated with each other, I square (3.13) and average to

compute the variance of lnv*:

s2
lnv*

5 d(lnv*) d(lnv*)

5 C2
v1s2

kp
1 C2

v2s2
u*

1 C2
v3s2

D. (3.15)

Here, s2 denotes the variance, the subscripts indicate

the relevant variables, and the overbar means an aver-

age over the DMAJ dataset. The variances of kp, u*, and

D are defined as s2
lnv*

is—as the average of the square of

the differentials. Notice that (3.15) includes no terms
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like cov[kp, u*] under the assumption that none of the

fundamental variables are correlated.

Next, consider the differential of the logarithm of

CDN,lp/2. From (2.6),

d(lnC
DN,lp/2

) 5
1

C
DN,lp/2

›C
DN,lp/2

›k
p

dk
p

 

1
›C

DN,lp/2

›z
0

dz
0

!
. (3.16)

From (2.6), we easily obtain

›C
DN,lp/2

›k
p

5
2C

DN,lp/2

k
p

ln[p/(k
p
z

0
)]

and (3.17)

›C
DN,lp/2

›z
0

5
2C

DN,lp/2

z
0

ln[p/(k
p
z

0
)]

. (3.18)

Therefore, (3.16) becomes

d(lnC
DN,lp/2

) 5
2

ln[p/(k
p
z

0
)]

dk
p

k
p

1
dz

0

z
0

 !
. (3.19)

But remember, z0 is not a fundamental variable in this

analysis; it derives from u* and UN10 through (2.3). This

equation gives

dz
0

5
›z

0

›u*
du* 1

›z
0

›U
N10

dU
N10

, (3.20)

where

›z
0

›u*
5

kz
0
U

N10

u2
*

(3.21)

and

›z
0

›U
N10

5�
kz

0

u*
. (3.22)

Substituting (3.21) and (3.22) into (3.20) and this re-

sult, in turn, into (3.19) yields

d(lnC
DN,lp/2

) 5
2

ln[p/(k
p
z

0
)]

dk
p

k
p

1
kU

N10

u2
*

du*

 

� k

u*
dU

N10

�
. (3.23)

Again, to make subsequent manipulations more obvious

and less cumbersome, I rewrite this as

d(lnC
DN,lp/2

) 5 C
C1

dk
p

1 C
C2

du* 1 C
C3

dU
N10

,

(3.24)

where

C
C1

5
2

k
p

ln[p/(k
p
z

0
)]

, (3.25a)

C
C2

5
2kU

N10

u2
*

ln[p/(k
p
z

0
)]

, and (3.25b)

C
C3

5� 2k

u* ln[p/(k
p
z

0
)]

. (3.25c)

As above, I interpret these C coefficients as averages

over the DMAJ dataset and, therefore, estimate the

variance of lnCDN,lp/2 as

s2
lnCDN,lp /2

5 d(lnC
DN,lp/2

) d(lnC
DN,lp/2

)

5 C2
C1s2

kp
1 C2

C2s2
u*

1 C2
C3s2

UN10
, (3.26)

which introduces the variance in UN10, s2
UN10

. Again,

(3.26) includes no covariance terms because these are

all assumed to be zero.

Equations (3.13) and (3.24) provide the covariance

between lnCDN,lp/2 and lnv*, which then yields the slope

a from (3.2). This covariance is

cov[lnC
DN,lp/2

, lnv*] 5 d(lnC
DN,lp/2

) d(lnv*)

5 C
v1

C
C1

s2
kp

1 C
v2

C
C2

s2
u*

(3.27)

and is generally nonzero because both s2
kp

and s2
u*

are

positive definite and the Cs are not all near zero. That is,

because CDN,lp/2 and v* are formed from some of the

same variables, they have built-in correlation despite the

assumption that none of the fundamental variables are

correlated.

Figure 2 shows the scatterplot of CDN,lp/2 and v*
values from the DMAJ dataset. The plot exhibits a re-

markably high correlation coefficient for geophysical

data, 0.949.

Least squares regression as represented by (3.1)–(3.3)

presumes that the x variable is known perfectly and the y

variable contains random uncertainty. In most geo-

physical datasets, including the DMAJ set, both x and y

are uncertain. To acknowledge this fact, I usually cal-

culate three fitting lines: one based on the least squares

fit of y versus x, a second based on x versus y, and the
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bisector of these two lines (e.g., Andreas 2002). That

bisector usually represents the linear trend in the data

better than either of the former two lines. The dotted

line in Fig. 2 is this bisector; its equation is

C
DN,lp/2

5 0.0136v0.742
* . (3.28)

From the equations that I have developed for

cov[lnCCN,lp/2, lnv*], s2
lnCDN, lp /2

, and s2
lnv*

under the as-

sumption that none of the variables in the DMAJ data-

set are correlated—namely, (3.27), (3.26), and (3.15),

respectively—I can use (3.1)–(3.3) to compute y versus

x, x versus y, and bisector fits that reflect the fictitious

correlation. The solid line in Fig. 2 is that bisector; its

equation is

C
DN,lp/2

5 0.0183v0.851
* . (3.29)

Figure 2 emphasizes visually what (3.28) and (3.29)

tell us: the best fit through the DMAJ data is not very

different from a fit that assumes none of the funda-

mental variables—kp, u*, UN10, and D—are correlated

with each other. The good correlation between CDN,lp/2

and v* evident in Fig. 2 results, largely, from fictitious

correlation induced by using the same quantities to

create both x and y variables.

Table 1 lists the values that went into my computa-

tions of the fictitious correlation. In particular, we see

from (3.27) and this table that cov[lnCDN,lp/2, lnv*] and,

thus, the slope must be positive—even with no correla-

tion between independent variables—because s2
kp

, s2
u*

,

Cv1, Cv2, CC1, and CC2 are all positive.

Willmott (1982) used the mean-square error (MSE) to

evaluate how well a model represents data. With Fig. 2

as an example, that metric is

MSE 5
1

N
�
N

i51
(y

i
� y

mi
)2, (3.30)

where the yi are the observations of lnCDN,lp/2 and the

ymi are the model estimates based on

lnC
DN,lp/2

5 a lnv* 1 b. (3.31)

We have two candidates for the model fit, (3.31): one is

the log–log version of (3.28), which was obtained by

fitting the data (coefficients denoted ad and bd); the

other is the log–log version of (3.29), obtained by eval-

uating the fictitious correlation (coefficients denoted afc

and bfc).

In the appendix, I derive an expression for MSE that

works for both of these fits. Table 2 lists the required data.

From Table 2 and (A3), the mean-square error for the

data-based fit is MSEd 5 0.012 50; the mean-square error

for the fit based on the fictitious correlation is MSEfc 5

0.01668. That is, for this dataset, assuming that lp/2 is

a meaningful scaling height for the drag coefficient

improves our ability to explain the scatter in the data

by only 25% compared to the assumption that none

of the variables in C
DN,lp/2

and v* are correlated [viz.,

(MSE
d
�MSE

fc
)/MSE

fc
5 �0.25].

Another way to evaluate fictitious correlation in a

dataset is to randomize the variables (e.g., Hicks 1981;

Andreas and Hicks 2002; Klipp and Mahrt 2004; Baas

et al. 2006; Mahrt 2008). Because the hypothesis we are

discussing is that lp (or kp) is the relevant length scale

for parameterizing air–sea drag, I randomized the kp

values in the DMAJ dataset. In other words, I randomly

scrambled all the kp values in the DMAJ dataset several

times while holding u*, UN10, and D in position. The vp

values in the DMAJ dataset are also now randomized

because they are related to kp through (1.1). In effect,

after this scrambling, kp and vp should be uncorrelated

with the other fundamental variables, u*, UN10, and D,

and should have no ability to predict the air–sea drag

coefficient.

Figure 3 shows a plot like Fig. 2 but with CDN,lp/2 and

v* now calculated from these randomized data. I would

expect a fairly scattered plot under normal circum-

stances; but the plot in Fig. 3 is quite tight, with a cor-

relation coefficient of 0.762. In other words, randomizing

kp has not destroyed the correlation between CDN,lp/2

FIG. 2. Scatterplot of the CDN,lp/2 and v* 5 vpu*/g values from

the DMAJ dataset. The dotted line is the best fit through the data,

(3.28), and represents the bisector of y vs x and x vs y least squares

fits. The solid line is (3.29) and represents the fictitious correlation,

which is based on the assumption that none of the fundamental

variables are correlated. The correlation coefficient is 0.949.
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and v*, which must be required by the shared variables

rather than any underlying physics.

The fitting line in Fig. 3 is immaterial, so I do not give

its equation. The standard deviations listed in Table 1 do

not change when kp is randomized; but the coefficients

Cv1, Cv3, CC1, CC2, and CC3 all do because they include kp

and other independent variables. Consequently, another

scrambling of the kp values in the DMAJ dataset would

yield a scatterplot with a different slope than in Fig. 3.

b. Plots of kpz0 versus vpu*/g

Next, I consider using kp to nondimensionalize z0:

plots of lnkpz0 versus lnv* result. To investigate the

fictitious correlation in such plots, I again use differen-

tials. In this case,

d(lnk
p
z

0
) 5

1

k
p
z

0

(z
0

dk
p

1 k
p

dz
0
). (3.32)

From (3.20)–(3.22), this becomes

d(lnk
p
z

0
) 5

dk
p

k
p

1
kU

N10

u2
*

du*�
k

u*
dU

N10
. (3.33)

To simplify the notation, I rewrite (3.33) as

d(lnk
p
z

0
) 5 C

kz1
dk

p
1 C

kz2
du* 1 C

kz3
dU

N10
, (3.34)

where

C
kz1

5
1

k
p

, (3.35a)

C
kz2

5
kU

N10

u2
*

, and (3.35b)

C
kz3

5� k

u*
. (3.35c)

Table 1 also lists these Ckz values for the DMAJ dataset.

As before, the variance of lnkpz0 is

s2
lnk

p
z0

5 d(lnk
p
z

0
) d(lnk

p
z

0
)

5 C2
kz1s2

kp
1 C2

kz2s2
u*

1 C2
kz3s2

U
N10

, (3.36)

and the covariance between lnkpz0 and lnv* is

cov[lnkpz
0
, lnv*] 5 d(lnk

p
z

0
) d(lnv*)

5 C
v1

C
kz1

s2
kp

1 C
v2

C
kz2

s2
u*

. (3.37)

With these two results and (3.15), I can compute the

fictitious correlation in a plot of lnkpz0 versus lnv*.

Notice, with the values listed in Table 1, (3.37) requires a

large, positive value of cov[lnkpz0, lnv*] and, thus, a

positive slope despite no assumed correlation between

any variables.

Figure 4 shows a scatterplot of the kpz0 and v* values

in the DMAJ dataset. Again, the correlation is tight; the

correlation coefficient is 0.949. As in Fig. 2, the dotted

line in the figure is the bisector of least squares fits of y

versus x and x versus y. Its equation is

k
p
z

0
5 3.071v3.503

* . (3.38)

The solid line in Fig. 4 shows the fictitious correlation

in the data according to the equations that I have de-

rived in this and in section 3a. Again, this line is the bi-

sector of the y versus x and x versus y fictitious fits and is

FIG. 3. As in Fig. 2, a scatterplot of CDN,lp/2 vs v* 5 vpu*/g from

the DMAJ dataset; but, here, the kp values have been randomized

with respect to the other reported variables. Still, the correlation

coefficient is 0.762. The line is the best fit to the data, determined as

the bisector of y vs x and x vs y fits.

TABLE 1. Quantities computed from the DMAJ dataset and used

here to assess the fictitious correlation.

s
kp

0.324 m21

s
u*

0.213 m s21

sUN10
3.582 m s21

sD 7.105 m

Cv1 4.433 m

Cv2 2.296 s m21

Cv3 0.035 m21

CC1 1.316 m

CC2 4.527 s m21

CC3 20.192 s m21

Ckz1 6.588 m

Ckz2 22.017 s m21

Ckz3 –0.918 s m21
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k
p
z

0
5 3.431v3.544

* . (3.39)

In Fig. 4, this result almost hides the dotted line, which is

based on regressing the actual data. Again, I conclude

that shortcomings in the DMAJ dataset create severe

fictitious correlation in plots of nondimensional vari-

ables. The dataset is therefore inadequate for studying

how air–sea momentum transfer depends on kp.

To emphasize this conclusion, I look at the mean-

square errors in predictions of lnkpz0 based on the fit to

the data, (3.38), and the fit required by the fictitious

correlation, (3.39). I again use the MSE as defined by

(3.30), a log–log representation that is now

y
m

5 lnkpz
0

5 a lnv* 1 b. (3.40)

I also use the equations derived in the appendix and the

values in Table 2.

For the data in Fig. 4, the mean-square error for the

data-based fit is MSEd 5 0.2809. For the fit that reflects

only fictitious correlation, the mean-square error is

MSEfc 5 0.2844. The hypothesis that kp is a useful scale

for nondimensionalizing z0, thus, receives little support

from this figure: the kp scaling explains the scatter in the

data only 1.2% better than the fit that assumes none

of the variables in kpz0 and v* are correlated [i.e.,

(MSEd �MSEfc)/MSEfc 5 �0.012].

Finally, I show in Fig. 5 a plot like Fig. 4; but here the

kp values in the DMAJ dataset are randomly scrambled,

as before. In typical geophysical datasets, such scram-

bling would produce a truly scattered scatterplot; but

Fig. 5 still shows fairly good correlation between kpz0

and v*. The correlation coefficient is 0.756. The vari-

ables that kpz0 and v* share—namely, kp and u*—simply

require a large, positive covariance between lnkpz0 and

lnv* regardless of the presence or absence of underlying

physics.

As with Fig. 3, the equation for the fitting line in Fig. 5

is immaterial because some of the coefficients used to

determine it—namely, Cv1 and Cv3—change each time

kp is scrambled.

4. Conclusions

Fictitious correlation can be insidious. Here I have

used the DMAJ dataset, which includes measurements

TABLE 2. Quantities computed from the DMAJ dataset that are

used to evaluate the mean-square error in the log–log fits based on

the data and on strictly fictitious correlation.

N 142

s2
lnv*

0.1982

s2
lnCDN,lp /2

0.1090

s2
lnkpz0

2.4383

cov[lnCDN,lp /2, lnv*] 0.1385

cov [lnkpz0, lnv*] 0.6548

ad for lnC
DN,lp/2

2lnv* fit 0.7419

afc for lnC
DN,lp/2

2lnv* fit 0.8508

ad for lnkpz02lnv* fit 3.5032

afc for lnkpz02lnv* fit 3.5438

FIG. 4. Scatterplot of the kpz0 and v* 5 vpu*/g values from the

DMAJ dataset. The dotted line (almost hidden by the solid line) is

the best fit through the data, (3.38). The solid line is (3.39) and

represents the fictitious correlation, which is based on the as-

sumption that none of the fundamental variables are correlated.

The correlation coefficient is 0.949.

FIG. 5. As in Fig. 4, a scatterplot of kpz0 vs v* 5 vpu*/g. But here,

the kp values in the DMAJ dataset have been randomized with

respect to the other variables. Nevertheless, the data still have a

correlation coefficient of 0.756. The line is the best fit to the data,

determined as the bisector of the least squares y vs x and x vs y fits.
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of air–sea momentum exchange and wave variables, to

demonstrate three distinct points related to fictitious

correlation. This dataset has been used in previous

studies to investigate the utility of parameterizing air–

sea momentum exchange in terms of the peak wave-

length of the wind–wave wavenumber spectrum lp. The

nondimensional quantities of interest are the neutral-

stability drag coefficient evaluated at a height of lp/2,

CDN,lp/2, and the roughness length z0 nondimensionalized

with kp (52p/lp), kpz0. Both CDN,lp/2 and kpz0 are pre-

sumed to be predicted by another nondimensional var-

iable, v* 5 vpu*/g, where vp is the radian frequency of

the peak of the wave frequency spectrum.

My first point has been to suggest warning signs and

then to demonstrate techniques for evaluating fictitious

correlation, with the DMAJ dataset as an example. First,

the dependent variables of interest, CDN,lp/2 and kpz0,

both share u* with the independent variable v*.

Moreover, because the DMAJ dataset does not include

independent measurements of the required variables lp

and vp, lp (i.e., kp) had to be calculated from the mea-

surements of vp through the wave dispersion relation.

As a result, all three nondimensional variables also

share vp. The potential for fictitious correlation in these

analyses is therefore high.

I have derived equations to quantify the effects of the

fictitious correlation created by the shared variables. In

brief, the equations predict the least squares fits of

lnCDN,lp/2 versus lnv* and of lnkpz0 versus lnv* under

the assumption that none of the fundamental variables—

kp, u*, UN10, and D—are correlated. In contrast, an im-

plicit assumption of wavelength scaling is that kp must be

correlated with some of these other variables.

In log–log plots of both CDN,lp/2 versus v* and kpz0

versus v*, the fitting lines based on my analysis of the

fictitious correlation (i.e., assuming uncorrelated vari-

ables) are not very different from the best fitting lines

through the data. The nondimensional plots are, thus,

seriously contaminated by fictitious correlation.

My analysis of the mean-square error in model fits that

are based on the data and on the assumption that the only

correlation results from the shared variables—the fit

based on fictitious correlation—reiterated this conclusion.

For the lnCDN,lp/2 versus lnv* data, the mean-square

error based on lp/2 scaling was only 25% less than the

mean-square error based on the assumption of no corre-

lation among variables. For the lnkpz0 versus lnv* data,

kp scaling improved the mean-square error by just 1.2%.

Because the premise in these analyses is that kp is a

fundamental parameter of air–sea momentum exchange,

as a third approach to studying the fictitious correla-

tion, I randomized the kp values in the DMAJ dataset.

Because kp and vp are related in the DMAJ dataset

through the dispersion relation, this process also made

vp uncorrelated with all the other variables except kp.

Nevertheless, log–log plots of CDN,lp/2 versus v* and

kpz0 versus v* from this randomized set still exhibit

good correlation. Correlation coefficients for both plots

imply that v* explains at least 50% of the variance of

CDN,lp/2 and of kpz0. Hence, again, the shared variables

rather than any underlying physics explain why CDN,lp/2

and kpz0 are so well correlated with vpu*/g in the DMAJ

dataset.

The second point of my analysis is to establish that

another interpretation exists for the results that Hwang

(2004, 2005a,b,c) published. He concluded that wave-

length scaling is a useful concept by showing that both

CDN,lp/2 and kpz0 are well correlated with v*. My re-

analysis of the DMAJ dataset suggests, however, that

Hwang’s finding are dominated by fictitious correlation

and, thus, do not establish the validity of wavelength

scaling.

The third point of my analysis, therefore, is that future

attempts to validate wavelength scaling should include

direct measurements of lp. In particular, CDN,lp/2, kpz0,

and v* already share u*. If lp has not been measured but

must be estimated from vp or cp, these three nondimen-

sional variables also share vp. Figures 2–5 demonstrate

how badly we can be misled by fictitious correlation in

such circumstances and, thus, argue for forming nondi-

mensional variables from only independent observations.
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APPENDIX

Estimates of the Mean-Square Error

A general least squares linear regression model is

y
m

5 ax 1 b, (A.1)

where x is an observation and ym is the corresponding

model prediction. Although for both Figs. 2 and 4 I

obtained a as a bisector of y versus x and x versus y fits, b

still derives from (3.3). Substituting (A.1) and (3.3) into

the definition of the mean-square error (3.30) thus yields
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MSE 5
1

N
�
N

i51
[(y

i
� y)� a(x

i
� x)]2. (A.2)

Expanding the square in (A.2) finally leads to

MSE 5
N � 1

N
(s2

y � 2a cov[x, y] 1 a2s2
x). (A.3)

Here, the N 2 1 occurs because sx
2, sy

2, and cov[x, y] are

unbiased estimators of the x and y variances and the

covariance between x and y, respectively.

Equation (A.3) is accurate regardless of whether the

coefficients a and b in (A.1) derive from fitting the data

or from assuming only fictitious correlation. Hence,

(A.3) is what I use to evaluate the mean-square error for

the various fits discussed in section 3. Table 2 lists the

slopes for both the data-based fits (ad) and the fits im-

plied by fictitious correlation (afc).
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