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Abstract

The report addresses techniques and problems encountered during intercomparisons of
wave data. Following a general discussion of intercomparing wave data, the basic sea state
parameters and spectra are recalled, and various aspects of the sampling variability theory are
discussed.

Intercomparing scalar data is typically carried out by means of scatter plots, but when
both data are subject to random sampling error, classical regression will produce heavily
biased results. The Maximum Likelihood and Total Least Square (TLS) regression does not
have this shortcoming, and in particular TLS regression is found to be quite suitable if there is
some information about the sampling variability, at least for one of the instruments. TLS, also
called Weighted Orthogonal Distance Regression (WODR) may be rather complex numerically,
and here we only show some examples for the case where there is a fixed ratio between the
error variances for the two data sets.

The Quantile-Quantile (Q-Q) plot is a very simple non-parametric technique that is often
used to compare one data set to an assumed theoretical distribution. It is shown that it can
be extended to a non-parametric regression when the sampling variabilities for the data are
comparable.

Due to the large dynamic range of directional spectra, together with considerable sampling
variability, direct comparisons using contour or 3D plots are difficult. Moreover, directionally
integrated parameters like the mean direction and the directional spread are not very informa-
tive when more than one dominating wave field is present in the spectrum. The best therefore
seems to be to apply a spectral partitioning algorithm in order to split a directional spectrum
into its main wave fields, and then compare the parameters for each field separately. The
report contains a short review of the spectral partitioning techniques.

∗This work is a part of work package 1 (Wp4) of the EnviWave (EVG-2001-00017) research programme under
the EU Energy, Environment and Sustainable Development program.
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1 Introduction

This report addresses techniques and problems often encountered during intercomparisons of

wave data. The most familiar graph for an ocean wave analyst is probably a scatter plot with

simultaneous data of significant wave height from two different instruments, e.g. two different

buoys, or a satellite and a buoy. The plot is characterized with a cloud of points, and with

a scatter that typically increases as the wave height increases. The scatter may for a large

part be due to the intrinsic sampling variability of the measurements. Although the sampling

variability for in-situ measurements is reasonably well known, the theory for satellite data is

more incomplete. Thus, assessing the variability of satellite data by comparing to buoy data is

not completely straightforward due to the sampling errors also present in the buoy data [22].

The scope of the report is somewhat limited and the statistical procedures are kept at a simple

level. In fact, many of the classical statistical tests are not easily applied in the present situation,

but in some cases nonparametric tests are suitable.

Following a general discussion of intercomparing wave data, we first recall the basic sea state

parameters and spectra, and then proceed to discuss various aspects of the sampling variability

theory. It is particularly interesting to see how the sampling variability varies differently for time

recording (typically in situ) or spatially recording (typically remote sensing) instruments.

Intercomparing scalar data is always done by means of scatter plots. A regression line, or more

generally a curve, then summarizes the intercomparison and provides a calibration relation be-

tween the instruments [3]. In the present case, where both instruments are subject to considerable

random sampling error, classical regression will produce heavily biased results. The Maximum

Likelihood and Total Least Square (TLS) regression does not have this shortcoming, and in par-

ticular TLS regression is found to be quite suitable if one has some idea about the sampling

variability, at least for one of the instruments. Unfortunately, TLS, also called Weighted Orthogo-

nal Distance Regression (WODR) may be rather tricky numerically although computer codes are

freely available. In this report we show some examples for the case where there is a fixed ratio

between the error variances for the two data sets.

A Quantile-Quantile (Q-Q) plot is a very simple non-parametric technique that is usually used

to compare one data set to an assumed theoretical distribution. It can be extended to a non-

parametric regression when the sampling variabilities are comparable. The Q-Q regression is

suitable when data from various instrument sources are merged into a common set for long term

wave statistics since in that case, the overall distribution of the data are fitted.

Due to the large dynamic range of directional spectra, together with considerable sampling vari-

ability, direct comparisons using contour or 3D plots are difficult. Moreover, directionally inte-

grated parameters like the mean direction and the directional spread are not very informative

when more than one dominating wave field is available. The best therefore seems to be to apply

a spectral partitioning algorithm in order to split a directional spectrum into its main wave fields,

and then compare the parameters for each field separately. A review of the spectral partitioning

techniques is included in Sec. 6.
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Figure 1: The hypothetical optimal space/time window (taking non-homogeneity and non-stationarity
into account), and real wave measuring instruments.

2 General considerations

Intercomparison of wave data highlights the problems encountered in comparing any data sets.

The data are often collected from different kinds of instruments, using different sampling strategies

and different analysis procedures [22]. The data may be available in the form of directional wave

spectra, or in the form of parameters derived from the spectra. Various statistics must be chosen

in an optimal way to illustrate similarities and differences between the instruments. An important

feature of wave measurements is that nature varies in a stochastic manner beyond our control.

Often wave data from different sources have to be compiled into larger data bases, and in order

to obtain a uniform data set, it is necessary to apply calibration relations derived from intercom-

parison between the instruments. Optimal calibration curves are therefore an important tool for

the intercomparisons. Some of the intercomparison techniques that are used to compare different

instruments may also be used to compare wave model results with observations [15],[31].

Generally speaking, measurements of ocean waves involve estimation of parameters of random

models. A central assumption about the random model is that it is stationary or homogeneous,

– a property which is never strictly attained in practice. Even if there are optimal space/time

windows in which the wave field is stationary and the parameters can be estimated with maximal

accuracy, no instrument existing today is close to reaching such accuracy even for common sea

state parameters like the significant wave height. Figure 1 shows some the dilemmas encountered

when intercomparing wave data.

Consider two wave instruments recording the same sea states independently, as illustrated in

Fig. 2. The basic task will often be to reveal any systematic differences between the instruments,

based on the actual measurements and information about the measurement principles and previous

experience. Associated with each measurement there are first of all independent sampling errors.

These sampling errors are often strongly dependent of the underlying sea state. In addition, both

instruments have in general systematic offsets (e.g. calibration errors), also depending on the sea

state. Finally, there may be temporal and spatial offsets between the recordings which result in
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Figure 2: A typical data intercomparison: Buoy in situ data vs. co-located satellite data.

differences between the actually measured sea states. In addition, the underlying sea states vary

according to a certain natural variability which is beyond our control. We are thus facing several

potential problems which have to be analysed and resolved properly:

• Possible effects of differences in measurement principles

• Assessment of inherent instrument limitations due to the measurement principles

• Systematic off-sets due to lack of a proper calibration

• Inherent and in general different sampling variability, dependent on the sea state

• Incomplete data coverage due to limited variability of the sea states

• Temporal and/or spatial offsets

Different instruments have different applications and inherent instrument limitations, as long as

they are known, may not be a problem. Whereas buoys are known to be excellent for measuring

overall sea state parameters, their surface profiling capability (for crest height, wave skewness

etc.) is less satisfactory. Sub-surface instrumentation like the current meters/pressure cells or

bottom mounted pressure transducers have limited high frequency sensitivity simply because of

the wave action attenuation with depth. Spatial arrays are in many respects different from point

measurements with a sensitivity that may be dependent both on the frequency and direction of

the incoming waves. Also, a spatial array is essentially limited to wave lengths longer than its size.

Another feature of spatially extending instruments is that most analysis techniques need to assume

linear wave theory. Many remote sensing measurement techniques such as the Synthetic Aperture

Radar still suffer from a lack in our basic understanding of the measurement mechanisms. In these
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cases there are also limitations due to the resolution which determines the minimum wavelength

that can be observed at all.

A proper calibration of the instruments is essential for unbiased measurements, as discussed in

[4]. When measuring waves with heave/pitch/roll buoys one typically has to consider several

types of calibrations. The heave motion itself has a resonance which depends on the geometry

and weight of the buoy. For medium size buoys the resonance is above the main wave frequencies

although some resonant enhancement and phase shift may extend into the high frequency range

of the wave spectrum. On the contrary, the pitch and roll resonant motion is typically situated

at an important range of the wave spectrum. This motion, which can be approximately modelled

as an harmonic oscillator driven by a random force, may be strongly out of phase with the actual

surface slope. In addition, electronic filters, e.g. integration of acceleration measurements and

anti-aliasing filters are frequently involved. As long as the response is linear, it is simple to make

corrections by applying appropriate transfer functions to the spectrum, but often one encounters

a non-linear response for which it is very difficult to correct.

3 Wave Parameters

We write the ocean surface, η(x, t), in terms of the spectral representation as

η(x, t) =

∫

k,ω

ei(kx−ωt)dZ(k, ω), (1)

and define the three dimensional spectrum as

dχ(k, ω) = E(dZ(k, ω)dZ(k, ω)).

For linear wave theory, the spectrum is supported on the dispersion surface

ω2 = gk tanh(kh), (2)

where k = |k|, and h is the water depth (in the absence of currents) and the wavenumber spectrum

is defined by

Ψ(k)d2k =

∫

ω>0
dχ(k, ω).

The wavenumber spectrum may be expressed in terms of frequency and direction instead of

wavenumber as a directional spectrum

E(f, θ) = Ψ (k(f), θ) k(f)
dk

df
,

(2πf)2 = gk(f) tanh (k(f)h) .

This directional wave spectrum is further written as E(f, θ) = S(f)D(θ, f), where S is the

frequency spectrum and D the frequency dependent directional distribution expressed as the

Fourier series

D(θ, f) =
1

2π
+

1

π

∞∑

n=1

an(f) cosnθ + bn(f) sinnθ.

Table 1 contains a survey of the main sea state parameters[28].
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Name Symbol Definition

Significant Wave height Hs Hs = 4m
1/2
0 , mk =

∫∞
f=0 f

kS(f)df

Mean zero-crossing period Tz Tz = (m0/m2)
1/2

Mean wave period Tm Tm = m0/m1

Peak period Tp Tp = 1/fp, maxf S(f) = S(fp)

Mean Wave Direction θ1 θ1(f) = atan 2 (b1(f), a1(f))

Directional spread σ1 σ1(f) = (2(1 − r))1/2 , r = [a2
1(f) + b21(f)]1/2

Direction at the spectral peak θp θp = θ1(f = 1/Tp)

Spread at the spectral peak σp σp = σ1(f = 1/Tp)

Table 1: Main sea state parameters

4 The Sampling Variability of Wave Parameters

4.1 The frequency spectrum and derived parameters

The sampling theory for time series, in particular in the spectral domain, is fairly straightforward.

The periodogram is the squared magnitude of the discrete Fourier transform of the time series, and

the Central Limit Theorem for discrete Fourier transforms ensures that the periodogram values

I(fk) are (scaled) χ2-distributed variables with 2 degrees of freedom (DOF). For reasonably long

time series, and series with smooth spectra, we may for practical computations assume that

E(I(fk)) ≈ S(fk)

Var(I(fk)) ≈ S(fk)
2 (3)

Cov(I(fk), I(fl)) = 0, k 6= l

where {fk} is the discrete set of frequencies for which the periodogram is defined from the discrete

Fourier transform. Above reasonably long means long compared to the correlation time scale of the

series. Bias in the periodogram, often called spectral leakage, may be reduced by data tapering.

The ocean wave frequency spectrum is fairly smooth and both the recording interval and the

sampling frequency for time series data are usually quite satisfactory.

Many of the sea state parameters dependent on the frequency spectrum are derived from the

spectral moments defined by

mr =

∞∫

f=0

f rS(f)df. (4)

The most common estimates for the moments m̂r, are discrete Riemann sums over the peri-
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odogram for which it follows that

E(m̂r) = mr,

Var(m̂r) =
1

T

∞∫

f=0

f2rS2(f)df + O(N−2), (5)

Cov(m̂r, m̂s) =
1

T

∞∫

f=0

f r+sS2(f)df + O(N−2),

where T is the recording interval and N the number of points in the time series [21]. In prac-

tice, these quantities may also be computed from a discrete sum over a smoothed periodogram

(spectrum). This smoothed spectrum is also a χ2-distributed variable approximately fulfilling

E(Ŝ(f)) ≈ S(f) (6)

Var(Ŝ(f)) ≈ (2/ν)S(f) (7)

E(Ŝ2(f)) ≈ (1 + 2/ν)S2(f) (8)

where ν is the degrees of freedom, – of the order twice the number of periodogram values involved

in the smoothing.

There is a trade-off between the resolution of the smoothed spectrum and the requirement of

independent spectral estimates. Obviously, for a sampling frequency fs, the recording interval is

T = N/fs and the periodogram frequency resolution is fs/N . The maximum frequency resolution

in a smoothed spectrum with ν degrees of freedom which maintains independent spectral estimates

is therefore ∆f = (ν/2)fs/N .

The Taylor expansion technique is a simple way to obtain the stochastic properties of more

complicated expressions of the spectrum. If X = (X1, ..., XN ) is a multivariate stochastic variable

for which

Var(Xi) << E(Xi)
2, i = 1, ..., N, (9)

and Y = g(X) is a differentiable function, then to the leading order,

E(Y) = g(E(X)), CYY = DCXXDt, (10)

where D = dij , dij = {∂gi/∂xj} , and CXX is the variance-covariance matrix of X, and similarly

for Y.

The Taylor expansion technique may be applied to determine the variance for parameters which

are functions of the spectral moments:

Ĥs = 4m̂
1/2
0 , Var(Ĥs) = 4m00/m0,

T̂m = m̂0/m̂1, Var(T̂m) =
m00

m2
1

− 2
m0m01

m3
1

+
m2

0m11

m4
1

, (11)

T̂ z = (m̂0/m̂2)
1/2, Var(T̂ z) =

1

4

(
m00

m0m2
− 2

m02

m2
2

+
m0m22

m3
2

)
,
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Figure 3: Coefficient of variation (C.O.V.) for three common wave parameters. JONSWAP spectra with
high frequency tail asymptotic to f−4.5, and γ values 1, 3, 5, and 7 (indicated on the graphs). Duration of

time series expressed in terms of peak period, Tp.

where mrs ≡ Cov(mr,ms). In a practical analysis, the estimates of the spectral moments and

their covariance are used in the expression for the variance. The sampling variability is illustrated

in Fig. 3 for a set of JONSWAP wave spectra. In the graph, C.O.V. denotes the coeffcient of

variation,

C.O.V. (X) =
std (X)

E (X)
,

and the duration of the time series is expressed in dimensionless form.

It is also possible to derive an expression for the variance of the estimate for m0 for an instantly

spatially measuring instrument. We then first observe that the wave number spectrum of the

instantaneous surface is

φ(k) = (Ψ(k) + Ψ(−k)) /2. (12)

If we scale the two-dimensional periodogram such that E (IX(kmn)) = φ(kmn), Var (IX(kmn)) =

φ2(kmn), the estimate for m0 is

m̂0 =
(2π)2

∆x∆yMN

M/2∑

m=−M/2

N/2∑

n=−N/2

IX(kmn), (13)

which leads, as the resolution tends to infinity and the covered area is sufficiently large, to

E (m̂0) =

∫

k

φ(k)d2k. (14)

For the variance, we note that IX(knm) = IX(−k−n,−m), but otherwise, periodogram values are

reasonably independent. Thus,

Var (m̂0) =

(
(2π)2

∆x∆yMN

)2

4

M/2∑

m=−M/2

N/2∑

n=0

Var (IX(knm)) → 8π2

A

∫

k

φ2(k)d2k. (15)
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By introducing the wavenumber spectrum and neglecting the cross term Ψ(k)Ψ(−k) we have

Var (m̂0) =
4π2

A

∫

k

Ψ2(k)d2k. (16)

4.1.1 Spatially averaging instruments

For instruments of some spatial extent there is a simple estimate of how the size may affect the

spectrum. Again consider the surface spectral representation of the surface,

η(x, t) =

∫

k,ω

ei(kx−ωt)dZ(k, ω). (17)

An ideal instrument situated at the origin measures

η(0, t) =

∫

k,ω

e−iωtdZ(k, ω), (18)

whereas an instrument averaging over a circular disc with radius r measures

η̃(t) =
1

πr2

∫

|x|<r

η(x, t)d2x. (19)

It is easily seen that the spectra for η̃ and η are connected as

Sη̃η̃(f) = |T (k(f), r)|2 Sηη(f), (20)

where the wavenumber k(f) is obtained from the dispersion relation and

T (k, r) =
2

r2

r∫

ρ=0

J0(kρ)ρdρ =
2J1(kr)

kr
=

∞∑

j=0

(−1)j 1

(j + 1)22j(j!)2
(kr)2j

The spectral transfer function as a function of frequency in deep water is given in Fig. 4.

Often also the surface profiling capabilities of the instrument are important. The actual individual

wave profiles are used to study the crest height, the wave skewness (vertical and horizontal) and

the height/period distributions. The time series are also necessary when comparing higher order

statistics of the time series. A well-known example is the unavoidable horizontal buoy motion

when measuring high crests. Non-linear response of heave/pitch/roll buoys represents a different

problem. It may be very difficult to eliminate these features.

4.1.2 Intercomparison of frequency spectra

When comparing spectra, it is convenient to consider the so-called spectral ratio,

r(f) =
SY (f)

SX(f)
. (21)
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Figure 4: Transfer function for disc averaging instrument in deep water as a function of the diameter of
the disc.

When estimating the spectral ratio from measured spectra, it is necessary to apply a bias cor-

recting factor. If the spectra for the two systems have been computed with νX and νY degrees of

freedom, then the bias free estimate for the spectral ratio is

r̂(f) =
ŜY (f)

ŜX(f)

νX − 2

νX
(22)

This spectral ratio will be a (scaled) Fisher distributed variate with νY and νX degrees of freedom

and, as such, have a variance equal to

Var (r̂(f)) =
2(νX + νY − 2)

νX(νY − 4)
. (23)

An alternative to the ratio is to consider the logarithm of the spectra. Since Ŝ is distributed

according to a scaled a χ2
ν -distribution, U = log(Ŝ/E(Ŝ)) has a distribution which is easily

expressed in terms of the χ2
ν probability density. The distribution is considerably more symmetric

about its mean and in particular,

E(U) = ψ(ν/2) − log(ν/2)

Var(U) = ψ′(ν/2) (24)

where ψ(z) = Γ′(z)/Γ(z) is the di-Γ-function (see Abramowitz and Stegun [1], §26.4.37). From

the asymptotic expansion of y, ψ(z) = log(z) − 1
2z + 1

12z2 + ... , we obtain

E(log(Ŝ)) = log(E(Ŝ)) − 1

ν
+

1

3ν2
+ ...

Var(log(Ŝ)) =
2

ν
+

2

ν2
+ ... (25)

11



4.2 Directional wave parameters

Since directional spectral estimation from in-situ data involves computing auto and cross spectra

from several time series, the simple theory for single time series does not apply. However, as

mentioned above, time series in ocean wave measurements are generally long compared to the

typical correlation distance in the series and in addition, the underlying spectra are reasonably

smooth (Wind wave spectra from very extreme seas or narrow swell spectra may be somewhat

questionable in this respect). Hence, the sampling variability of the cross spectrum estimates is

then governed by the complex Wishart distribution (See, e.g., [8]).

The only instrument where a complete asymptotic theory of the sampling variability of the di-

rectional parameters exists is the single point triplet. The theory was developed by R.B. Long

around 1980 and we shall for completeness recall some of Long’s results below [23]. Consider a

heave/pitch/roll buoy and let

σT =
[
σhh σxx σyy =(σxh) =(σyh) <(σxy)

]
, (26)

d(σ) =




a1

b1
a2

b2


 =




=(σxh)/
√
σhh(σxx + σyy)

=(σyh)/
√
σhh(σxx + σyy)

(σxx − σyy)/(σxx + σyy)
2<(σxy)/(σxx + σyy)


 . (27)

By a Taylor expansion of the estimate d̂ around the expectation value, and applying Eqn. 10, we

obtain

E

(
d̂
)

= d, V = DE(δσδσT )DT = DUDT . (28)

The covariance matrix U is found by means of the Wishart distribution of Σ̂ and the elements

in V may be expressed explicitly as in Table 2.

V11 = 1
2ν

[
a2

1z1 − 2a1b1b2 − a2(2a
2
1 − 1) + 1

]

V22 = 1
2ν

[
b21z1 − 2a1b1b2 + a2(2b

2
1 − 1) + 1

]

V12 = 1
2ν

[
a1b1z1 − b2(r

2
1 − 1)

]

V13 = 1
ν

[
a1a2z2 − a1(a

2
1 − b21 + a2

2 − 1) − b1b2(a2 + 1)
]

V23 = 1
ν

[
b1a2z2 − b1(a

2
1 − b21 − a2

2 + 1) − a1b2(a2 − 1)
]

V14 = 1
ν

[
a1b2(z2 − a2) − b1(2a

2
1 + b22 − a2 − 1)

]

V24 = 1
ν

[
b1b2(z2 + a2) − a1(2a

2
1 + b22 + a2 − 1)

]

V33 = 1
ν (a2

2 − 1)(r2
2 − 1)

V44 = 1
ν (b22 − 1)(r2

2 − 1)

V34 = 1
νa2b2(r

2
2 − 1)

Vij = Vji

z1 = 2(r2
1 − 1) + 1

2 (r22 − 1), z2 = (r2
1 − 1) + 1

2(r22 + 1)
r21 = a2

1 + b21, r
2
2 = a2

2 + b22

Table 2: Elements of the covariance matrix for estimates of the Fourier coefficients. The numbering 1 -
4, refers to â1, b̂1, â2, b̂2 , respectively. ν is the DOF in the cross spectral estimates.

The statistical properties for the estimates of the directional spread, σ̂1, may be derived by the

12
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Figure 5: The sampling variability for estimates of the mean direction and the directional spread shown
for degrees of freedom (ν) equal to 30, 50, 70, and 90.

same method, utilizing the V matrix,

Var(σ̂1) =
1

2
[(1 − r1)

3 Var(s)], (29)

where

Var(s) =
1

(1 − r1)4
{r41 +

1

4
r21(r

2
2 − 1) + (

1

2
r−2
1 − 1)[r2

1 + a2(a
2
1 − b21) + 2a1b1b2]}

1

ν
. (30)

Similarly, the asymptotic deviation for the mean wave direction is

Var(θ1) =
1

r41
[r21 − a2(a

2
1 − b21) − 2a1b1b2]

2

ν
. (31)

The asymptotic sampling variability for estimating the mean direction and the directional spread

for a cos-2s distribution is shown in Fig. 5. It is important to note that the sampling variability

is strongly dependent of actual shape of the directional distribution. It is therefore not possible

to give a simple answer to questions about the directional resolution of single point triplets.

Modern statistical methods frequently use simulation to reveal the sampling variability. Given

the spectral properties, there is a simple and effective way of simulating multivariate Gaussian

time series. In this way, it is simple to simulate the output from arbitrary wave recording devices

supposing the sea follows Gaussian linear wave theory (see [3]). In some cases it is more con-

venient to start by simulating the cross spectra directly. Cross spectra of multivariate Gaussian

processes have a complex Wishart distribution that is easily simulated by summing the squares

of independent complex Gaussian variables [8]. The following conclusions were obtained by a

simulation study on the sampling variability of sea state parameters obtained from buoys like the

Directional Waverider [25]:

• The asymptotic theory for frequency spectra holds very well

• Variability of parameters derived from the spectrum follows easily and accurately from the

Taylor expansion technique using the expression for the variability of the spectral moments.
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• The difference between Hs and H1/3 (computed from the time series itself) is similar for

simulated and real time series, and the sampling variability is similar

• There is a small but significant difference in the expectations of Tz from the spectrum and

the time series.

• The variability of Tz is quite small. However, the standard deviation derived from the

simulations is about 50% higher for Tz from the time series, as compared to the period

computed from the spectrum.

• The standard deviation of Tp is about 4-10 times larger than for Tz.

• For the directional parameters the expressions of R. B. Long seem to be accurate for narrow

directional distributions. Some deviations are observed for broad directional distributions.

4.3 The variability of the directional distribution

For directional estimates of the form D(θ) = γ(θ)HΣ̂γ(θ), where γ is independent of Σ̂, the

sampling variability is simply Var(D̂(θ)) = 2
ν (ED̂(θ))2 [9]. It has been suggested that a similar

expression should be valid in the data adaptive case as well. Unfortunately, this does not appear

to be the case. Below we review some results obtained by Ingrid Glad in her masters thesis dealing

with the MEM method applied to heave/pitch/roll buoy data [14].

If the theoretical directional distribution is fairly uniform, the Fourier coefficients obtained by

the standard method are small, and the ME-directional estimate is to the first order simply the

truncated Fourier series:

D̂(θ) ≈ 1

2π

1

1 − ĉ1e−iθ − ĉ∗1e
iθ − ĉ2e−2iθ − ĉ∗2e

2iθ
(32)

≈ 1

2π
(1 + ĉ1e

−iθ + ĉ∗1e
iθ + ĉ2e

−2iθ + ĉ∗2e
2iθ)

=
1

2π
(1 + 2(â1 cos θ + b̂1 sin θ + â2 cos 2θ + b̂2 sin 2θ)). (33)

Moreover, the variance-covariance matrix reduces to

V =




1
2ν 0 0 0
0 1

2ν 0 0
0 0 1

ν 0
0 0 0 1

ν


 . (34)

The covariance between D̂(θ1) and D̂(θ2) are then to the leading order

Cov(D̂(θ1), D̂(θ2)) =
1

π2
(

1

2ν
cos(θ1 − θ2) +

1

ν
cos 2(θ1 − θ2)).

14



By inserting θ1 = θ2 in the above expression, we obtain

Var(D̂(θ)) ≈ (
1

π
)2(

1

2ν
+

1

ν
)

= (
1

2π
)2

6

ν

= 3 · 2(E(D̂(θ)))2/ν. (35)

Thus, the sampling variability of the MEM-directional estimate for an approximately uniform

directional distribution is 3 times the variability of the linear estimates.

It has turned out from computer simulation studies that this result has rather limited validity.

For more general distributions an analytical Taylor expansion analysis for the covariance gets

very messy. From a series of computer experiments of the variability it was observed that the

variability may be substantially larger than for the linear estimates or the MEM-estimate for

nearly uniform distributions.

4.4 Spatial and temporal measurements

We are going to investigate the sampling variability of temporal vs. spatial measurements and

consider the following two hypothetical instruments. Instrument A measures a time series of

surface elevation in a single point for a duration T . Instrument B measures the elevation of the

surface at a fixed instant of time for all points over an area A (In the following derivation we

first assume the area to be square, but replace it later with an equivalent disc of diameter d).

Both instruments have infinitely high resolution and the sampling interval and area are both large

enough for the asymptotic sampling theory to apply. It is convenient to write the wave spectrum

in the normalized form

S(f)D(θ, f) =
Hs2

16fp
S0(f/fp)D0(θ, f/fp), (36)

where fp = 1/Tp , and
∞∫

x=0

S0(x)dx =

2π∫

θ=0

D0(θ, x)dθ = 1. (37)

Deep water is assumed for simplicity (very shallow water gives actually somewhat different con-

clusions and is left to the reader).

We consider the estimation of the significant wave height obtained from estimates of the zeroth

spectral moment m0. As discussed above, when the sampling frequency f0 → ∞ and the recording

interval T is sufficiently large,

E(m̂0) = m0, (38)

Var(m̂0) =
1

T

∞∫

f=0

S2(f)df. (39)

Since Var(Hs) = 4Var(m0)/m0 , we have for the coefficient of variation, C.O.V.,

C.O.V.time =
Std(Hs)

Hs
=

√
Var(m̂0)

2m0
=

1

2
‖S0‖2 (fpT )−1/2 , (40)
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where ‖S0‖2 is defined as
(∫
S0(x)

2dx
)1/2

. This is a reasonable expression since the recording

length is measured by the time scale f−1
p , the coefficient of variation decreases with the square

root of the length of the recording interval, and the norm ‖S0‖2 is a suitable measure of the

spectral width, which increases as the spectra get narrower (note that
∫∞
0 S0 (x) dx = 1).

For the spatial instrument we showed above that

Var (m̂0) =
4π2

A

∫

k

Ψ2(k)d2k. (41)

Now,

Ψ(k)2kdkdθ = S(f)2D(θ, f)2
df

kdk
dfdθ, (42)

which leads to

Var (m̂0) =
4π2

A

g2Hs4

2(2π)4162f4
p

∞∫

x=0

S0(x)
2 1

x3
‖D(·, x)‖2

2 dx. (43)

If we for simplicity replaces the square area by a disc such that A = π(d/2)2 , and include, as

is common, a 2π factor in the definition of the || ||2-norm for D, define λp = (g/2π)f−2
p , and

assumes that S0 is reasonably peaked, we may write the coefficient of variation for Hs simply as

C.O.V.space =
std(Hm0)

Hm0
= ‖D0(·, 1)‖2 ‖S0‖2 (d/λp)

−1 (44)

The variability is thus inversely proportional to the square root of the measured area, where

length is measured by the length scale λp. As for the temporal case, the peakedness of the fre-

quency spectrum is important, and in addition, and somewhat interestingly, a narrow directional

distribution gives larger sampling variability. All this features are actually expected since they

reflect the covariance properties of the wave field.

It is interesting to note that if the peak period Tp = 1/fp increases by a factor of two, the temporal

C.O.V. increases by a modest factor
√

2, whereas the spatial C.O.V. increases by a factor 4. In

order to keep the same C.O.V.s, one needs to double the registration time T for the temporal

instrument but make the registration area 16 times larger for the spatial instrument! On the

contrary, if we want to double the precision in our estimates, we only need to double d, whereas

a four-fold increase is necessary for T .

If we consider a typical JONSWAP-like frequency spectrum for S0 and a cos-2s-distribution with

s = 10 at Tp for D, the corresponding 2-norms come out as ‖S0‖2 = 1.03, ‖D0(·, s = 10)‖2 =

.32, see Fig. 6 (Note that a 2π-factor was included in the definition of ‖D0‖2). In this case, we

thus obtain the expressions

C.O.V.time ≈ .52 (T/Tp)
−1/2 ,

C.O.V.space ≈ .33(d/λp)
−1. (45)

For a certain C.O.V., the necessary time interval and diameter of the measurement disc are given
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Figure 6: Dimensionless spectra used in the numerical example.

Figure 7: Necessary recording time interval (left) and disc diameter (right) for a given C.O.V. as a
function of Tp.

by

T =

(
.52

C.O.V.time

)2

Tp,

d =
.33

C.O.V.space

g

2π
T 2

p . (46)

The relations are shown graphically in Fig. 7.

The satellite radar altimeter measures over an area (including the averaging over partly over-

lapping discs) of approximately 9km2. Similarly, the Envisat Wave Mode spectra are based on

imagettes of approximately 63km2. The maximal (and highly hypothetical!) maximum precisions

in the measurements are then shown in Fig. 8. These lower bounds will hardly ever be of interest

for the SAR, but may be of importance for the altimeter at very high sea states.
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Figure 8: Application of relation to the radar altimeter and the SAR

5 Intercomparisons of Scalar Wave Data

5.1 The general setting

Consider independent and, for simplicity, scalar measurements X and Y of one common wave

parameter, µ. The parameter could, e.g. be the significant wave height, Hs, measured by a buoy

(X) and a satellite altimeter (Y ). In general, X and Y suffer from both systematic and sampling

errors. This may be expressed as

E (X) = h (µ) ,

E (Y ) = f (µ) , (47)

where h(µ) and f(µ) represent systematic off-sets in the measurements of the underlying wave

parameter µ. Since we do not know µ exactly, it would in general be impossible determine both

h(µ) and f(µ). In the following we therefore assume that h(µ) = µ, and write x for µ, and y for

f(x). The primary objective of the data intercomparisons is often to determine the function f or

its inverse, since this would be the calibration function to apply if we trust one system more that

the other.

At first sight, finding y = E (Y ) = f (x) appears to be a familiar regression problem where f (x) is

often assumed to be in the form of a line, y = α+βx. However, regular regression assumes that the

independent variable, say x, is totally free of error, with only Y subject to stochastic variations.

In the present case, both X and Y are subject to sampling errors. In addition, these sampling

errors tend to depend quite strongly on x. We shall assume that the sampling variability variances

σ2
x(x) and σ2

y(y) are functions of x and y. In some cases the sampling variability is essentially

known, in other cases it has to be inferred from the data. In order to proceed, we shall therefore

assume that the sampling errors are independent from record to record, as well as between the

two instruments. This is often quite obvious and a minor restriction. Next, we assume that the

sampling errors are Gaussian and, for the moment, that the variances are known functions of x
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and y. In practice, this may be true to a larger or smaller extent. The probability laws of X and

Y are then

L(X) = N
(
x, σ2

x(x)
)
,

L(Y ) = N
(
f(x), σ2

y(f(x))
)
. (48)

When the sea state varies, x varies according to a certain density of occurrence π, which, for a

long series of observations approaches what is commonly known as the long term distribution of

x. The observations (Xi, Yi)
N
i=1 will thus be obtained from a joint density of the form

φ(ξ, η) =

∫

s

gX(ξ, s, σ2(s))gY (η, f(s), τ 2(f(s)))π(s)ds (49)

where gX and gY are Gaussian densities,

g (ξ) =
1√

2πσ (x)
e−(ξ−x)2/2σ(x)2 . (50)

Note that the density in Eqn. 49 is in general not a bi-variate Gaussian density. The primary

aim will often be to determine the function f(x), although unbiased estimates of the distribution

π may be of independent interest.

The above situation suggests what is called an errors-in-variables model [12]

Xi = xi + δi,

Yi = f(xi) + εi, i = 1, ..., N, (51)

where xi are unknown and L(δi) = N (0, σ2
i ), L(εi) = N (0, τ 2

i ). One feature of such models is that

they are symmetric in the sense that as long as f is one-to-one, the result of applying the model to

some data is independent of which variables are chosen to be X or Y . Errors-in-variables models

have attained a lot of research, but often the error is assumed to be independent of the underlying,

or hidden variable. This simplifies the theoretical analysis, but is far from the situation in the

present case.

An error-in-variable model in which the underlying variables (x, y) are deterministic is called

a functional relationship model. If (x, y) are random variables, the model is referred to as a

structural relationship model (Anderson, 1984). In the present case, we have no way of controlling

(x, y), and the stochastic nature of the wave variability makes it natural to consider this as a

structural relationship model.

Errors-in-variables models have been used in comparisons between HF radar and buoy measure-

ments; see Sova [27] for a functional relationship model, and Samset et al. [26] for a structural

relationship model.

The varying sampling variability makes a straightforward application of the existing theory not

readily applicable, but our scope is limited, and we refer to the literature for a more extensive

analysis of error-in-variable models [10],[12].
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5.2 Maximum likelihood and Total Least Squares

Assume that the function y = f (x) is parametrized in terms of a set of parameters p =

{p1, · · · , pk}, such that y = f(x,p). For the linear model y = α + βx, and p = {α, β}. Since

the master distribution (Eqn. 49) is based on normal densities, a Maximum Likelihood (ML)

approach is natural [27], and the negative logarithm of the log-likelihood function, when we do

not consider the x-es to be stochastic, will simply be

− logL(p,x|X,Y) v

N∑

n=1

{
log
[
σx(xn)2σy(f(xn,p))2

]
+

(Xn − xn)2

σx(xn)2
+

(Yn − f(xn,p))2

σy(f(xn,p))2

}
. (52)

However, since {xn}N
i=1 are not explicitly known, the model has N+card(p) parameters. For a

given set p, the optimal xn-s are found by one-dimensional minimization, which for the simplest

cases may be found analytically.

It should, however, be observed that Eqn. 52 does not really take into account the underlying

distribution of the x-s. This will to some extent introduce a bias in the estimated values of xn

for observations from rapidly varying parts of the π (x)-distribution. A-priori information about

π could be incorporated into an extended Bayesian approach, and in the present case we apply a

uniform prior.

Typically, the logarithmic term will be slowly varying, and if this term is omitted completely, the

rest of the functional,

J (p|X,Y) =

N∑

n=1

{
(Xi − xn)2

σx(xn)2
+

(Yn − f(xn,p))2

σy(f(xn,p))2

}
, (53)

reduces to what is called Total Least Squares (TLS) or Weighted Orthogonal Distance Regression

(WODR). The TLS expression is appealing from a practical point of view since it is somewhat

simpler than the ML-functional and the weights of the observations are scaled by their reliability.

Moreover, the relation is dimensionless. If σx and σy are equal and constant, the expression

reduces to the regular Euclidean orthogonal distances to the regression curve. This this also

known as Principal Axes Regression.

We may, alternatively, write Eqn. 53 in the equivalent form

min

N∑

n=1

1

σ2
x (xn)

(
(Xn − xn)2 + γ (xn) (Yn − f(xn,p))2

)
(54)

where γ (xn) is the variance ratio,

γ (xn) =
σx (xn)2

σy(f(xn,p))2
. (55)

Even the TLS functional has N+card (p) unknowns, and the minimization needs in general to be

carried out using a suitable numerical algorithm. It may be convenient to use a double iteration

where the outer loop seeks the minimum of the functional over the domain of p, whereas the inner

loop solves for xn, n = 1, · · · , N .
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Highly efficient algorithms for the ODR problem have been published [6],[7], and the Fortran

program suite ODRPACK is available from http://www.netlib.org. The idea is to write the

functional as a nonlinear unconstrained least square optimization problem in the form

J (p,x) = ||g (x,p)||22 , (56)

where g is the 2N -dimensional vector defined as

gn (x,p) =
Yn − f (xn,p)

σyn
, gN+n (x,p) =

Xn − xn

σxn
, n = 1, · · · , N. (57)

Note that σxn and σyn are constant weights in this formulation, e.g. σxn = σ (Xn). By setting

θ = (p,x), the problem turns into

min
θ

||g (θ)||22 , (58)

of which there are many well-known and highly effective algorithms. In the present case, the

algorithm is an adapted Levenberg-Marquard-algorithm utilizing the rather simple form of the

Jacobian ∂g/∂θ [6].

5.2.1 Linear Total Least Squares

The linear regression function is an important special case, and in this case the parameter set p

consists of the parameters (α, β) defining the straight line y = α+ βx. The functional takes the

form

min

N∑

n=1

1

σ2
x (xn)

(
(Xn − xn)2 + γ (xn) (Yn − α− βxn)2

)
. (59)

The solution gives, contrary to regular linear regression, a regression line which is independent of

which variable is chosen as X and Y . That is, the pairs

{xn , yn = α+ βxn}N
n=1 (60)

may alternatively be written

{xn = α̃+ β̃yn , yn}N
n=1 (61)

where

α̃ = −α
β
, β̃ =

1

β
. (62)

We first observe that for a given set {α, β}, the minimization of the functional splits into N

one-dimensional minimizations. However, the minimization for xn has to be carried numerically

apart from the very simplest cases. For the limiting case when γ tends to 0 or to ∞ we have the

obvious solutions:

lim
γ→0

xn = Xn = x0
n, (63)

lim
γ→∞

xn =
Yn − α

β
= x∞n . (64)

When the variances are constant, the limiting cases correspond to one-sided regression with respect

to X and Y , respectively. It seems obvious that the minimum should be obtained for an xn in the
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interval defined by x0
n and x∞n , but it is actually possible to construct cases where σx and γ varies

in such a way that the minimum is outside this interval, or we may even have multiple solutions.

Nevertheless, in practice σx and γ are well-behaved smooth functions, and the minimum is found

in the interval defined by x0
n and x∞n .

When σxn and γn are constants we find, by taking the derivative of term n in Eqn. 59, that

xn =
Xn + βγ (Yn − α)

1 + β2γ
=

1

1 + β2γ
x0

n +
β2γ

1 + β2γ
x∞n . (65)

If the solutions for {xn} in Eqn. 65 are inserted into Eqn. 59, one obtains after some manipulations

the expression
N∑

n=1

(Yn − α−Xnβ)2

(1 + β2γ)
. (66)

Taking the derivative with respect to α leads at once to

α̂ = Ȳ − X̄β̂, (67)

where

X̄ =
1

N

N∑

n=1

Xn, Ȳ =
1

N

N∑

n=1

Yn. (68)

The derivative with respect to β then gives

N∑

n=1

(Xnβ − Yn + α) (βγYn +Xn − αβγ) = 0. (69)

By expanding this expression and introducing the shorthand notation

sxy =
1

N

N∑

n=1

(
Xn − X̄

) (
Yn − Ȳ

)
, (70)

etc., we obtain a second order equation for β,

(
sxy + X̄Ȳ

)
β2γ +

(
sxx + X̄X̄

)
β − βγ

(
syy + Ȳ Ȳ

)
−
(
sxy + X̄Ȳ

)
+ αβγȲ + αX̄

= β2γsxy + βsxx − βγsyy − sxy = 0. (71)

In summary,

β̂ =
γsyy − sxx +

√
(sxx − γsyy)

2 + 4γs2xy

2γsxy
,

α̂ = Ȳ − β̂X̄, (72)

xn =
Xn + β̂γ (Yn − α̂)

1 + β̂2γ
.

(See [12] and [2]). The expression reduces to principal axes regression for γ = 1.

22



In practice, the variances σ2
x and σ2

y are seldom known with very large accuracy, and it may

therefore be a reasonable approximation to use

σ2
x (xn) ≈ σ2

x (Xn) ,

γ (xn) ≈
σx (Xn)2

σy(Yn)2
. (73)

In fact, this would be pilot estimates for σx and γ, which, if necessary, could be replaced by the

estimates σx (x̂n) and σy

(
α̂+ β̂x̂n

)
for a second round. Since both σx and γ are constants during

the minimization, the determination of xn is still straightforward and the solution for xn is easily

seen to be the same as Eqn. 65, and if this is inserted into Eqn. 59, the result is

N∑

n=1

γn

σ2
xn

(−Xnβ + Yn − α)2

1 + β2γn
. (74)

Taking the derivative with respect to α leads again to α̂ = Ȳ − X̄ β̂, where now X̄ and Ȳ are

weighted means with weights

wn =
γn

σ2
xn (1 + β2γn)

, n = 1, · · · , N. (75)

In general, no simple expression is obtained if this is inserted into Eqn. 74 for a final determination

of β̂. However, if γ may be taken as a constant, the solution will be similar to Eqn. 72 with sxy =∑N
n=1wn

(
Xn − X̄

) (
Yn − Ȳ

)
, etc.

This version of TLS is easy to apply and has several interesting properties as will be summarized

in Sec. 5.2.3.

5.2.2 Angular quantities

The above formulation for angular data like the wind and wave directions is different since such

data have to be combined mod(2π). For a valid linear relationship between two angular variables

of the form

y = α+ βx mod(2π), (76)

β can only take the values 1, 0 or −1, and even in the general case more general case, if y = f(x,p)

is supposed to be a smooth function, we need to require that f along with all its derivatives is

continuous across 0.

The natural error distributions for directional data is the von Mises distribution, the circular

analogue of the normal distribution (Mardia, 1972). It has a probability density function v

defined by

v(x, µ, κ) = (2πI0 (κ))−1 eκ cos(x−µ), 0 ≤ x < 2π, 0 ≤ µ < 2π, κ > 0. (77)

where µ is the mean direction; κ is the concentration parameter ; and I0 is the modified Bessel func-

tion of the first kind of order 0. For κ→ 0, the distribution approaches the uniform distribution,

whereas for large κ, approach a Normal distribution with mean µ and variance σ2 = κ−1.
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With errors distributed according to L(δi) = vM(·, 0, κ), L(εi) = vM(·, 0, ν), the log likelihood

for β = 1 is

logL(α,x|X,Y) v

N∑

i=1

{− log(I0(κ)I0(ν)) + κ cos (Xi − xi) + ν cos (Yi − xi − α)} . (78)

In the angular case, an assumption of a constant variance is more realistic than in the linear case,

and with constant κ and ν and γ = ν/κ, the problem reduces to the angular version of TLS,

max
a

{
N∑

i=1

{cos (Xi − xi) + γ cos (Yi − xi − α)} .
}

(79)

The optimal xi for a fixed value of a is easily seen to be

xi = Xi + arg
(
1 + γei(Yi−Xi−α)

)
, i = 1, · · · , N, (80)

which for γ = 1, simplifies to

xi =
Yi +Xi − α

2
. (81)

The ML estimate (and actually what would be the naturally TLS) for α when γ = 1 is then

âγ=1 = 2arg

(
N∑

i=1

exp

(
i
Yi −Xi

2

))
. (82)

For a general γ, α needs to be found numerically.

5.2.3 Further discussion of linear TLS

The linear TLS with a constant variance ratio γ = σ2
xx/σ

2
y includes ordinary Y -on-X regression

for γ = 0, Principal Axis Regression for γ = 1, and X-on-Y regression when γ = ∞.

All regression lines pass through the point
(
X̄, Ȳ

)
, and in fact, β̂γ ∈ int

[
β̂o, β̂∞

]
. This may be

seen from an inspection of the second order equation for β,

β2γsxy + βsxx − βγsyy − sxy = 0. (83)

As is well known,
∣∣∣β̂o

∣∣∣ <
∣∣∣β̂∞

∣∣∣, and the difference in slope is significant when the scatter is large.

This is illustrated for two sets of simulated data in Fig. 9. The simulation is carried out by

first generating independent Weibull observations {xn} and define yn = xn, n = 1, · · · , N . Then

random Gaussian errors are added,

Xn = xn + σ (xn) en,

Yn = yn + γσ (xn) e′n, (84)

where en, e
′
n are independent N (0, 1) variables and σ (xn) = p · xn. A standard deviation equal

to a fixed fraction of the value, that is, a relative error equal to p, is typical for in-situ time series

wave data.
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Figure 9: Example of 200 simulated Weibull distributed data with relative error (STD) 5% in both
variables (left) and 15% (right). In this case γ = 1, and the TLS line is the middle line on both graphs.
In addition, the left and the right graphs show X-on-Y and Y -on-X , and the right graph even lines for

the (wrong) assumptions γ = 3 and γ = 0.3.

It is important to observe that the regression line as well as {x̂n} are independent of a uniform

scaling of the error variances as long as γ is kept constant. This invariance to the absolute error

level makes it impossible to use the analysis to assess the sampling error when nothing is known

a priori. We also observe that

Yn − ŷn = Yn − α̂− β̂x̂n =
Yn − α̂− β̂Xn

1 + β̂2γ
= − 1

β̂γ
(Xn − x̂n) . (85)

Let us now consider a somewhat simplified analysis under the assumption that the estimation

errors of α and β are negligible. It is then easy to prove that

E (Xn − x̂n) = 0, (86)

Var (Xn − x̂n) = σ2
xn

β2γ

1 + β2γ
, (87)

Var x̂n = σ2
xn

1

1 + β2γ
. (88)

The estimate x̂n has a reduced scatter compared to Xn. This is to be expected since x̂n is a

combination of Xn and Yn.

The expression for the variance of Xn− x̂n may be used to check the assumptions about the error.

According to Eqn. 87, the normalized variable

Zn =
Xn − x̂n

σxn

√
1 + β2γ

β2γ
(89)

has expectation 0 and standard deviation 1, which is easy to inspect for a set of bins covering the

X-range.
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Figure 10: Estimation of the variance ratio. The relative standard deviation in the X-values is 5%, and
with γ = 0.4, 12.5% in the Y -values. N = 500 independent samples. The correct value is spotted quite

well in the graph to the right.
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Figure 11: Estimation of gamma for simulated data where the relative error for X is 15% and 6% for Y .
N = 500 independent samples.

It is, in fact, even possible to use Eqn. 87 to obtain an estimate of γ if the variance of X is known.

The linear TLS for a constant γ is simple to compute, and the regression line may therefore be

obtained for a series γ-s. The idea is to compute the corresponding standard deviations of {Zn},
plot them as a function of γ, and observe where the graph crosses 1. Two examples are shown on

figures 10 and 11. Judging from the graphs, it seems that the correct γ is found quite correctly,

although a γ less than 1 seems to be spotted more accurately than a γ larger than one.

This idea has not been found in the literature, but should certainly be known. It is clear that

deviation from a strict linear relationship and estimation errors in α and β will influence the

conclusions.
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5.3 Nonparametric Techniques

Nonparametric techniques are interesting in a situation where little is known about the regression

between the data we are intercomparing. Also, non-parametric techniques may be used for a first

inspection of the data, e.g. for checking a linear relationship. Most non-parametric regression

seems to assume no error in one of the variables, a notable exception is the book of Carroll,

Ruppert and Stefanski [10]. However, even non-parametric error-in-variable models [11] tend to

assume a more simple error behaviour than we have here.

5.3.1 Quantile plots as a non-parametric regression

There is a very simple and direct way of obtaining a completely non-parametric regression function

Y = h(X) between two arbitrary wave parameters X and Y from their respective empirical

cumulative distribution functions, FX and FY .

The technique is known as the Quantile-Quantile (Q-Q) plot and is commonly used to for inspect-

ing whether a given set of data follows some specified distribution. We recall that the quantile

xq for X is the value such that FX (xq) = q. Since this application may also be of interest in our

setting, we consider it first. For an observed data set, {Xn}N
n=1, let X∗

1 ≤ X∗
2 ≤ ... ≤ X∗

N be the

corresponding ranked observations and F (x) the theoretical cumulative distribution function of

the specified model. The Q-Q plot consists of the graph of the pairs
{
X∗

n, F
−1
(
(n− 1

2)/N
)}

. This

is actually a comparison of the cumulative distribution functions: If the empirical distribution

function of the observations follows the theoretic distribution, the plot will show something close

to a straight line. However, in order to really test whether an observed off-set is really statistically

significant, it is necessary to carry out a test, e.g., the well-known Kolmogorov-Smirnov test on

the presumably uniformly distributed variable F (X).

By replacing exact distribution with an other empirical distribution belonging to the variable Y ,

we obtain a Q-Q plot, which in effect is a non-parametric regression curve. This can be seen

as follows. Let us disregard the sampling variability and assume that there is a monotonely

increasing calibration function between the observations of the underlying wave parameter, µ,

such that x = µ and y = h (µ). Since h is monotone,

FX(x) = P (X ≤ x) = P (h(X) ≤ h(x)) = FY (h(x)), (90)

from which it follows that

y = h(x) = F−1
Y (FX(x)). (91)

The calibration function may thus be expressed by the cumulative distribution function. In fact,

for an observed data set {xn, yn}, n = 1, .., N , the piecewise linear function defined by the ranked

observations, x∗1 ≤ x∗2 ≤ ... ≤ x∗N and y∗1 ≤ y∗2 ≤ ... ≤ y∗N , will be a simple estimate of h. The

same idea may also be used if the number observations between X and Y are not the same. Fig.

12 shows an example where Q-Q regression is used for an intercomparison between HF radar and

buoy measurements from the Dutch coast [30]. The straight lines are linear ML regressions (close

to TLS lines). Although the non-parametric and the ML regression coincide exactly for the bulk

of the measurements, the deviation in the upper part is quite obvious and discussed further in

the paper.

27



0 2 4 6
0

1

2

3

4

5

6

 Hm0 [m], buoy

H
m

0 
[m

], 
ra

da
r

Petten

0 2 4 6
0

1

2

3

4

5

6

 Hm0 [m], buoy

H
m

0 
[m

], 
ra

da
r

MLM/Non−parametric

2 4 6 8 10
2

4

6

8

10

 Tm01 [s], buoy

T
m

01
 [s

], 
ra

da
r

Petten

2 4 6 8 10
2

4

6

8

10

 Tm01 [s], buoy

T
m

01
 [s

], 
ra

da
r

MLM/Non−parametric

Figure 12: Example of Q-Q-regression compared to linear ML-regression. The data are from the
SCAWVEX project (Wyatt et al. 1999).

Since sampling errors ”stretch” the sampling distributions compared to the exact distributions,

this will introduce some bias if the sampling error is large compared to the underlying variation

of the variables, or if the sampling errors are highly different for X and Y . This is demonstrated

for simulated data in Fig. 13 In these data, the variance is defined by

V = (0.1 · x)2 ,
Var (X) = V

√
γ, Var (Y ) = V/

√
γ.

There are several ways to correct for the bias. The simplest way would simply be to add artificial

independent error in the variable with the least error so as to make γ ≈ 1. A similar idea for

many different situations are suggested in [10]. However, this results in an additional smearing of

the true probability density of the variable. The ideal solution would however be to deconvolve

the empirical distributions before the Q-Q-plot is formed. Deconvolution techniques are briefly

described in [10], but methods based on the characteristic function or moment fit are not applicable

here, since the error variance typically depend on value of the variable itself. Thus the density of

X is not simply a convolution between the density of π and the density of the error. It should be

possible to apply some of the inverse problem deconvolution methods (vanCittert or Landweber

iteration), but application of those to the present case is not known.

6 Intercomparison of Directional Spectra

Due to the large dynamic range of directional spectra, together with considerable sampling vari-

ability, direct comparisons using contour or 3D plots are not completely straightforward. Often

spectra are shown auto-scaled with respect to the maximum,– a value with considerable random

scatter. The simple compromise is often to plot frequency dependent parameters like the mean
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Figure 13: Simulated data sets (N = 1000) and the corresponding Q-Q-regressions. When γ deviates
significantly from 1, this introduces considerable bias in the curve, and is even slightly visible in the

scatter plots.
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Figure 14: Comparison of a selection of wave parameters from the Smart-800/Wavescan sea trials. Note
the expanded directional scale for the main and mean directions.

direction and the directional spread superimposed on plots similar to superimposed frequency

spectra. This is quite informative as long as we only have one dominant wave field, but for com-

plicated multi-modal situations in the same frequency band, the mean direction and directional

spread may be quite meaningless.

The solution is probably that intercomparison of directional spectra should be carried out using

partitioned spectra. A brief review of current spectral partitioning algorithms is included below.

6.1 Conventional Intercomparisons

Figure 14 shows a typical intercomparison using overall wave parameters for two different buoy

systems (The Smart and Wavescan Buoys) [5]. Whereas significant wave height, peak period and

the main and mean directions show reasonable agreement, the mean wave period is biased and

the directional spread around the spectral peak is significantly lower for the Smart buoy. The

difference in wave period was in this case explained from an intercomparison of the spectra, where

it was found that the spectral ratio SSmart(f)/SWSC(f) drops from one around the most energetic

parts of the spectra to about .5 in the high frequency end at 0.4Hz. The reason is probably caused

by different hydrodynamic response for the two buoys. The difference for the directional spread

is also observed in the more smeared appearence of the Wavescan spectra as shown in Fig. 15,

and the explanation has been traced back to the Wavescan compass reading.

In general, intercomparison of directional spectra is complicated since the spectra themselves

may be quite complex, as the example in Fig. 16 shows. In this case, however, the agreement is

excellent, but if some of the fields have been slightly shifted in frequency and direction, say if one

spectrum has been a model spectrum, the only way to assess differences would be to partition the
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Figure 15: Intercomparison of directional spectra from the Smart (upper) and Wavescan (lower) buoys.
Note the more smeared appearance of the Wavescan spectrum.

spectra before the intercomparison proceeds.

6.2 Spectral Partitioning

In order to effectively deal with the huge amount of information that is required to make a

robust estimate of full directional ocean wave spectra, Gerling [13] devised a spectral partitioning

scheme for decomposing a given spectrum into components created by uncorrelated meteorological

sources. He then used the partitioned spectrum as a tool to obtain a statistical description of

the wave spectrum as a superposition of independently evolving wave systems. The partitioning

scheme of Gerling was later modified by Hasselmann et al., [19], to give an algorithm which

is better suited for wave spectra comparisons. Many authors, including [16, 17, 18, 29], has

successfully shown that this scheme can effectively be used to characterize multiple distinct wave

systems across space and time with a greatly reduced set of parameters.

Here we briefly outline a generalized form of Hasselmann’s partitioning scheme and discuss it’s

application to comparison and assimilation of directional wave spectra data. Following Hanson

and Phillips, [16], we split the partitioning algorithm into five separate steps:

1. Isolate the spectral energy peaks,

2. Identify and combine wind sea peaks,

3. Identify and combine mutual swell peaks,

4. Remove low energy partitions,

5. Calculate partition statistics.
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Figure 16: Simultaneous directional spectra (left) and frequency spectra (right) from the Smart and
Directional Waverider buoys. Low, mixed sea state.

The output of this algorithm is thus a set of wave spectrum statistics associated with a partition

of a directional wave spectrum into uncorrelated wave systems. The physical interpretation of

each partition is thus that it represents a wave system originating from a certain meteorological

event which is uncorrelated with the meteorological events that created the other wave systems

in the partitioning sequence.

6.2.1 Isolate the spectral energy peaks

The idea behind the peak isolation procedure is analogous to the concept of a catchment area

in hydrology if one considers the spectrum as an ”inverted” hilly landscape. To be precise, a

partition is defined as the set of all points in the polar (f, θ) plane whose steepest ascent paths

lead to the same local maximum. Thus, for each local maximum we associate an ”inverted”

catchment area, and this inverted ”valley” is a (preliminary) partition.

6.2.2 Identify and combine wind sea peaks

The next step is to isolate the locally generated wind sea peaks from the swell peaks which

typically originate from distant storms. For this we use a wave age criterion: a peak is classified

as wind sea if the peak wave frequency lies in the region

{f ∈ R+ : 2πf ≥ γg[uw cos δ]−1},

where g is the acceleration of gravity, uw is the observed or modeled wind speed, and δ ∈ [0, π
2 ) is

the maximum angle between the wind and the peak direction of the propagating wind sea waves.

Finally, γ < 1 is a pre-specified constant, typically in the range [ 2
3 ,

3
4 ], which ensures that all
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possible wind sea peaks are included. Upon classification, all wind sea peaks are combined into

one partition, say partition 0.

6.2.3 Identify and combine mutual swell peaks

Our next task is to identify which of the swell peaks, if any, that originate from the same source.

These peaks must, in order to achieve a partitioning sequence of uncorrelated wave systems, be

combined into one partition. The separation criteria to be used here is (a) the distance between

two peaks is too small compared with the spectral spread of the respective peaks, and/or (b) the

minimum spectral energy density on the ”ridge” between the two peaks is too high relative to the

peak energy of smaller of the two peaks.

Thus, following Hasselmann et al., [17], we convert to Cartesian coordinates

ξ = (f, θ) → (ξx, ξy) = (f cos θ, f sin θ) ,

denote by ∆(pi, pj) = |pi − pj| the Euclidean distance between two adjacent peaks pi and pj, and

define the spread δ(p) of peak p according to

δ2(p) = (ξx − p̄x)2 + (ξy − p̄y)2 = ξ2x + ξ2y − (p̄2
x + p̄2

y) .

Here the overbar ·̄ denotes the spectral weighted average over partition P = P (p), i.e.

ρ̄ =
1

e(P )

∫

P
ρ dE =

1

e(P )

∫

P
ρE(f, θ)dfdθ,

where e(P ) =
∫
P dE is the total spectral energy of partition P . We combine the two adjacent

swell partitions P (pi) and P (pj) if

∆(pi, pj) ≤ κmax{δ(pi), δ(pj)} ,

for some suitable spread factor κ.

The second criteria (b) should need no further explanation.

6.2.4 Remove low energy partitions

Partitions whose total energy is very small compared to the total energy of the entire spectrum

are considered to be insignificant in the sense that they do not have an important impact on

any of the dominating wave systems in the spectrum. We therefore do not wish to waste time

on assimilating data from these partitions. Hence, partitions with total energy below a certain

energy threshold are simply removed from the partitioning sequence.

6.2.5 Calculate partition statistics

The final step is to calculate, for each of the remaining partitions, a small number of statistical

parameters which capture the main characteristics of the different wave systems. The selection

of parameters depends on the application.
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6.3 Cross assignment of spectral wave systems

In order to be able to monitor the evolution of wave systems in space and time we need to introduce

a cross assignment criterion for when two partitions of two different spectra are sufficiently similar

to be classified as the same wave system. Hence, following Voorips et al., [29] we consider two

spectra A and B that have been partitioned into nA and nB spectra respectively. We then say

that partition i ∈ [1, . . . , nA] of A should be cross assigned to j ∈ [1, . . . , nB] of B if i and j:

• are partitions of the same type (sea or swell),

• have comparable intensity: ν−1e(i) ≤ e(j) ≤ νe(i), and

• are close in the spectral plane: |f̄i − f̄j| ≤ ηf , |θ̄i − θ̄j| ≤ ηθ ,

for some appropriate constants ν, ηf , ηθ. If several of the partitions of spectrum A fulfill the above

requirements, then the one which is closest in wavenumber is chosen.

Clearly, it is possible that not every partition of A can be cross assigned to a partition of B. If

the two spectra represent the ocean state at the ”same” location in space, but at two different

locations in time, then non-assigned partitions can be interpreted as newly generated wave systems

or old wave systems which have faded out. However, if we are comparing model spectra with some

observed or measured spectra, then the non existence of companion wave systems is more difficult

to explain, and suggests that we need to adjust our model in order to achieve better coherence

with the observed spectrum. A deeper discussion of how to treat non-assigned partitions in

comparisons of directional wave spectra can be found in [29], Sec. 5.6.

7 Conclusions

This report has discussed some of the many questions that are met when comparing wave mea-

surements. Few examples are included, and, in particular, more experience with non-linear and

non-parametric regression should have be checked out.

In addition, the spectral partitioning seems to be a promising way when intercomparing directional

spectra.
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