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DIAGNOSTIC DIAGRAMS AND T R A N S F E R  FUNCTIONS FOR 

OCEANIC WAVE-GUIDES 

BY ]~LAVIAN ABRAMOVICI* 

ABSTRACT 

The variation of frequency F as a function of wave numberK and the associated 
spectral transfer function are computed for different modes in a complex oceanic 
wave-guide. The model consists of a fluid layer resting upon a three-layer 
elastic half-space. The layers and the half-space are homogeneous. 

The comparison of theoretical results with measured power spectra for two 
records taken in the Pacific Ocean shows qualitative agreement stressing 
strongly the role of the leaking compressional organ-pipe modes which are not 
continuations of normal modes beyond cutoff frequency. 

The mathematical procedure consists in the integration of the second-minor 
propagator equation of Gilbert and Backus (1966).The determinant represent- 
ing the secular function is computed directly rather than by summing the prod- 
ucts of its elements. This improves both accuracy and computing time. The in- 
tegration can be reduced to that of a third-order nonlinear differential system 
which, for K = 0, splits into two Riccati equations. 

The (F, K)-diagram corresponding ~o every mode is obtained by a technique 
based on properties of similar diagrams for simple oceanic and continental 
st ructu res. 

INTRODUCTION 

The mode theory (see Pekeris, 1948) has been extensively used in studying elas- 
tic wave propagation in models consisting of one layer over a homogeneous half- 
space. 

When the disturbance originates from a discrete source, the quantities defining 
the motion, like displacements, particle-velocity, etc. are represented as super- 
positions of free oscillations of the system. The corresponding frequencies are solu- 
tions of an eigen-value problem and are obtained as roots of a secular equation. 

The roots ~hich are real and correspond to phase-velocities lower than the shear- 
velocity in the half-space, give the normal or locked modes. The entire energy is 
trapped in the wave-guide and therefore these modes are predominant at large dis- 
tances from the source. 

The other roots of the secular equation, which are in general complex, give rise 
to the leaking modes. In this type of motion, energy is transmitted to the half- 
space so that  the amplitude decreases both with time and distance. The attenuation 
depends upon the imaginary part  of the complex frequency. 

Leaking mode propagation in a layered liquid was investigated by Rosenbaum 
(1960) and extended to a simple oceanic wave-guide by Phinney (1961). A systema- 
tic study of the frequency as function of wave number (diagnostic diagrams) and 
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detailed numerical results for simple continental and oceanic structures were given 
by Gilbert (1964). 

Some of the leaking modes are continuations of normal modes below the cutoff 
frequency. 

They start either as solutions of the Rayleigh equation, the frequency vanishing 
when the wave number goes to zero, or as organ-pipe modes of compressionM or 
shear type. Having higher group velocities, they are present in the earlier portions 
of the seismograms. These leaking modes are associated with the oscillatory motion 
following the arrival of P or S at moderate epicentral distances (Oliver and Major, 
1960; Oliver, 1961; Su and Dorman, 1965). They are also recorded in model experi- 
ments (Gilbert and Laster, 1962). 

There are other roots of the secular equation, which are not continuations of 
locked modes. They start also as organ-pipe modes. The corresponding group veloc- 
ity is very low so that these modes are present only in the later portions of the seis- 
mograms and therefore their attenuation is very strong. The contribution of these 
modes is important however in mieroseisms, in the neighbourhood of the generating 
area. 

The object of this paper is to investigate the modes of all types in a complex 
oceanic wave-guide. The dispersion relationship will be presented mainly as diag- 
nostic diagrams, i.e., graphs of the real and imaginary parts of the complex fre- 
quency as functions of real wave number. 

We ~lso investigate the relative contribution of different modes to the response of 
an oceanic structure excited by a random pressure field. Following Hasselmann's 
theory (Hasselmann, 1963) we represent the response of the wave-guide to a con- 
tinuous random forcing field in terms of functions expressing average properties 
of the quantities describing the motion. Such a function is the power spectrum. 
When the power spectrum of the exciting field is known, that of the response can be 
calculated in a first approximation. Otherwise we can calculate only the transfer 
function which is entirely determined by the properties of the wave guide. If the 
power-spectrum of the external pressure field has a smooth variation, the transfer- 
function will represent, at least qualitatively, the power spectrum of the response. 

In order to compare theoretical and observational results, we consider two power- 
spectra corresponding to records taken at the bottom of the Pacific Ocean. The com- 
plex structures used in the theoretical calculations correspond to stations near the 
locations of the recording instruments. The results of this comparison are given in 
Section 4. 

The first step of this calculation consists in finding the variation of frequency 
with wave number. The results for several leaking and locked modes are presented 
in Section 3 in the form of diagnostic diagrams. Group and phase velocities are also 
presented as functions of the frequency. Some of the mathematical steps are given 
in Section 1 whereas others as well as some of the formulae are given in the Appen- 
dices. The computational procedure is outlined in Section 2. 

(1) Mathematical solution. We consider an oceanic wave-guide consisting of a 
homogeneous fluid layer of depth H2 resting upon a heterogeneous solid layer of 
depth H1 • The whole structure, which is of depth H = H1 d- / /2 ,  is welded to a 
homogeneous solid half-space. We take a cartesian system of coordinates having 
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the origin at the interface between the wave-guide and the half-space. The x-axis 
is situated in the plane of this interface and so is the z-axis. The y-axis is perpendic- 
ular to this plane and points upwards (Figure 1). 

The quantities related to the half-space will be denoted using the index 0, those 
belonging to the fluid layer, using the index 2. 

We want to compute the power spectrum of the vertical displacement at the bot- 
tom of the fluid layer in the assumption that a random pressure field is acting on 
the surface of the wave-guide (Hasselmann, 1963). Supposing that the pressure 
field is homogeneous and stationary, it can be represented by the Fourier-Stieltjes 
integrals 

p(x, t) = f f  e i(k*-~t) dP@, w). (1) 

The pressure field is supposed to be independent of z like all the other quantities 
involved in this problem. 

yl 
X 

y = HI÷H 2 

- -  y=H~ 

y=O 

FIG. 1. Assumed model for a complex oceanic wave guide. 

Representing the components of displacement sy, s, and of stress run, ry~, r,x 
also as Fourier-Stieltjes integrals 

f j(k~-~) ds,, . . .  (2) 

we find from the momentum equations and Hooke's law that formally dsu, ds., 
dr~y, dr~. in the solid layer are solutions of the fourth-order differential system (Gil- 
bert and Backus, 1966) 

0 

Oy dru~] 
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0 --pF 2 + K  2 h + 2it - 
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0 

ds~ I 

K :lruu I 

0 

(3) 

The quantities appearing here are non-dimensional. They are obtained by the 
following substitutions: 
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s ----> s / H ,  y --~ y / H ,  K ~ kH,  F ~ o~H/~o 

p ~ p /z ,  x - ~  x / ( ~ 0 2 ) ,  ~ ~ ~ / ( ~ 0 2 ) ,  r ~ r / ( ~ 0 ~ ) .  (4 )  

is the mean density, 80 the shear velocity in the half-space. 
In the fluid layer, the solution is 

v2 [e~2(y-1) dB -t- e -~(y-1) dC] ds~ = 

dr~y - P2F2 [e ~2(~-1) dB - -  e -~2(y-1) dC]  
2 

P2 = (K 2 - F2/o~22) 1/2. ( 5 )  

F is the non-dimensional frequency and a: the non-dimensional sound velocity in 
the fluid layer. 

The solution in the solid layer is a linear combination of two independent solu- 
tions (s', r ' )  and (s", r " ) :  

ds = s' dA '  + s" dA"  

dr = r' dA'  -t- r" dA".  (6) 

The coefllcients dA t, dA",  dB, dC are determined from the boundary conditions: 
(1) at the surface (y = 1) 

dTyy = PeF2 - - - -  [dB -- dC] = --dP-~ (7) 
2 

(2) at the fluid-solid interface (y = Yl = H1/H)  

sy' dA '  + sy" dA"  = ~ [e ~(y~-~) dB + e -~2(y~-1) dC] 

' " dA"  = P2F2 rye, dA '  t -  ryy - - ~ -  [e ~2%-1) dB -- e -~(y~-I) dC] 

2 " dA"  r~,~ dA '  q- r~  = 0. (8) 

The solution of (7 ) - (8 )  is: 

dA'  = GA,/G, dA"  = GA"/G, dB = G . /G ,  dC = Gc /G (9) 

t Here dP is the actual pressure divided by ~f~o ~. 
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where 

uG [ 34 -~ 14 G = ~l~j + v G ( ~ )  

u = v2 cosh [@1 -- 1)v2], v = p2F 2 sinh [(y~ - 1)v~]. 10)  

G [ 34 h 14 G(12) are ~12j and the minors formed with the third and fourth rows and first and 
fourth rows respectively out of the matrix 

f SYt 8JP I 
t I! 8x, 8 z  . 

(11) 

GA', Gff, GB, Gc are the determinants obtained from G by replacing one of the 
columns by 

( 2 dP] 
p2 F 2 [o. 

0 

o J 

(12) 

The result is 

" GA" , Ga, = v2 ry. dP, = -- v2 ry. dP 

GB 
--v 2 (Yl--1) 

e 

p2 F 2 
[ ~ a ( l l )  - ~ ' - -  p2F G(~ ~)] dP 

ev2(yl--1) 

G o -  p2 F 2 
2 1 [v2G(~ 4) q- p~F a(~ 4)] dP. (13) 

The final form for the vertical displacement at the bottom of the fluid layer is: 

p2e( 1 fl" 
sy = I I  e i(kx-~') dP. 

G J,] (14) 

As has been shown by Hasselmann, the response of the system to a homogeneous 
and stationary random pressure field is not stationary. The time derivative of the 
power spectrum of the displacement Es~(K) is given by 
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(n) 
0Esy ( K )  (n) 

Ot - T~  ( K ) E p ( K ,  F,~) (15) 

where T~ (~) (K) is the so-called transfer function 

T~ (K )  = 21r (OG) 

F.~ OF FfF~ 

(16) 

The index n indicates the nth mode, Fn being the eigen-frequency for this mode, 
corresponding to the given value of K. When the pressure field is not homogene- 
ous, formula (15) is no longer valid. For the simple case in which the power spec- 
trum of the pressure field Ep(K,  F , )  is constant inside a generating area and zero 
outside, Hasselmann gives an expression for the power spectrum with respect to 
frequency which in our case is: 

A T~: ) (F )Ep(K ,  ~ (n ) (F)  ~ • 

where now the transfer function is 

, F)  (17) 

~(~) F K ,r(~) T~ ( ) = -  _~y (Kn) (18) 
Vn 2 

T(,O l K ,~ ~ ,) being given by (16). v~ is the group velocity. 
In order to calculate the transfer function we have to find the eigen-frequencies 

for every mode, i.e., we have to solve the secular equation 

G = G ( K , F )  = 0 (19) 

G being given by (10). The roots may be real or complex and may be situated 
on different sheets of the Riemann surface associated with the secular function G. 
This is shown in detail by Gilbert (Gilbert, 1964). There are four Riemann sheets 
corresponding to the four different combinations of signs of the real parts of the 
square roots 

( K  2 _ F2/~o2) 112, (K  2 _ F2) 112. (20) 

The complex F-plane is supposed to be cut along the real axis from F and F/o~o to 
infinity and from --F and --F/ao to minus infinity. The real roots on the ( + ,  + ) .  
sheet, of modulus less than K give the locked modes, which correspond to the classi- 
cal surface waves. The roots situated on the other sheets give the leaking modes. 

(2) Numerical calculations. In the process of finding the eigen-frequencies, the 
G 34 14 most time-consuming is the calculation of (12) and G(12) appearing in (10). The 

direct method would be to integrate the differential system (3) twice, in order to 
get the two required independent solutions. The starting values for these integra- 
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tions are given in Appendix B. Having the values of these solutions for y = yl ,  
one can compute the desired second-order determinants. By doing so, accuracy may 
be lost due to cancellation. An alternative procedure (Gilbert and Baekus, 1966) 
is to compute the second order determinants directly from the sixth order differen- 
tim system they satisfy, t This not only will improve the accuracy of the numerical 
results but will also save computing time. The computing time can further be re- 
duced as the sixth-order differential system can be replaced by a third-order one. 
The proof of this is given in Appendix A. The third-order system is non-linear but 
this does not cause any problems as far as the Runge-Kutta method is concerned. 
The only trouble might come from the singularities introduced by taking ratios of 
the solutions of the sixth order system. In the neighborhood of such singularities 
the inverse of the solutions can be computed using the corresponding differential 
system obtained from the initial one in an obvious way. 

As it is shown in Appendix A, for K = 0 the third-order system splits into two 
first-order Riccati equations, one for the P waves, the other for the S waves. 

The practical procedure to find the leaking modes is to compute first the initial 
roots corresponding to K = 0 and to follow them as K varies (Gilbert, 1964). 
Accordingly, our computational procedure involves two steps. 

(a) Initial roots. There are two kinds of initial roots. One of them is related to 
the solutions of the Rayleigh equation, situated on different Riemann sheets. When 
K tends to zero, the frequency F tends also to zero but the ratio F/K  is finite and 
not zero. The real root on the (-4-, +)-sheet gives the familiar Rayleigh mode 
S++. The same root appears on the (-- ,  --)-sheet, giving rise to the S__-mode. 
On the remaining sheets there are either two pairs of complex conjugate or four 
real roots. For the structures used in our numerical calculation the last case takes 
place. By finding these roots we get the starting points for the mode /3+_ and 
P- -+ .  

The other type of initial roots are related to the so-called "organ-pipe" modes 
for which the frequency is not zero for K = 0. These roots are obtained as solutions 
of the equations 

G1 ~ U3/UI = 0 (21) 

a s  - -  u ( U ~ / U 1 )  - v = o (22) 

where u, v are given by (10) and U3/U1, U4/U1 are solutions of (A.23) and (A.24) 
(Appendix A). The roots of (21) give the shear organ-pipe modes and are on the 
(-4-, - )  and ( - ,  - )  Riemann sheets. These modes are denoted Zi +- and Zi--  
respectively. The roots of (22) correspond to the compressional organ-pipe modes 
and appear on the ( - ,  "4") and ( - ,  - )  sheets. These modes are denoted IL -+ 
and IIC-. Since in both cases we have to find the complex zeros of a complex func- 
tion G~ or G2, a computer-program was set up finding first the curves in a finite 
region of the complex plane of the independent variable, such that the real and 
imaginary parts respectively of the considered function are zero. The intersection 
of these curves is taken as a first approximation and using Newton's method, the 

The sixth-order system and the starting values for the solution are given in Appendix B. 
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desired roots are found. All the derivatives involved in this calculation are computed 
to the same accuracy as the functions themselves. They are solutions of the differen- 
tial system obtained from the initial one by taking derivatives with respect to the 
frequency F. 

(b) Roots for K ~ O. Once the initial root is known for a particular mode, the 
variation of the frequency F with K is obtained by increasing K and computing F 
by  iterations. The first approximation is obtained by extrapolation 

F(K1) = F ( K 0 ) +  ( K 1 - K ° ) ( d ~ ) o  (23) 

K0 being the previous value of K and K1 the new one. The derivative dF/dK, the 
absolute value of which is the group velocity, is obtained from 

dF dG/dK 
dK dG/dF " 

(24) 

The derivatives of G are obtained integrating the corresponding differential system 
(see Appendix B). 

In order to make the calculation of F as automatically as possible, several rules 
concerning the behaviour of the roots must be taken into account. One of them is 
that  all the complex roots of the secular equation are simple. They  are complex 
conjugate so that  when the real axis in the F-plane is reached they give rise to double 
roots. The real axis can be reached in one of the following two circumstances. Either 
it is crossed for K > :K/ao which means that  both cuts are intersected and the root 
passes from the ( -}-, ~ )-sheet to ( - ,  -{- ) sheet or vice-versa and is further complex. 
Or, the real axis is reached at a point F < K. In this case, by increasing K we get 
two simple real roots, one moving leftwards relative to K and the other rightwards. 
The right root will finally overtake K and will change sheets. If it was on the (-}-, 
- )-sheet, it will enter the top sheet at the cutoff value, becoming one of the locked 
modes. If it was on the ( - ,  - )-sheet, it will go over to the ( --,  +)-sheet .  The left 
root will stay all the time on the same sheet, the distance to K increasing. 

(3) Diagnosti~ diagrams. We consider two oceanic structures corresponding to 
stations Hilo 19 (Pollard and Eaton, 1963) and Hilo 31 (Shor and Pollard, 1964) 
in the Pacific Ocean near Hawaii. The two models have the same distribution of 
densities and ratios of wave velocities.t The corresponding parameters are given 
in Table 1. • 

The relationship between the frequency F and the wave-number K can be repre- 
sented either in the form of diagnostic diagrams or by plotting the group velocity 
and the phase velocity for every mode. The group velocity g is defined as the abso- 
lute value of the derivative of the real part of the frequency Fr with respect to the 
wave number K:  

dFr (25) 

We are indebted for these data to Dr. Don Helmberger of the Scripps Institution of Ocean- 
ography (private communication). 
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and the phase velocity U is: 

U = fFr/K 

(- Jg 

if dFr/dK > 0 

if dF~/dK < O. (26) 

When the phase velocity is positive, individual crests advance as energy travels 
away from the source, otherwise they regress. As the group velocity is always posi- 
tive it can be identified Mth  the velocity of energy transport  with one restriction: 
it must  be less than the highest wave-velocity of the structure. This is always true 

TABLE 1 
VARIATION OF DENSITY AND WAVE VELOCITIES FOR H I L O  19 AND 

H I L O  31 

Model H p a 

Hilo 19 

Hilo 31 

4.65 1 1.50 - -  
0.27 1.4 3.00 1.12 
3.18 2.4 4.18 2.03 
5.17 - 2.8 6.89 3.91 

3.2 8.13 4.78 
4.39 1 1.50 - -  
1.0 1.4 4.20 1.57 
1.4 2.4 6.06 2.94 
4.3 2.8 6.83 3.88 

3.2 8.71 5.12 

for those portions o f the diagnostic diagrams which arc permissible (Gilbert, 1964) 
namely: 

I. ( + ,  -t-)-sheet F~ < K 

II .  ( + ,  - - ) -sheet  K < Fr < a0K 

I I I .  ( - - ,  - - ) -sheet  a0K < F t .  (27) 

In  Figures 12-19 group and phase velocities are represented only for these values 
of the frequency. The connection of leaking to locked modes is seen clearly on 
Figures 12-14 and 16-18. 

Diagnostic diagrams are represented in Figures 2-11. For each mode there are 
two curves, one for the real par t  F r ,  the other for the imaginary part  F i .  When F 
is complex, only the root in the first quadrant  is shown. The passage from one 
Riemann sheet to another is marked either by a vertical line indicating the crossing 
of both  cuts in the frequency plane or by an arrow, when the ( +  + ) - shee t  or 
( - + )-sheet are entered. 

The diagrams for the P+_-mode are represented in Figure 2. The curves are very 
similar for the two models considered and their general behaviour is somehow be- 
tween those corresponding to a simple oceanic structure and those for a simple 
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continental one (Gilbert, 1964). The starting velocity of F, with respect to K 
equals the smaller real root of the Rayleigh equation on the ( + - ) - s h e e t ,  like in 
the case of a simple continental structure. FT and Fi have almost the same vMues 
respectively, for small K. When K increases, F~ for Hilo 19 is higher and conse- 
quently so is the phase velocity. On the contrary, Fi is higher for Hilo 31, which 
means that  in this case the attenuation is slightly higher. As K increases, the root 
in the first quadrant and its coniugate in the fourth one approach the real axis 
giving rise to a double root. For further vMues of K, F, has two branches, the lower 
one staying on the ( + - )-sheet whereas the higher one takes over the shear branch- 

0501 ~.. 10.0]0 
P+_-mode 

024t- / / \ \ -10008 

o l 1ooo 
Fr - / / / /  X 

0,12 - 0004 

0.06 

Fi(HILO 51) 

Fi(HILOI9) 

0 0 0 2  

L / /  h ] ] ] I i I I I ,i , 
0 004 0.08 0.12 0.16 020 0.24 

K 

FIG. 2. Diagnostic diagrams for the P+_-mode. 

point K and enters the ( + , + ) - s h e e t  becoming the second locked mode or the first 
shear mode. The values of FT at both the double point and the cutoff are higher for 
Hilo 19 and correspond to higher wave-numbers. The group velocity has, ii~ the 
earlier portions of the diagrams, numerical vMues which are larger than a0, the 
compressional waves velocity in the half-space, which is the highest wave velocity 
in the considered structures. If, however, we consider only the permissible values 
on the ( + - ) - s h e e t ,  interpretation of the group velocity as the energy-transport 
velocity is meaningful. Indeed, starting from K ~ .04, F~ for both models is less 
than Ka0 and the group velocity is less than 1.701, the non-dimensionsl value of 
a0 as we can see also in Figure 12. 
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The diagrams for the 15_+ mode are given in Figure 3. This mode starts on the 
nonpermissible ( - - ,+) - shee t .  The group-velocity corresponds to the larger real root 
of the Rayleigh equation on this sheet. As K increases, F, is almost the same for 
the two models, except in the neighbourhood of the point at which the ( + ,  - )-sheet 
is entered for Hilo 31. F~ however is not the same. I t  is much higher for Hilo 19 on 
the ( -  , +  )-sheet. On the contrary, on the ( + -- )-sheet it is much higher for Hilo 31, 
which means that  this mode presents a strong attenuation for IIilo 31 and a rela- 
tively small one for Hilo 19. The wave number and frequency at which the ( + - )- 

HILO 31 
0.6( (-+) -) 

:-4 

I 
- Fi 
(HLO19)] 

0.4~ ' 

! 

0.36 - 

" Fr - 

! , 
0.12 £ 3  

- Fi 
] 

0 
0 

--- !  

LO 19 I-'_+- mo~e I 

(+-) I -10.0112 

i ( HILO 31 ) 

0.1 0.2 03 0.4 g 

FIo. 3. Diagnostic diagrams for the P_+-mode. 

I 
0.5 

0.0096 

0.0080 

0.0060 

Fi 

0.0048 

00052 

0.0016 

0 

sheet is entered are smaller for Hilo 31. I t  has to be noted that  the ( + - ) - s h e e t  is 
entered only once, F staying on this sheet as K increases, contrary to the behaviour 
of the t 5 +  mode for the simple oceanic wave-guide (Gilbert, 1964). There the 
( - + ) and ( + , -  ) sheets are changed several times, whereas in the eases of com- 
plex oceanic wave guides presented here, this is not so. The real part  of the fre- 
quency F~ is smaller for Hilo 31 on the ( -  +) -shee t  but on the ( + - ) - s h e e t  the 
situation is reversed. The wave number and frequency at the double point and 
cutoff are less for Hilo 19, contrary to ]5+_. The group velocity for both models is 
lower than the compressional waves velocity, when the ( + - )-sheet is entered. 

The diagrams for the mode 1-[1 -+ are given in Figure 4. Like P _ + ,  they start on the 
( -  + )-sheet and after a while cross both branch-cuts and enter the ( + - ) - s h e e t .  
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Now, for Hilo 19 is Fi smaller on the ( - -  --I- )-sheet and larger on the ( + - -  )-sheet 
and the crossing of the branch-cut is made for Hilo 19 at lower frequencies and 
wave numbers. On the ( + -- )-sheet F~ for both models is small, Fr for Hilo 31 being 
much larger. Fi for both models has a point of sharp change of curvature near the 
crossing of the branch cuts. This is not a discontinuity in the derivative as it would 
seem to be. A small portion of the F,-curve for Hilo 19 is represented on an enlarged 
scale and it shows clearly that  although it is a strong change in curvature, it is a 
continuous one. The derivative of Fr with respect to K starts having very small 
positive values, then it increases sharply near K = 0.10, it keeps more or less a 

1.15! 

! 

0.9~ 

0.75 

Fr 

0.55 

).10 

3.08 

3.06 

Fi 

0.04 

0.35 0.02 

0. I .  ~ 3 
0 0.5 1.0 K 

FIG. 4. D i a g n o s t i c  d i a g r a m s  for t he  Hl -+-mode .  I n  t h e  r i gh t  co rne r  is s h o w n  a n  e n l a r g e d  p o r t i o n  
of F~ for Hilo 19. 

constant value, has again a sharp increase near K = 0.32 for Hilo 19 and K = 4.4 
for Hilo 31 and then decreases steadily as the branch-cuts are crossed. After enter- 
ing the ( + - ) - s h e e t  its numerical value is less than the highest wave velocity in 
the structure and its interpretation as the group velocity for this portion of the 
diagram is meaningful. After entering the ( + , + ) - s h e e t  this mode becomes the 
fourth shear locked mode for Hilo 19 but  the fifth for Hilo 31. 

Figure 5 shows the second eompressionM organ-pipe mode 112 .+  starting on the 
non-permitted sheet ( -  + ) .  Contrary to II1 -+, here F~ for Hilo 19 is much higher. 
On the ( + , + ) - s h e e t  it will give the fifth shear locked mode, whereas that  for 
Hilo 31 will give the fourth one. The behaviour of Fi is different especially for lower 
values of K. Similar t o / 5 + ,  there is only one change of Riemann sheets and not 
two as for a simple oceanic wave-guide (Gilbert, 1964). 
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The first two shear organ-pipe modes Z1 +- and Z2 +- starting on the ( + , - -  )-sheet 
are given in Figures 6-7. Their behaviour is similar to that for a simple continental 
structure, there are no changes of Riemann sheets, therefore no double points except 
that at which the frequency becomes real. For both Z1 +- and Z2 +-, Fr is larger 
for Hilo 31 and goes to the third shear locked mode on the top Riemann sheet. F~ 
however has a different behaviour, it is larger for Hilo 19 for most values of K and 
only in the final part of the diagram it becomes smaller and vanishes for a lower 
wave number. The group velocity for both modes starts by being very low and 
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1.06 

HILO 51 HILO 19 
(-+) (+-) ( - + ) ( + - )  

i(HILO 19 

fT~-+-mode 

3.036 
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Fi 

Fr t -  I I I /  / -10.020 
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51) -~0.012 

0.6 

3,004 

0.50 I.~___L_ L_..~_I 0 
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:FIG. 5. Diagnostic diagrams for the H2-+-mode. 

increases gradually. I t  is always less than the largest shear velocity present in the 
structure for all the permitted values of the frequency. 

The first two compressional organ-pipe modes on the ( - , - ) - s h e e t  are shown in 
Figures 8-9. As it can be seen in Figure 8, except for a small region, F~ is higher for 
tiilo 19 and vanishes for a higher wave number. There are no double roots except 
when the frequency becomes real. Beyond the double root there are two branches, 
one staying on the ( - , - ) - s h e e t ,  the other entering the ( - , + ) - s h e e t  when the 
branch-point K is reached. On this branch F, for Hilo 31 becomes higher but as K 
increases and F, for ttilo 19 enters the ( - ,+ ) - shee t ,  the curves almost coincide. 
The general behaviour of the diagrams is the same for the two models. We remark 
the negative phase velocity in Figures 15 and 19. For II~-- in Figure 9 again the 
behaviour is more or less similar. Both F, and F~ are much higher for Hilo 19. 



440 BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 

Figures 10-11 show the first two shear organ-pipe modes Z~-- and Z2-- on the 
(--,--)-sheet. The real part of the frequency is higher now for Hilo 31 for both 
:~--  and N2--. F~ is higher for Hflo 31 in the first mode and lower in the second. 
The double roots on the real axis correspond to lower frequency for Hilo 19. One 
portion of the F~-eurve for N~-- is shown on enlarged scales for K and F, respectively. 

0,8 ~:~--mode 0.20 
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0.6 " -0.12 
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Fr - 0.08 
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K 

FIG. 6. D i a g n o s t i c  d i a g r a m s  for t h e  E~+--mode.  
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Fi 
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(4) Power spectra. For every mode for which the variation of frequency with 
wave-number is established, the power spectrum E~ ( ) can be computed using 
(17) if the power spectrum of the external pressure field Ep(K,~, F) is k n o ~ .  
Otherwise, in the assumption that E~(K,,, F) has a smooth variation, the behaviour 
of E~:) (F) is determined by that of the transfer function ~(~) (F), the presence of 
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Ep(K,,, F) manifesthlg itself only by shifting a little the points of relative maximum 
or by changing slightly the values of E ~  ) (F). 

The continuous lines in Figures 20, 22 represent power density spectra for two 
records taken by submerged instruments in the Pacific Ocean (Bradner and Dodds, 
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FIG. 12. Phase and group velocities U and g for the Rayleigh mode and for the first two shear 
modes and their continuations P+_ and p_+ respectively. The model is Hilo 19. 
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F16. 13. Phase and group velocities U and g for the third and sixth shear modes and their con- 
tinuations Zl +- and ~2 ~- respectively. The model is I-Iilo 19. 
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FIG. 14. Phase and group velocities U and g for the fourth and fifth shear modes and their  
continuations 1-[1 -+ and 1712 -+ respectively. The model is Hilo 19. 
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FIG. 15. The derivative dF, /dK for the II1---mode. The model is Hilo 19. The group velocity is 
g = I dF , /dK I. 
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2.0 

1.6 

1.2 

g,U 

0.8- 

0.4- 

HILO 51 
- +  

~ -made 

g 

~ mode 

S _uOde ~ S~-m0de 

0 I I I I I I I I I I I I I I 
0.4 0.6 0.8 1.0 1.2 1.4 1,6 I:B 

Fr 
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continuations ~1 +- and ~2 -~ respectively. The model is Hi lo 31. 
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2.0 

1964). The scale is logarithmic. By single points are represented the maximum 
~(n) values of the transfer function Ts~ (F) as computed from (18). The models used 

are Hflo 19 for Figure 20 and Hilo 31 for Figure 22. The scale for ~P(")(F), shown 
on the right, is also logarithmic. The short vertical lines denote locked modes: R 
for the Rayleigh mode, Sz, SH, etc. for higher shear modes. The arrows denote 
leaking modes. For every mode there are several points of relative maximum except 
for the l~ayleigh mode. Some of these were omitted being very small. 
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FIG. 20. Power dens i ty  spec t rum P on ocean bo t tom,  October  21, 1962 (Bradner  and Dodds,  
1964). Locat ion:  19°45'N, 156°36'W. The isolated points  show peaks of the  t ransfer  funct ion  T 
for Hilo 19 wi th  no a t tenua t ion .  The scales for P (left) and T (right) are logari thmic.  

As a striking characteristic of both Figures 20 and 22 we see that the most promi- 
nent are the organ pipe-modes of compressional type Hi---, starting on the ( - , - ) -  
sheet. Next, having a much lower transfer function, are the locked modes, the 
highest of them being the first shear mode for Hilo 19 and the second shear mode 
for Hilo 31. The t~ayleigh mode is higher than any leaking mode for Hilo 19 and 
it is very close to the maximal S~. For Hilo 31 however, the leaking P_+ has a 
maximum higher than that for the Rayleigh mode. The other leaking modes have 
lower transfer functions. 

With respect to the magnitude of the transfer function, the modes can be divided 
in three distinct categories: 

(1) The leaking IL--  having very high transfer functions. 
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(2) The leaking 15+_,/5_+, i i ( +  and their continuations, the locked shear modes 
Sz,  S n ,  etc. together with the fundamental mode R, having moderate transfer 
functions. 

(3) The leaking shear organ-pipe modes Z ( -  and Z~+- having very low transfer 
functions. Their maximum values are so small that  we could not represent them 
and some of the continuations of Z~ +- in Figures 20-23. 
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Fzo .  21. Power density spectrum P on ocean bottom, October 21, 1962 (Bradrmr and Dodds, 
1964). Location: 19°45'N, 156°36'W. The isolated points show peaks of the transfer function T 
for Hilo 19 with the attenuation factor A = e-(0.0olF~Ig). The scales for P (left) and T (right) 
are logarithmic. 

In order to ascertain this conclusion we computed all the leaking IL- -  in the 
range of frequencies of interest for both models and also all the locked modes giving 
significant contributions for Hilo 19. As we see in Figure 20, the maximum values 
for these modes are of the same order of magnitude as the first locked modes and 
no  one is really conspicuous. On the other hand, the maximum values for the 
I f ( - -modes  present significant variations, some of them being very high for fre- 
quencies showing peaks also in the measured spectra, like II1--, II~--, II~T for 

t I i lo  i9 and IIl~-, H~- for Hilo 31. What  is also significant is that  when attenuation 
is taken into account, some of the maximum values are strongly affected, like that  
for II~-~- for Hilo 31 (Figure 23) and it is quite remarkable that  the frequency for 
this maximum does not correspond to a peak in the measured spectrum. Some other 
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FIG. 22. Power density spectrum P on ocean bottom, January  21, 1963 (Bradner and Dodds, 
1964). Location: 22°28'N, 158°00'W. The isolated points show peaks of the transfer function T 
for t t i lo 31 with no at tenuation.  The scales for P (left) and T (right) are logarithmic. 

1.2 

P 

0.8 

1.6 

~.;_ ;~"~- {~;- f r,;- ~.i; 
• i1- 5 

Ts~ Is~ 
,, ,soTS, 

0 0.6 

1965) 

T; 

ls:e. 

Is= 
I 

1.2 

Is, 

I I I 
1 .8  

F 

HILO 51 14 6.0 

418 

n,-~- Tq'; 

2.4 

1.2 

I I 0 
2.4 5.0 

FIG. 23. Power density spectrum P on ocean bottom, January  21, 1963 (Bradner and Dodds, 
1964). Location: 22°28'N, 158°00'W. The isolated points show peaks of the transfer function T 
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maximum values are either not affected by attenuation, like II1--, H2-- for Hilo 19 
and II~7- for Hilo 31 or they are only slightly reduced, like II~T for both models 
(Figures 21, 23). What we mean here by attenuation is only a tentat ive estimate 
since exact numerical values for the spatial attenuation can be obtained only if we 
know exactly what is the distance to the generating area. In order to estimate how 
attenuation can affect the contribution of the leaking modes we introduced a spatial 
attenuation factor 

where d is an average distance to the generating area. We took the tentative values: 
d = 0.001 for Hilo 19 and d = 0.002 for ttilo 31. The attenuated transfer function 
is represented in Figures 21, 23. The low frequency I f ( - -modes  are almost un- 
changed, whereas some of the higher frequency I f ( - -modes  are strongly affected, 
but  in such a way that  the whole picture seems to look more like the measured 
spectrum. 

Obviously, due to imperfections of the theory and great simplifications of the 
considered models, one cannot expect more than a qualitative picture, but  even so, 
the role of the leaking modes is clearly shown. 
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APPENDIX A 

Reduction of the Differential System 

It  was shown (Gilbert and Backus, 1966) that  if a matrix 

if(y) = (F~j(y)) (A.1) 

satisfies the differential equation 

d~(y) _ a ( y )~ (y )  
dy 

(A.2) 

where 

(~(y) = (A~j(y) ) (A.3) 

then the mth order determinants 
i1"  "ira 

F(~I..K m) ~ Fqj~ Fi2J2 F~,,,j~ ~"J" • • • EK1 • . K i n  dl "" "Jm 

are solutions of 

(A.4) 

i l ' ' i  m 
= l ~ ( l ' ' i m  __dF(KI"'K~) ~ A~iz ~,K,..K~,/ q- • • + ~ A~,.~ F ~''~,K~..K~,,. ~ 

dy ~ 
(A.5) 

Here j,..i,, is the mixed complete antisymmetric tensor of order 2m. Since the ~ K 1  " "Kra 

coefficients in the right hand side of (A.5) do not depend on the indicers K I ,  K ~ ,  
it follows that  this system is satisfied by every column of the matrix 5 =(m) the ele- 
ments of which are all the ruth order determinants. In particular, for n = 4 and 
m = 2 ,  

dS=(2)(Y) - ~l(y)5 :(2)(y) (A.6) 
dy 
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where the matrix ~1 is (Gilbert and Backus, 1966) 

= 

All -4- A22 A28 A24 --AI~ --A14 0 

A32 All + A88 As~ Au 0 --At4 

Ae  A48 A11 + A44 0 A12 A18 

--A81 A21 0 A22 + A88 A84 -A24 

--A41 0 A21 Aa A22 + A44 A2~ 

0 --A4t An --A42 As~ As~ + A44 

(A.7) 

There is a very simple algebraic relation between the elements of ff(2)(z) per- 
raining to the same column, namely: 

12 34 28 14 31 24 F(~:~K2)F(~K:) + F(~IK~)F(F:~I~:) + F(K~:~)F(Fq~:~) = 0. (A.8) 

$112 This relation follows from the definition (A.4) of F(~I~).  Using it, the sixth-order 
system (A.6) can be reduced to one of order four. To show this let us denote the 
elements of any column of 5 :(2) by U1, • • • , U6. Multiplying the first equation (A.6) 
by - U3, the third by U~ and adding the results, we get: 

dUB U8 dU1 Vl-~y - ~ - A42 UI 2 + Aa U~ U2 + (An + A4,)U~ U8 + A12 U1 U5 

+ A18 U1 U6 - ( A l l  + A22)U1 U8 -- A28 Us U8 -- A24 U82 

+ A18 U8 U4 + A14 U8 U~. (A.9) 

Using now (A.8) and dividing by U12". 

d ~ - A42 + A43 U2 U3 U5 Us U5 dy ~ + (A44 - A22) ~ + AI~ ~ + Au UI i l  

_A23U2U3 A24(U,~2 U3 U5 
U1 U1 \ ~ ]  + A14~  U-~" (A.10) 

Repeating the same kind of operation on other combinations, we get three more 
equations: 

U4) 
U: U4 U~ 

U1 = - A , ~  + A2~ N + (A,, -- A~) N + A,~ dy 
U2 U~ -- A~4-- - -  
U1 U1 

-- A23 ~ ~ + A~3 \ ~ - j  "Jr- A 1 4  - - - -  
U4 U5 
U1 U1 (A.11) 
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d (u2) 
U, Us U~ Us U~ 

= As~ + (Ass -- A22) ~ + As6 ~ + A~2 ~ + A~4 Vl V~ dy 

- A23 [U2~ 2 U2 U3 U2 U4 
k ~ /  - A 2 4 ~ + A ~  U1 U~ (A.12) 

dy 
U3 U4 U5 Us U4 

U5 Us U5 U4 (U~y 
-- A 2 4 ~ + A ~ a ~  ~ + A ~ \ ~ /  . (A.13) 

In the particular case when ~I is (B.4), 

An = A14 = A22 = A2s = As2 = A3s = A41 = A4~ = 0 (A.14) 

and 

As4 = -A21, Au = A.,3. (A.15) 

In this case 

U5 = - U2 (A.16) 

and the system (A.10)-(A.13) is reduced to three equations only. Using the ex- 
pressions of the elements A12, etc. these equations are: 

d ( U ) = K U s  KX U4 1U2Us 1 U2U4 
d-y ~ -}- k q- 2~ U1 ~ U1 U1 q- h -4- 2~ U1 U~ (A. 17) 

d U(~)= X -  2 KX U2 1 (U2'~ 2 I ( U a y  
d-~ ~ + 2~ u1 x + 2~ \ V J  - ; \ ~ /  (A.ls) 

When K = 0, X equals - - p F  2 and equations (A.17)-(A.19) becomei 

( U2 1 U3 1 (A.20) 
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d ( U 4 )  1(U2~ 2 1 (U4~ 2 
dy ~ = PF2 + ' ~  \ ~ ]  + k --~ 2~ \ ~ /  (A.22) 

As the initial value of U2/U1 is zero, it follows f rom (A.20) t ha t  it vanishes identi- 
cally, which means tha t  (A.21),  (A.22) are reduced to 

dy ~ = - - P F 2 - - - t ~ \ ~ /  (A.23) 

(U4)  1 {U4~ 2 (A.24) d ~ = oF 2 + ~  + 2 ~ \ U I ]  " 

A P P E N D I X  B 

The  star t ing values for the integrat ion of the fourth-order  differential system (3) 
are: 

! sy = (K  2 -- F2/ao2) '/~ ,, K 
8y 

# 0 ( K  2 - -  F~)1/2 

! If 
s~ = K sx = l/rio 

I K 2 ' = 2K ry~ = 2#0 -- F2po ruu 

! 
Tyx = 2UO K ( K  ~ F2/oto2) 1/2 , F2po - -  2 ~ o  K ~ 

Tyx = - -  (B.1) 
t~o(K 2 - F2y2  " 

The  sixth order differential sys tem for the determinants  12 G(12), etc. is: 

dqL 
dy 

-- (~qL (B.2) 

where q~ is a one-column matr ix having as components  the determinants :  

~t ---- 

G(13~  \ 12 ]  

] 1, G(12) 

G(,2) 

G(I~) 
G[34~  

\ , 2 ]  

(B.3) 

and (~ is the sLxth-order matr ix:  
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(~ = 

0 

0 

X 

p F  2 

0 

K), 

x +  2u 

- K  

0 0 

0 0 

1 
# 

K 

0 

0 0 

- - K k  
- - K  

~ + 2 u  

- - p F  2 - - X  

k + 2 u  

k +  2it 

0 

0 

K}, 

k + 2 ~  

K 

0 

0 

x +  2~ 

1 

# 

0 

0 

Here  

X = - - p F  2 + 
k + 2 ~  

T h e  s ta r t ing  values  a re :  

12 ?)P ~'S - -  K 2 
G(I~) - 

P,o vs 

13 2go up us --  (2go K 2 --  F2po) 
G(12) = K 

#o us 

14 Fepo vp 
G ( 1 2 )  = 

#o ~s 

23 F2po 
G(12)  = 

#o 

24 G{13~ G ( 1 2 )  = -  ~12/  

34 (2~o K 2 G(12) = - F2po) 2 - -  4K2~02ue vs 

#o ~s 

where  

up = ( K  2 --  F2/ao2) I/2, us ---- ( K  2 - -  F 2 )  1/2. 

T h e  der iva t ives  wi th  respect  to the  f requency  F are  solut ions of 

d( d ~ t / d F  ) d ~  - d a ~ a  + a - -  

dy dF  dF  

1 
(B.4) 

(B.5) 

(B.6) 

(B.7)  

(B.8)  
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~t sat isfying (B.2) .  T h e  s tar t ing values for  the der ivat ives  are: 

12 ( K 2 y dG(,2) _ F 1 
dF go \ ~  + ~o ~ ~ ]  

d 13 i / 2 2po 2 g o K  2 -- F2po~ G(12) _ K F  - - - +  
- [ f  \ .0 2 ~ go ~ ~ ~o - ~  / 

14 dG(12) po F 
dF go ~'e ~'~ 

dG/23 ~ 12) 2po F 
dF go 

dG/24"~ d 13 ~l~j G(12) 
dF dF 

3~ (2g°K2 --  F2p°) 3P°~d -- 4p°K2 + - ~ - o  ~ ] + 4K2go . (B.9) dG(12) = F 
dF go v~ 3 ~--~p _J 

T h e  der ivat ives  wi th  respect  to the  w a v e - n u m b e r  K are solutions of a differential 
sy s t em similar to (B.8) .  The i r  initial values  are: 

dG 112~ ( _ F 2 ) ~12] _ K 1 1 _}_ 

dGI13~ ( K2)  K 2 ( 2 g o K 2 - - F 2 ) F  2 
dK ~ ~,~ /302g0 ~, 3 

dG( l~ )  _ K F ' p o (  ao 2 - -  ~o 2) 

dK go o~o~o~'~ ~, 3 

da ( ~ )  _ o 
dK 

dG ~2'~ dG(~) \ 12 )  

dK dK 

dG(12)dK - g (2goK 2 -- F~po) 
K 2 

+ 

t We wrote here ~o~for convenience. 


