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Abstract 

The transition to turbulence after excitation of large-amplitude (~200 m) unsteady lee waves in 

Amchitka Pass, Alaska, is investigated using a nonhydrostatic vertically two-dimensional model 

with realistic topography. The model resolves motions two orders smaller than a large-amplitude 

unsteady lee wave, which is excited in the lee of the ridge, and shows that transition processes near 

the ridge top and downstream of the first trough of the unsteady lee wave are different. Near the 

ridge top, three stages of transition are identified. In the first stage, convection begins on the 

upstream sides (forward wave breaking) and downstream sides (backward wave breaking) of the 

crests of the unsteady lee wave. In the next stage, Kelvin-Helmholtz (KH) waves develop in regions 

of enhanced shear between statically unstable regions and downslope flow on the bottom. In the last 

stage, Tollmien-Schlichting (TS) waves develop on the bottom, under the KH waves, and form 

vortices, which finally break down. To the best of the authors’ knowledge, this is the first paper to 

report the occurrence of backward wave breaking and the possibility of TS wave excitation in the 

ocean. Downstream of the first trough of the unsteady lee wave, flow is separated from the bottom 

by an adverse pressure gradient attributed to the unsteady lee wave. The separated flow forms 

vortices, which are shed quasi-periodically. Diapycnal mixing is enhanced by the development of 

KH and TS waves and flow separation, as well as by convection due to overturning isopycnals 

induced by the unsteady lee wave.  

 



3 
 

 
 

1. Introduction 

Breaking internal waves are a major energy source for diapycnal mixing in the ocean, which is 

an important process that determines the patterns and strengths of global and basin-scale 

thermohaline circulations [e.g., Munk and Wunsch, 1998]. In particular, breaking of large-amplitude 

lee waves (amplitude ≳100 m) cause vigorous diapycnal mixing, which is hundreds to tens of 

thousands times as intense as that in the open ocean. Lee waves are a kind of internal waves 

generated by a flow over topographic features and often grow enough to break at the generation 

sites, because their horizontal phase speed is equal to the flow but in the opposite direction. In fact, 

observations and model experiments have shown intense mixing due to breaking of large-amplitude 

lee waves generated by diurnal tides in the Aleutian Passes [Nakamura et al., 2010] and the Kuril 

Straits [e.g., Nakamura et al., 2000], and by semidiurnal tides in the Knight Inlet sill, British 

Columbia [e.g., Farmer and Freeland, 1983], the Hawaiian ridge [Klymak et al., 2008], and the 

Oregon continental slope [Nash et al., 2007]. Large-amplitude lee waves are also expected to be 

excited in other regions having ridges, shelf breaks, or sea mounts by diurnal [Nakamura et al., 

2010] or semidiurnal tides [Legg and Klymak, 2008].  

Because the breaking, large-amplitude lee waves and the turbulence that causes mixing differ 

greatly in terms of their spatial scales, some transition processes are expected to occur between the 

lee waves and the turbulence. Such processes were indeed observed in simulations of atmospheric 

lee waves in studies [e.g., Scinocca and Peltier, 1993] of the evolution of an unstable solution of a 
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steady lee wave initialized by Long’s [1953] analytical solution. The results showed that, first, 

convection occurs in a density inversion region caused by a large-amplitude lee wave and forms a 

pool of well-mixed fluid, and second, a severe downslope windstorm is formed under the pool. 

Eventually, Kelvin-Helmholtz (KH) waves, which should also cause diapycnal mixing, emerge 

between the pool and the severe downslope windstorm. KH waves are instability waves growing in 

a shear flow that have an inflection point [Drazin and Reid, 1982], and they are often observed in 

the ocean and atmosphere. 

In the ocean, Afanasyev and Peltier [2001] and Lamb [2004] performed vertically 

two-dimensional simulations of breaking, unsteady lee waves over the Knight Inlet sill with 

resolutions much finer than those of previous three-dimensional simulations of internal waves [e.g., 

Legg, 2004; Ezer et al., 2011] and breaking lee waves [e.g., Nakamura et al., 2004]. Afanasyev and 

Peltier [2001] showed that a severe downslope windstorm is formed through a process similar to 

that in the atmosphere. Lamb [2004] showed that separation of the windstorm from the bottom 

occurs due to large-amplitude unsteady lee waves. Here, unsteady lee waves denote lee waves 

generated by a time-varying flow U(x, t), a tidal flow in this case, and they consist of a 

superposition of waves with frequencies -kU(x, t) ± ω excited at various positions and times, where 

k and ω are the horizontal wavenumber and the tidal frequency [Nakamura et al., 2000].  

However, the spatial resolutions of the ocean models of Afanasyev and Peltier [2001] and 

Lamb [2004] were still insufficient to resolve dynamical phenomena at spatial scales smaller than 
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breaking, large-amplitude lee waves. Hence, these models did not reproduce the KH waves seen in 

simulations of the atmosphere, even though the simulated background flow was favorable for the 

development of KH waves. Moreover, transition processes in the ocean and atmosphere could differ 

because of differences in the solutions of steady and unsteady lee waves; the theoretical solution of 

unsteady lee waves for a nonlinear case is still unknown. Therefore, the transition processes to 

turbulence in the oceans are not sufficiently understood, even in two spatial dimensions. Moreover, 

the effects of transition processes such as the formation of KH waves and flow separation in 

diapycnal mixing have not been investigated; most previous studies focused on mixing by 

convection in statically unstable regions created by unsteady lee waves.  

In this paper, we investigate transition processes to turbulence associated with a 

large-amplitude unsteady lee wave, and the effects of transition processes on mixing. Since 

transition processes produce turbulence, an understanding of the processes would contribute to a 

better understanding and estimation of mixing, which would lead to the improvement of 

parameterization schemes for diapycnal mixing that are required for ocean general circulation 

models. It is, however, difficult to investigate these processes by theoretical analysis or observation 

because of their strong nonlinearity and small spatiotemporal scales. Hence, we performed 

high-resolution numerical experiments using a nonhydrostatic vertically two-dimensional model.  

Our numerical experiments treat the case of the Amchitka Pass in the Aleutian Passes (Fig. 1), 

where Nakamura et al. [2010] (henceforth, N10) observed the breaking of a large-amplitude 
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unsteady lee wave with an amplitude of ~200 m. Although the case investigated is specific, the 

dynamics of the transition processes in this pass could be applicable to other regions. Indeed, we 

found that Tollmien-Schlichting (TS) waves are generated in the transition process and make a 

significant contribution to diapycnal mixing. TS waves are one kind of growing perturbation in 

viscous boundary layers [Schlichting and Gersten, 2000]. In oceanography, little attention has been 

paid to TS waves because of their small spatiotemporal scale, and there are no studies that suggest 

the possibility of TS wave excitation in the ocean. 

In addition, the Amchitka Pass is an important site in the regional oceanography. The pass is a 

high-energy-dissipation region of the K1 tide [Egbert and Ray, 2003] and the largest conduit for K1 

energy into the Bering Sea [Foreman et al., 2006]. Mixing modifies the water in the pass, which 

flows into the North Pacific and the Bering Sea [e.g., Reed and Stabeno, 1993], and thus it affects 

material circulation and the ecosystem in the surrounding area [e.g., Roden, 1998]. In addition, 

mixing intensity may oscillate in association with the 18.6-year nodal cycle, which causes the tidal 

energy flux in the pass to vary by 36% [Foreman et al., 2006]. This oscillation may be one factor in 

bi-decadal variations in water properties in the North Pacific and the Bering Sea [Yasuda et al., 

2006; Osafune and Yasuda, 2010].  

The outline of this paper is as follows. In section 2, the numerical model is described. In section 

3, the transition processes observed in the numerical simulation are presented, and then, a linear 

stability analysis to confirm the excitation of KH waves is conducted in section 4. The effects of the 
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transition processes on mixing are discussed in section 5. The conclusions are summarized and 

discussed in section 6. 

 

2. Numerical Model 

The numerical model employed in this study was the vertically two-dimensional model of 

Nakamura et al. [2000]. The governing equations are the nonlinear and nonhydrostatic momentum 

equations for an incompressible Boussinesq fluid, the continuity equation, the advection-diffusion 

equations for potential temperature and salinity, and the equation of state [UNESCO, 1981]. The 

Coriolis parameter, f, was set to a constant value, 1.16 × 10-4 s-1, at 51.58 °N. The model utilized the 

Arakawa scheme, which conserves both energy and enstrophy, and a third-order advection scheme 

for potential temperature and salinity. 

The model topography is shown in Fig. 2, where the across-sill and vertical coordinates are 

denoted as x and z, respectively. The topography was determined from the observation data obtained 

by N10. The bottom topography consists of a two-dimensional mountain (sill) having two ridges 

and a valley between the ridges, and it is set to be flat on both sides of the sill with a maximum 

depth of 1100 m. This model topography represents the north-south section of an approximately 

two-dimensional ridge extending from west to east (Fig. 1(b)). Accordingly, unsteady lee waves 

develop quasi-two-dimensionally, although three-dimensional effects could be important in 

convection and breaking of KH and TS waves. Moreover, the transition processes are not well 
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known even in vertically two-dimensional cases. Therefore, we consider vertically two-dimensional 

simulations as a reasonable first step toward a better understanding of transition processes in the 

ocean. 

The horizontal and vertical grid sizes around the sill were 10 m and 1 m, respectively. The 

numbers of grid points in the horizontal and vertical directions were 1100 × 1100. The grid sizes are 

a few hundred times smaller than the spatial scales of large-amplitude lee waves generated over the 

sill. Thus, they are sufficient to explicitly resolve smaller scale dynamical instabilities causing 

small-scale turbulence.  

The initial stratification was horizontally uniform, and was based on expendable conductivity 

temperature depth (XCTD) data obtained from the Pacific side of the Amchitka Pass in July 2007 

during the T/S Oshoro-maru cruise. The stratification on the Pacific side is not significantly 

modified by tidal mixing in the pass because a weak mean flow crosses the pass from the North 

Pacific to the Bering Sea. 

The forcing was a sinusoidal barotropic current across the sill with K1 tidal frequency, and was 

introduced through the lateral boundaries of the model. Its maximum speed at the top of the higher 

ridge was set to be 55 cm s-1, which is the value observed by N10. The flow across the sill was 

initially set to zero so that the transition processes can be observed clearly. The flow then started to 

travel to the right (i.e., from the North Pacific to the Bering Sea). The flow along the sill, v, was 
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initialized as v = fσf
-1𝑈�(x), where 𝑈�(x) is the amplitude of the barotropic flow across the sill and σf 

is its frequency.  

To parameterize turbulent eddy mixing on the subgrid scale, the eddy viscosity and diffusivity 

coefficients used by Nakamura et al. [2000] were modified in this study. The horizontal eddy 

viscosity coefficients were represented by the sum of a background value (50 cm2 s-1) and values 

were calculated using a Smagorinsky-type model. The vertical component was set to be the larger 

of a background value (0.2 cm2 s-1), and the value, KM, calculated using a level-two turbulence 

closure model, given by,  

𝐾𝑀 = �𝑆
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where the constants were S = 0.39 and C = 0.06, which are the same as in the Mellor and Yamada 

[1982] model; the empirical coefficient α was set to be 120; Ri is the Richardson number; l is the 

length scale of the turbulence; u and v are the cross- and along-sill velocities, respectively; Pr is the 

Prantl number; and N is the Brunt-Väisälä frequency. This turbulence closure model is derived from 

Noh and Kim’s [1999] level-2.5 turbulence closure model under the assumption that the sum of the 

shear production and the buoyancy terms is equal to the energy dissipation term. The background 

eddy viscosity coefficients are sufficiently small to demonstrate the transition processes. The eddy 

diffusivity coefficients are equal to the values of the eddy viscosity coefficients divided by Pr, 

where Pr was five. This value was employed both to reduce the effects of numerical dispersion by 
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increasing the eddy viscosity coefficients and to better reproduce stirring processes of salinity and 

potential temperature by decreasing the eddy diffusivity coefficients. Changing Pr to 1 or 2 did not 

qualitatively alter the results. 

At the bottom boundary, a no-slip condition was imposed in the sill region and a free-slip 

condition was imposed in the deep regions with flat bottoms. At the surface, a rigid-lid 

approximation was used, and no momentum, heat, or freshwater flux was assumed. An open 

boundary condition was applied at the lateral boundaries. The initial stratification was imposed at 

the inflow boundary, and an outflow condition was applied at the outflow boundary. Sponge regions 

were employed on both right and left sides to suppress artificial wave reflection. In the sponge 

regions, the background values of horizontal eddy viscosity and diffusivity coefficients were 

gradually increased up to 2.0 × 108 cm2 s-1 and 4.0 × 107 cm2 s-1, respectively, near the lateral 

boundaries. The sponges occupied the first 150 grids and the last 150 grids. The horizontal grid size 

was also gradually increased near the lateral boundaries so that the sponges were sufficiently broad 

to prevent waves reflected at the lateral boundaries from coming to the sill.  

The setup described above was used in the main experiment, referred to as experiment 1. In 

addition to this, experiments were performed with different setups (summarized in Table 1). 

Experiments 2 and 3 were performed to identify perturbations as TS waves, and experiments 4–12 

were performed to examine the sensitivity for eddy viscosity coefficients. In the following sections, 

the results of experiment 1 will be described unless otherwise stated. In addition, to demonstrate the 
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transition to turbulence, we will focus on the first half-cycle of the K1 tide, during which the 

barotropic flow was directed from left to right. Dynamics of unsteady lee waves in the second 

half-cycle was similar to those in the first, although there were some differences due to the 

asymmetry of the topography and the presence of the unsteady lee waves generated in the previous 

half-cycle. For details of unsteady lee wave dynamics, refer to Nakamura et al. [2000]. 

 

3. Transition Processes  

Diurnal tides are subinertial in the Amchitka pass, and hence unsteady lee waves were 

generated as internal waves, whereas diurnal internal tides cannot be internal waves [Nakamura et 

al., 2000]. Breaking of large-amplitude unsteady lee wave occurred over the downslope in the lee of 

the higher ridge (henceforth, simply the downslope), and boundary layer separation occurred over 

the valley (Fig. 3). These processes were responsible for intense diapycnal mixing, as will be shown 

in section 5. We describe first the transition processes over the downslope, and then, those over the 

valley. Although wave breaking also occurred in the lee of the lower ridge, we will not include its 

description here because the wave amplitudes and mixing intensity were smaller than those 

observed in the lee of the higher ridge.  

 

3.1. Over the Downslope  
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We found that the transition processes over the downslope can be divided roughly into three 

stages. Before each of these stages is considered in turn, the excitation of a large-amplitude 

unsteady lee wave is described.  

As the barotropic flow accelerates, a large-amplitude unsteady lee wave (henceforth, simply 

an unsteady lee wave) with a ~1.5-km horizontal wavelength is excited over the downslope, as seen 

in the potential density (σθ) shown in Fig. 3(a). Co-phase lines are slanted to the upstream side (i.e., 

south) in both the current and density fields (Figs. 3(a) and 4(a)). This is a characteristic feature of 

lee waves. The ratio of lee wave frequency to tidal frequency, kU/ω, was estimated to exceed 14 (k 

and U were estimated from Fig. 3(a) and by depth averaging) over the downslope at the time of Fig. 

3(a), suggesting that the wave is an unsteady lee wave [Nakamura et al., 2000].  

The wave amplitude increases with time, and regions of potential static instability are 

observed (Fig. 3(b)). In addition, the unsteady lee wave moves downstream during the acceleration 

stage of the rightward flow (Figs. 3(a) to (c)). This is because the horizontal phase speeds of waves 

with various frequencies forming the unsteady lee wave are almost equal and in the opposite 

direction to the barotropic flow velocity at the time that the waves are excited [Nakamura and Awaji, 

2001]. The advection of the unsteady lee wave influenced the location of boundary layer separation, 

as will be described in section 3.2. 

 

3.1.1. First Stage 
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In the first stage of the transition, convection begins in the region of overturned isopycnals; in 

other words, wave breaking begins. Figs. 3(c) and (d) present the evolution of the potential density 

(σθ) field in this stage. In Fig. 3 (c), the wave height increases to ~200 m, and this value is 

comparable to that observed by N10 (Fig. 1(c)). The inverse Froude number (𝑁�η/U) was estimated 

to exceed 1.7 over the downslope at the time of Fig. 3(c). Here, the wave height, η, was used instead 

of the topographic height because the tidal excursion was shorter than the topographic width. The 

value of the inverse Froude number implies that the wave generating force is sufficiently strong for 

the wave to break. The onset of wave breaking is earlier for the denser isopycnals than for the 

lighter, because the steepness of overturning isopycnals is larger for the denser isopycnals (Figs. 

3(b) and (c)). This means that the region where convection occurs extends toward the top of the 

higher ridge. The spatial scales of the convection vary with isopycnal, and the horizontal scale 

ranges from 100 m to 300 m. The vertical scale also seems to vary; however, estimating variations 

in the vertical scale is difficult because they also depend on the growth of convection. 

Unlike the breaking of a finite-amplitude steady lee wave investigated in previous studies, 

such as Scinocca and Peltier [1993], convection in our simulation occurs on both the upstream (left) 

and downstream (right) sides of the crest, as seen in the potential density (Fig. 3(c)) and velocity 

fields (Figs. 4(c) and 5) in the vicinity of the 26.6 σθ isopycnal, for example. Around the left side of 

the wave crest, the vertical velocity is downward to the right of the 26.6 σθ isopycnal (the dashed 

arrow on the left in Fig. 5). We call this type of wave breaking forward wave breaking. In the 



14 
 

 
 

previous atmospheric study, only this type of breaking was identified. On the far right of the 

isopycnal, the fluid is advected to the upper right through the upper part of the wave crest (the solid 

arrows in Figs. 4(c) and 5), and thus becomes denser than the surrounding fluid. As a result, the 

fluid on the right side of the wave crest becomes statically unstable and then the denser fluid moves 

to the lower right (the right-hand dashed arrow in Fig. 5), that is, backward wave breaking begins. 

Similar forward and backward wave breaking also occurs near other isopycnals. 

To the best of our knowledge, this is the first study to report backward wave breaking of 

unsteady lee waves, and the phenomenon is yet to be observed. This type of wave breaking is not 

expected in linear or nonlinear theories of atmospheric lee waves. According to the lee wave 

theories, crests of lee waves grow along phase lines tilting upstream, and hence, only forward wave 

breaking can occur. Interestingly, backward wave breaking also occurred in our simulation, 

suggesting the presence of a missing factor in the mechanism of wave breaking in the oceans. 

Moreover, the occurrence of backward wave breaking in addition to forward wave breaking should 

make the mixing area wider than that in the case of forward wave breaking alone. Therefore, 

backward wave breaking would also enhance diapycnal mixing. 

A strong rightward flow develops near the sea surface directly above the regions of backward 

breaking (Fig. 4(b)). This flow strengthens with time (Figs. 4(b) to (d)) and is sustained until the 

barotropic flow ceases. A similar surface flow was observed by N10 (Fig. 1(d)). In addition, another 

rightward flow develops over the wave crest on the 26.7 σθ isopycnal (Fig. 4(c)), which shows 
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backward breaking. These rightward flows and the backward wave breaking occur quite near each 

other, suggesting a close relationship between these phenomena. Clarification of this relationship 

and of the cause of backward wave breaking needs to be investigated further. 

Under the statically unstable region in which convection occurs, a downslope flow develops 

as the unsteady lee wave grows. Fig. 6 shows a Hovmöller diagram of the baroclinic across-sill 

velocity 30 m above the bottom, where the maximum downslope flow speed occurs in the vertical 

direction. Here, the baroclinic velocity is defined as the difference of the simulated velocity and the 

barotropic component (the depth-averaged flow). The speed of downslope flow increases with time, 

and after the barotropic flow accelerates to its maximum speed (i.e., after 0.25 period), the 

downslope flow becomes fully developed (Fig. 6). This state corresponds to the severe downslope 

windstorm observed in previous studies [e.g., Laprise and Peltier, 1989]. Together with the 

unsteady lee wave, the downslope flow enhanced shear, which lead to the phenomena in the next 

stage. 

 

3.1.2. Second Stage 

In the second stage of the transition, finite-amplitude perturbations develop in a strong shear 

region between the convective mixing region and the downslope flow, and their growth process is 

shown in Fig. 7. These perturbations are expected to be KH waves; this expectation will be 

confirmed in section 4, using a one-dimensional linear stability analysis.  
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Finite-amplitude KH waves of two wavelengths emerge (indicated by arrows in Fig. 7(a)) and 

propagate downstream with increasing amplitude (Figs. 7(a) to (c)). The propagation is also seen in 

the Hovmöller diagram (Fig. 6). Phase speeds and wavelengths of the KH waves estimated from Fig. 

6 ranged from 35 to 50 cm s-1 and from 450 to 500 m, respectively. Hence, their frequencies were 

4.9–6.3 × 10-3 rad s-1, which are much higher than diurnal tidal frequencies (≈ 7.3 × 10-5 rad s-1). 

Note that the phase speed varied with time because it depends on the background flow, which 

varied temporally.  

As the amplitude of KH waves increases with time, well-defined KH billows with positive 

vorticity appear around 0.8-km distance and 170-m above the bottom (Figs. 7(d) and 8). Animation 

of the numerical results (not shown) demonstrated that the fluid forming the KH billows came not 

from the downstream region but from the downslope flow. The KH billows continue to occur in the 

third stage. Note that the spatial scale of the simulated KH waves is as small as or smaller than the 

observation intervals (approximately 500 m) of N10 (Fig. 1(c)). Hence, it is difficult to confirm that 

KH waves were present during the observation. The same can be said for dynamical phenomena 

with spatial scales similar to or smaller than KH waves.  

 

3.1.3. Third Stage 

The third stage is characterized by the growth and subsequent modification of 

finite-amplitude perturbations that appear in the bottom boundary layer (BBL) under the KH 
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billows (Fig. 9) and have horizontal scales similar to the KH billows. These perturbations are 

identified as TS waves. In fact, a characteristic feature of TS waves is seen in the simulated vertical 

velocity field; as shown by the dashed curve in Fig. 10, the phase lines of vertical velocity tilt in the 

opposite direction to the background flow close to the bottom boundary and are vertical at finite 

distances from the bottom [Baines et al, 1996]. Moreover, these perturbations were not seen in the 

experiment with a free-slip condition at the sill (experiment 2) because bottom stress is one of the 

necessary conditions for TS waves. Although the TS waves seem to correspond to the wavelength 

of perturbations in the topography in Fig. 9(a), TS waves were also excited without the undulation 

of topography (experiment 3), as shown in Fig. 11, indicating that the topographic undulation was 

not an essential factor. 

Propagation of the TS waves is observed as the movement of positive and negative velocity 

perturbations in Fig. 6. The phase speed estimated from Fig. 6 was 23 cm s-1, which was similar to 

the propagation speed of the KH billows in this stage. The frequency was 2.9 × 10-3 rad s-1, which is 

much higher than diurnal tidal frequencies.  

The TS waves grow to form vortices on the bottom and their vertical scale increases to 

approximately 50 m (Fig. 9(b)). The vortices stretch vertically and break down as they move slowly 

downstream (Fig. 9(c)). Significant fractions of the breaking vortices are carried into the statically 

unstable region by both the breaking unsteady lee wave and the KH waves, and other fractions 

move down to the valley. The movement of the former fractions results in the entrainment of dense 
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water into the statically unstable region. The formation and breakdown of the vortices were repeated 

until the barotropic flow ceased. These results suggest that TS waves can contribute significantly to 

diapycnal mixing, as will be discussed in section 5.  

 

3.2. Over the Valley  

Before the unsteady lee wave breaks, the downslope flow separates from the bottom boundary 

near 1.6-km distance, and a reverse flow forms under the separated flow (Figs. 3(a) and 4(a)). This 

boundary layer separation was due to the adverse pressure gradient created by the unsteady lee 

wave. Lamb [2004] explained flow separation associated with unsteady lee waves in his simulation 

as post-wave separation defined by Baines [1995], which is controlled by both upstream blocking 

and the adverse pressure gradient created by unsteady lee waves. In our simulation, however, 

upstream blocking was absent. Therefore, our flow separation is different from this type of 

post-wave separation. 

The separated flow rolls up and sheds vortices quasi-periodically (Figs. 3, 7 and 9). Vortices 

continue to be shed but become smaller after 0.3 period (Figs. 7(d) and 9). Most vortices merge 

with adjacent vortices in pairs, stretch vertically, and eventually break (Figs. 3(c) and (d), 7 and 9). 

As a result, strong stirring and thus mixing occur downstream of the vortex shedding point. Vortex 

shedding and pairing are essentially three-dimensional phenomena and the details are beyond the 

scope of this study.  
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The flow separation point and vortex shedding point move down in the lee of the ridge (Figs. 

3(a) to (c)) as the unsteady lee wave is advected downstream by the background flow. After the 

barotropic flow velocity reaches a maximum, both flow separation point and vortex shedding point 

stay around a 3.0-km distance until breaking vortices associated with TS waves reach the shedding 

point (Figs. 3(c) and (d), 7, and 9(a) and (b)). The movement of the separation point is also roughly 

seen in Fig. 6 as movement of the starting point of the reverse flow. Note that this correspondence is 

not exact because Fig. 6 does not show the bottom velocity (actually 30 m above the bottom) 

because the barotropic component is subtracted. 

 

4. Linear Stability Analysis 

This section describes a one-dimensional linear analysis, which was conducted to examine 

whether the perturbations in the second stage of the transition over the downslope (section 3.1.2.) 

are KH waves. In the analysis, the background flow was approximated to be horizontally parallel. 

This approximation should be reasonable for investigating the essential dynamics, given that the 

structure of the background flow profile varied sufficiently slowly with time and horizontal distance, 

and that the variations in the bottom depth were not sufficiently large to alter the dynamics of KH 

waves. We ignored the Coriolis term, viscosity, and diffusivity, which are not important on the 

spatial scales of the simulated KH waves.  

The linear stability of an inviscid and non-diffusive stratified shear flow, 𝑢�(z), to 
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two-dimensional perturbations is determined by the solutions of the Taylor–Goldstein equation 

[Drazin and Reid, 1981],     

𝑑2𝜑
𝑑𝜕2

+ � 𝑁2

(𝜕�−𝑐)2 − 𝑘2 −
𝑑2𝑢�
𝑑𝑧2

(𝜕�−𝑐)�𝜑 = 0,                 (1) 

which is derived from the linearized momentum equations for the x- and z-directions, the continuity 

equation, and the advection equation for density. Here, the stream function of the perturbation is 

defined as ψ’(x, z, t) = φ(z) exp[ik(x−ct)] and is related to the perturbation velocity in the x- and 

z-directions through u = -∂ψ’/∂z and w = ∂ψ’/∂x, respectively; k is the real wavenumber in the 

x-direction; c = cr + ici is the complex phase speed governing linear stability. At the top (z = 0) and 

bottom boundaries, φ(z) was set to be zero, and a free-slip condition was imposed. Numerical 

solutions of (1) were obtained using a shooting method (i.e., we integrated (1) with the fourth-order 

Runge-Kutta method from z = 0 to the bottom boundary, and searched for the solution that satisfies 

the boundary conditions by iteration, using the code provided by Brankin and Gladwell [1997]). 

Fig. 12 shows vertical profiles of the background stratification and flow, which were taken at 

1.1-km distance at 0.266 period (dashed line in Fig. 4(d)), just before KH waves appear. Small 

disturbances such as convection were excluded from the profiles using a multi-term approximation. 

Because effects of viscosity and diffusivity are significant in the BBL, we excluded the BBL from 

the background flow in this analysis, where the BBL is defined as the layer between the bottom and 

the depth of the maximum downslope flow speed in the vertical direction (30 m above the bottom). 
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As expected, the results of the analysis showed the presence of growing modes, whose phase 

speed and growth rate are shown in Fig. 13(a). The phase speed varies with wavenumber in Fig. 

13(a), owing to the vertical asymmetry of the background flow profile [Hazel, 1972]. Phase speeds 

are approximately 40 cm s-1 for modes with horizontal wavelengths of the perturbations that are 

dominant in the simulation (450–500 m, corresponding to wavenumbers of 0.0126–0.0140). This 

speed is almost equal to the estimated phase speeds in the simulation.  

Growth rates for the wavelengths of the simulated perturbations are roughly 1.0 × 10-3 s-1 (Fig. 

13(a)) and are large enough for perturbations to grow during the first half of the second stage (0.05 

period), although the wavelengths in the simulation were somewhat different from those of the 

fastest growing mode (630 m). This difference in wavelength could be a result of the spatiotemporal 

variability of the background flow neglected in the analysis. In the simulation, the growth rate was 

approximately 4.6 × 10-3 s-1, which was estimated from the variability of wave heights between 

0.290 and 0.299 period (Figs. 7(a) to (c)). The difference in growth rate between the analysis and 

the simulation may be caused as a result of convection, which seeded disturbances in the simulated 

shear flow. 

A perturbation stream function is shown in Fig. 13(b) for a wavelength of 500 m (a 

wavenumber of 0.0126). The structure shown was typical for a wide range of wavenumbers (0.006–

0.015), which encompasses the wavenumbers realized in the simulation. The stream lines form a 

closed cell centered at a depth of 170 m and extending between the depths of the maximum and 
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minimum background velocity. The depth of the cell is almost the same as that of the simulated KH 

billows that emerged in the simulation results (Figs. 7(d) and 8).The cell with negative perturbation 

vorticity seen in the analysis is less visible in the simulation due to superposition of the background 

flow. 

The above analysis shows that major features of the instability are consistent with those in the 

simulation, although there are some differences between the analysis and simulation results. 

However, it is still difficult to identify whether the perturbations are KH or Holmboe modes 

[Holmboe, 1962]; for the former modes, shear is more important than stratification, and for the 

latter the converse holds [Winters and Riley, 1992]. Thus, we also analyzed the same flow but with 

no stratification (i.e., N2 = 0). The results are shown in Figs. 13(c) and (d). The horizontal phase 

speed and the structure of the perturbation stream function are quite similar to those of the stratified 

fluid case for the same wavenumber (0.0126). These similarities between the two cases indicate that 

shear effects are dominant for the mode found in the stratified fluid case. Moreover, the growth 

rates in all wavelength ranges are higher than the growth rates in the case of stratified fluid, 

indicating that the stratification acted to stabilize the flow. Therefore, the modes in the stratified 

fluid case and hence the simulated perturbations are regarded as a KH mode. 

 

5. Effects on Mixing 
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The evolution of the potential density field (Figs. 3, 7, and 9) described in section 3 suggests 

that KH and TS waves and boundary layer separation enhance diapycnal mixing, as well as 

convection caused by density inversions induced by an unsteady lee wave. In this section, we 

qualitatively examine their role in diapycnal mixing using two measures.  

The first is the density variance dissipation rate χρ. This measure was employed to focus on 

stirring resolved in the simulations, which is thus determined by the momentum and 

advection-diffusion equations and is not affected directly by the subgrid-scale mixing 

parameterization. The definition of χρ has the same form as the temperature variance dissipation 

rate, namely, 

𝜒𝜌 = 2𝑐0 ��
𝜕𝜌′

𝜕𝜕
�
2

+ �𝜕𝜌
′

𝜕𝜕
�
2
�. 

In the following analysis, c0 was set to one, and ρ’ was the potential density after the application of 

a high-pass filter in the vertical direction using a Lanczos filter with 41 weights and a cut-off 

wavelength of 10 m. Accordingly, χρ represents the magnitude of the density gradient caused by 

resolved small perturbations, thus, χρ is a measure of resolved stirrings. Because strong stirring 

easily leads to mixing in the presence of diffusion, χρ relates to effects on mixing. Note that varying 

the cut-off wavelength within a range of 5–20 m did not produce a qualitative difference. In 

addition, the influence of numerical noise was confirmed to be negligible by comparison with the 

results obtained by using a band-pass filter with a range of 5 to 10 m in the calculation of ρ′.  
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Spatial distributions of χρ illustrate regions of enhanced stirring or mixing (Fig. 14). In the 

first stage over the downslope, values of χρ initially increase in regions where convection occurs 

(Figs. 14(b) to (d)). In the second and early third stages (after KH waves and billows develop, until 

TS waves emerge), areas of enhanced χρ spread to near the sea surface and to 100 m above the 

bottom over the downslope (Figs. 14(e) to (i)). In particular, χρ becomes high near the top and 

bottom of the statically unstable region. When vortices associated with TS waves develop (in the 

latter half of the third stage), χρ becomes high in the KH billows over the TS waves (Fig. 14(j)). 

After the vortices begin to break, high χρ values also appear in the region where fractions of broken 

vortices are entrained into the statically unstable region (Fig. 14(k)).  

Over the valley, the high χρ regions extend to near the sea surface associated with the 

formation and shedding of vortices and with the stretching and merging of shed vortices (Fig. 14). 

In particular, values of χρ are high around breaking shed vortices.  

The temporal evolution of the area-averaged χρ (<χρ>) is shown in Fig. 15 (thick line). The 

area average was conducted separately for the two regions over the downslope and the valley, 

because dynamical processes that enhance mixing are different in these regions. Over the 

downslope, <χρ> is roughly constant in the early phase of development of the unsteady lee wave 

(Fig. 15(a)). It then increases exponentially as vortex formation and shedding associated with the 

boundary layer separation start, because in the early stage boundary layer separation occurred over 

the downslope. Although convection increases <χρ> after its onset, <χρ> is almost constant for a 
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short time, because the increase due to convection is negated by the decrease due to the movement 

of both the shed vortices and the shedding point to outside of the area-averaged region. An 

exponential increase starts again with the convection and KH wave excitation. The value of <χρ> 

reaches a local maximum as the KH billows become well defined.  

As TS waves are excited and formed vortices, which subsequently break down, <χρ> 

increases gradually with some variation. The variation is caused by in- and out-flow of high χρ 

water across the lateral boundaries of the area-averaged region. Then, <χρ> reaches its peak value 

and remains high. This peak is attributed to the breakdown of vortices of TS-wave origin and to KH 

billows dominant in the statically unstable region. In the experiment with a free-slip condition at the 

sill (experiment 2), TS waves were not excited and <χρ> decreased after the peak associated with 

KH billows (not shown). This is different from the experiment with a no-slip condition, indicating 

that TS waves and associated vortex formation enhance mixing.  

Over the valley, the increase of <χρ> consists of two steps (Fig. 15(b)). The first increase 

begins as flow separation and vortex shedding occur. The increase continues due to expansion of 

areas where breakdown of shed vortices occur. After the expansion stops, <χρ> becomes nearly 

constant. The second increase results from the reduction in size of shed vortices. Reduction in 

vortex size leads to an increase in area of high density gradient, which occurs in the fringes of 

breaking vortices (Figs. 7(d) and 9). As a result, the value of <χρ> increases and remains high until 

the barotropic flow ceases.  
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The second measure is the rate of the change of the background potential energy due to 

diapycnal mixing, Φd [Winters et al., 1995]. This measure represents effects of diapycnal mixing 

due to both resolved motions and subgrid-scale diffusion and is defined as 

   Φ𝑑 = 𝑔 ∫ − 𝑑𝜕∗
𝑑𝜌
�𝜅𝐻 �

𝜕𝜌
𝜕𝜕
�
2

+ 𝜅𝑍 �
𝜕𝜌
𝜕𝜕
�
2
� 𝑑𝑑𝑉 , 

where g is the acceleration due to gravity; V, the integration volume; ρ(x, t), the potential density; 

and z*(ρ), the vertical position in the reference state of the minimum potential energy obtained by 

sorting the volume elements by density; further, κH and κZ are the horizontal and vertical eddy 

diffusivity coefficients, respectively. As shown in Fig. 15, the temporal evolutions of Φd and <χρ> 

are similar to each other. This similarity comes from the fact that both measures include the square 

of the space derivative of the potential density, and it shows that high χρ values are related to strong 

mixing in the present case. Thus, although the subgrid-scale diffusion is affected by the 

parameterization method, the conclusions are robust to each measure. 

The above analysis results indicate that convection, the development of KH and TS waves, 

and boundary layer separation extend regions of enhanced mixing from near the sea surface to near 

the bottom and increase the area-averaged mixing intensity. Therefore, we conclude that diapycnal 

mixing can be enhanced not only by convection but also by other dynamical phenomena involved in 

the transition processes. 

 

6. Conclusions and Discussion 
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In the present study, we have investigated the processes associated with the breaking of 

large-amplitude unsteady lee waves, i.e., the processes of transition to turbulence, using a vertically 

two-dimensional nonhydrostatic model with realistic topography of the Amchitka Pass. Our 

high-resolution simulation showed that over the downslope in the lee of the higher ridge, the 

transition process proceeded in three stages. In the first stage, convection occurred in a density 

inversion region created by a mature large-amplitude unsteady lee wave; in other words, wave 

breaking started. Breaking of the unsteady lee wave occurred on the upstream side (forward wave 

breaking) and the downstream side of the wave crest (backward wave breaking). Below the 

breaking unsteady lee wave, downslope flow accelerated and matured. The mature state 

corresponds to the severe downslope windstorms reported in previous studies [Scinocca and Peltier, 

1993; Afanasyev and Peltier, 2001]. In the second stage, finite-amplitude KH waves were generated 

in a strong shear region between the statically unstable region and the downslope flow, and these 

waves grew to form KH billows. In the third stage, TS waves developed in the BBL and grew to 

form vortices, which eventually broke down. Over the valley, downstream of the higher ridge, the 

downslope flow separated from the bottom boundary. The separated shear layer formed vortices and 

vortex shedding occurred, resulting in intense mixing. To the best of our knowledge, this is the first 

study reporting backward wave breaking of unsteady lee waves and the excitation of oceanic TS 

waves. 

The development of KH and TS waves and boundary layer separation enhanced diapycnal 
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mixing as well as convection caused by density inversions of a large-amplitude unsteady lee wave. 

Note that KH and TS waves obtain their energy from the kinetic energy of the background flow, in 

contrast to convection whose energy source is the potential energy of the lee wave. This difference 

in energy source has an important implication: the development of these waves affects the total 

amount of energy transferred to turbulence at the generation sites of lee waves. 

In regions where N10 and Legg and Klymak [2008] expected the excitation of large-amplitude 

lee waves, intense diapycnal mixing may occur through transitions similar to those we have 

reported in this paper, if the necessary conditions for KH and TS waves are satisfied. The necessary 

conditions for KH waves would be met if unsteady lee waves or downslope flow have sufficient 

growth such that the shear has an inflection point and Ri, the ratio of stratification to shear, is less 

than a quarter. For TS waves, the necessary conditions are (1) the presence of bottom stress, (2) the 

presence of BBLs, and (3) that the Reynolds numbers, the ratios of inertia to viscosity, of the BBLs 

are in the range at which TS waves are unstable. The unstable range depends on velocity profiles 

within the BBLs. In real oceans, there is a possibility of TS waves being excited, as at least bottom 

stress and the presence of BBLs are satisfied. However, observations of TS waves in the ocean are 

needed to verify this.  

Simulation results, particularly small-scale phenomena such as KH and TS waves, would be 

affected by eddy viscosity and grid resolution. First, we examine the influence of the turbulence 

closure model used in our simulation on KH and TS waves. Turbulence closure schemes affect the 
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spatiotemporal variation and magnitude of eddy viscosity. In general, viscosity is large in a BBL 

where TS waves could develop, whereas it is small in the interior region where KH waves could 

develop. Because viscous force is important for TS waves but works against KH waves, large and 

small viscosities tend to be favorable for TS and KH waves, respectively. Therefore, the use of a 

turbulence closure model would facilitate the development of both kinds of waves. To investigate 

the influence of spatiotemporal variation and the magnitude of eddy viscosity caused by the 

turbulence closure model used in experiment 1, nine sensitivity experiments were performed with 

constant eddy viscosity coefficients. The setup and results of the experiments are summarized in 

Table 2. In experiments 4—9, the magnitude of viscosity coefficient was varied while keeping the 

ratio of horizontal and vertical eddy viscosity coefficients fixed, but in experiments 10—12, viscosity 

coefficients were determined based on the results of experiment 1. KH waves occurred in all the 

experiments, and TS waves appeared in experiments 8 and 11. Note that wavelengths of the KH and 

TS waves were different from those of experiment 1 because of a difference in flow profile between 

the experiments. TS waves did not appear in the other experiments (4—7, 9, 10, and 12) because a 

too-large vertical viscosity damped TS waves or because a too-small vertical viscosity made the 

BBL too thin (less than 10 m) to resolve TS waves. Although TS waves are somewhat sensitive to 

the magnitude of viscosity, the occurrence of KH and TS waves with constant viscosity coefficients 

suggests that the excitation of KH and TS waves does not require spatiotemporal variation of 

viscosity coefficients and therefore the turbulence closure model. 
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Next, the influence of grid resolution is considered. In experiment 1, KH waves were resolved 

by ~50 grids in a horizontal wavelength. For TS waves, the viscous response, i.e., the tilting of 

phase lines, was resolved by ~20 grids in the vertical direction. Therefore, the grid resolution is 

sufficient or reasonable for KH and TS waves. Nevertheless, if the resolution was increased, 

simulation results could be quantitatively altered for TS waves; their growth rate, for example, 

could be affected. Conversely, with insufficient resolution, KH and TS waves would not be excited. 

Stratification became weaker with time due to diapycnal mixing caused by the transition 

processes. Weakening of stratification would affect the generation and properties of unsteady lee 

waves. The waves, nevertheless, were excited and broke again in the next tidal cycle. KH and TS 

waves also developed because stratification effects were sufficiently small, particularly in the 

wave-breaking region. Moreover, a mean northward flow is present in the region we focused on, 

and, although the northward flow is much slower than the tidal flow [e.g., Reed and Stabeno, 1993], 

the water mass modified by mixing would be advected away by the mean flow. Thus, 

restratification would occur. Therefore, the transition processes discussed in this paper would occur 

repeatedly even if mixing acts to weaken the stratification. 

We employed the density variance dissipation rate and the rate of the change of the 

background potential energy due to diapycnal mixing. Diapycnal mixing strength, however, is often 

investigated using two other measures: the Thorpe scale, LT, [Thorpe, 1977] and the dissipation rate 

of kinetic energy. However, there are some difficulties in applying these measures in the present 
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case. First, the method using LT are often employed to indirectly estimate eddy diffusivity 

coefficients. It has not been confirmed, however, that the Thorpe scale method is applicable when 

LT is of the order of 100 m or more [Wesson and Gregg, 1994]. In the present simulations, 

inversions with LT exceeding 100 m were abundant in the lee of the higher ridge. Furthermore, LTs 

were determined not by one vortex but by the combination of several vortices in our results. It 

follows that LT did not represent the vertical size of the largest eddies, that is, the relationship of LT 

and the Ozmidov length scale [Ozmidov, 1965] was unclear. Thus, it is not known whether the 

method is applicable to our simulation results. Second, the energy dissipation rate is often 

calculated by replacing the molecular viscosity coefficients with the eddy viscosity coefficients. 

However, the physical meaning of the energy dissipation rate estimated by this method is not 

completely clear because the eddy viscosity coefficient depends on a parameterization used for 

subgrid-scale mixing that also has a role in reducing numerical noise and because it does not 

represent all dissipation taking place in the model (numerical diffusion is not accounted for).   

For the above reasons, we focused on the density variance dissipation rate, which is the 

measure of stirring due to resolved motions in the present definition. Actually, the result of the 

density variance dissipation rate was similar to that of the rate of the change of the background 

potential energy due to diapycnal mixing, which includes the effects of the subgrid-scale 

parameterization. Accordingly, the qualitative results are robust to the subgrid-scale mixing 

parameterization used here, suggesting that the energy dissipation rate would also yield 
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qualitatively similar results if the conversion from kinetic to potential energy was represented 

adequately in the model.  

Some points such as the mechanism of backward wave breaking and the relationship between 

backward wave breaking and strong sea-surface flow remain to be clarified. In addition, 

three-dimensional simulations are required for a complete understanding of the transitions, because 

convection, KH billows, and vortices induced by growing TS waves have three-dimensional 

structures in mature phases. From an oceanographic perspective, a quantitative estimate of 

diapycnal mixing in the Amchitka Pass is necessary for examining the relative importance of the 

transition processes in modifying water mass properties in the surrounding region. These points 

need to be investigated in the future.  
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Captions 

 

Figure 1. Locations and results of observations by Nakamura et al. [2010]. (a) Location and (b) 

bottom topography of the Amchitka Pass. The red bar in panel (b) indicates the location of the 

observation sites in the Pass. (c) Cross-ridge (northward) baroclinic currents (the deviation from the 
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vertically averaged flow over the ridge top) and the horizontal resolution of the temporally averaged 

ADCP data (∇). Selected isotherms are superimposed. (d) Cross-ridge section of potential density 

and the XCTD (♢) sites. Arrows show the direction of barotropic cross-ridge flow at the ridge top. 

 

Figure 2. Model topography (white) and initial stratification (color). Shadowed areas are sponge 

regions. Regions A, B, C, and D represent the areas shown in Figs. 3, 7, and 9; Figs. 4 and 8; Fig. 5; 

and Fig. 10, respectively. 

 

Figure 3. The evolution of potential density (σθ) for experiment 1 around the sill top (region A in 

Fig. 2) during the first stage (beginning of breaking of a large-amplitude unsteady lee wave and 

boundary layer separation) at (a) 0.142, (b) 0.181, (c) 0.239, and (d) 0.266 K1 period.  

 

Figure 4. The evolution of the across-sill component of the velocity (cm s-1) with potential density 

contours for experiment 1 over the down slope (region B in Fig. 2) at (a) 0.142, (b) 0.181, (c) 0.239, 

and (d) 0.266 K1 period. The contour interval is 0.1 σθ. The arrow in panel (c) shows the rightward 

flow that causes backward wave breaking. The dashed line in panel (d) indicates the vertical section 

used in the linear stability analysis in section 4.   

 

Figure 5. Vertical velocity (cm s-1) with potential density contours focusing on region C in Fig. 4(c), 
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which corresponds to region C in Fig. 2. The contour interval is 0.1 σθ. The solid and dashed arrows 

show the vertical motion associated with forward and backward wave breaking, respectively.  

 

Figure 6. Hovmöller plots of baroclinic across-sill velocity (cm s-1) for experiment 1 at 30 m above 

the bottom around the sill top during the first half period. Baroclinic velocity is defined as the 

difference between simulated and barotropic velocity. The downslope area is on the left of the 

dashed line, and the valley area is on the right. The solid circle indicates the location and time at 

which KH waves develop, and the dashed circle for TS waves. 

 

Figure 7. The evolution of potential density (σθ) for experiment 1 around the sill top at (a) 0.290, (b) 

0.295, (c) 0.299, and (d) 0.320 K1 period, when KH waves develop over the downslope and the 

shed vortices become smaller over the valley. Each solid and dashed arrow indicates the identical 

crests of KH waves. The white circle indicates an example of KH billows. 

 

Figure 8. Vorticity (s-1) with potential density contours for experiment 1 over the down slope at 

0.320 K1 period when KH billows develop (corresponding to Fig. 7(d)). The area shown is 

indicated as region B in Fig. 2. The contour interval is 0.1 σθ. 

 

Figure 9. The evolution of the potential density (σθ) for experiment 1 around the sill top at (a) 0.338, 
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(b) 0.365, and (c) 0.405 K1 period, i.e., during the development and collapse of TS waves in the 

boundary layer. The area shown is indicated as region A in Fig. 2.  

 

Figure 10. Vertical velocity (cm s-1) with potential density contours for experiment 1 at 0.338 K1 

period (corresponding to Fig. 9(a)) focusing on region D in Fig. 9 (or Fig. 2). The dashed curve 

shows a phase line of vertical velocity. The contour interval is 0.1 σθ. 

 

Figure 11. The potential density (σθ) for experiment 3 around the sill top at 0.412 K1 period. The 

area shown corresponds to region B in Fig. 2.  

 

Figure 12. Vertical profiles of (a) across-sill velocity and (b) squared buoyancy frequency for 

experiment 1 at 1.1-km distance and 0.266 K1 period. Thin and thick lines denote the original and 

multi-term approximated profiles, respectively.  

 

Figure 13. Results of the stability analysis for the vertical profiles in Fig. 12. The panels on the left 

are for the case with stratification and those on the right for the case with no stratification. The 

upper panels denote phase speed (cm s-1) and growth rate (s-1) as a function of wavenumber (m-1), 

and the lower panels show contours of the stream function of perturbation for a growing mode with 

a wavenumber of 0.0126.  
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Figure 14. The spatial distribution of the density variance dissipation rate, χρ, on a logarithmic scale 

with potential density contours for experiment 1 around the sill top during the first half period at (a) 

0.142, (b) 0.181, (c) 0.239, (d) 0.266, (e) 0.290, (f) 0.295, (g) 0.299, (h) 0.320, (i) 0.338, (j) 0.365, 

and (k) 0.405 K1 period. Panels (a) to (d), (e) to (h), and (i) to (k) correspond to Figs. 3, 7, and 9, 

respectively. The contour intervals vary with panels. Shadows within 20 data grids of the sea 

surface or the bottom indicate areas where χρ is undefined due to the use of the Lanczos filter. 

 

Figure 15. Time evolution of the area-averaged χρ (<χρ>) (thick line) and Φd (thin line) for 

experiment 1 over (a) the downslope (-0.4–2.5 km) and (b) the valley (2.5–4.5 km).  

 

Table 1. Setup of Numerical Simulations a 

a ‘Real topography’ indicates that shown in Fig. 2. In experiment 3, the slope in the lee of the higher 

ridge is set to be constant and equal to the average in x = 0–2 km in Fig. 2. In experiments 4–12, the 

turbulence closure model and the Smagorinsky-type model were not used. In all the experiments, Pr 

is set to be five. 

 

Table 2. Sensitivity Analysis b 

b Here νh and νz are horizontal and vertical eddy viscosity coefficients (cm2 s-1), respectively; λKH 
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and λTS are wavelength of KH and TS waves, respectively; and dash denotes the absence of TS 

waves. 

 

Table 1. Setup of Numerical Simulations a 
Experiment condition at the sill topography eddy viscosity coeff. 

1 no-slip real vary 
2 slip real vary 
3 no-slip const. slope vary 

4 - 12 no-slip real const. 
a ‘Real topography’ indicates that shown in Fig. 2. In experiment 3, the 
slope in the lee of the higher ridge is set to be constant and equal to the 
average in x = 0–2 km in Fig. 2. In experiments 4–12, the turbulence 
closure model and the Smagorinsky-type model were not used. In all 
the experiments, Pr is set to be five. 

Table 2. Sensitivity Analysis b 
Experiment νh νz λKH λTS 

4 500 2 570 - 
5 1000 4 620 - 
6 2500 10 620 - 
7 5000 20 570 - 
8 10000 40 550 320 
9 25000 100 600 - 
10 50 50 500 - 
11 500 50 520 550 
12 500 500 600 - 

b Here νh and νz are horizontal and vertical eddy viscosity 
coefficients (cm2 s-1), respectively; λKH and λTS are 
wavelength of KH and TS waves, respectively; and dash 
denotes the absence of TS waves. 
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