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Abstract

Coexistence of wind sea generated locally and swell radiated from distant storms often
yield double-peaked or multiple-peaked wave spectra. Inter-comparison of such data and the
assimilation of spectral wave data from multi-peak directional wave spectra is difficult and may
give ambiguous results if the entire spectrum is treated as one wave system. However, since
wave systems originating from different uncorrelated meteorological events can be assumed
to be independent, a partitioning of the ocean wave spectra into components which represent
physically uncorrelated wave systems can be performed. This facilitates the assimilation of
spectral wave data from the entire spectrum, since each component can be interpreted as one
individual wave system. In this report we review and examine the partitioning algorithms that
have been developed for directional wave spectra, and show how they can be used to obtain
improved algorithms for the assimilation of spectral wave data. The report also includes a
computer code (Matlab) for a general partitioning algorithm.

∗This work is a part of work package 4 (Wp4) of the EnviWave (EVG-2001-00017) research programme under
the EU Energy, Environment and Sustainable Development program. Wp4 aims at developing new assimilation
techniques for assimilation of ENVISAT wind and wave products in the ocean wave models and to evaluate the
impact of the assimilation in an operational forecast system.
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1 Introduction

Partitioning algorithms for the separation of wind sea and swell in a frequency wave spectrum
were, among others, proposed in the mid-eighties by Earle [2], and Vartdal and Barstow [16],
and later also by Wang and Hwang [18]. These methods calculate a separation frequency which
distinguishes the wind sea contribution of the spectrum from the low frequency swell modes. This
information can therefore be used to filter out the wind sea part of the spectrum, but can not
in general discriminate between different swell wave systems created by separate meteorological
events. For this to be possible, we also need to take information about the directional properties
of the waves into account.

While the concept of a directional spectrum of ocean waves has existed for nearly half a century, it
is only during the last two decades that good measurements of the directional spectrum of ocean
waves have been available. Nowadays, many different measuring devices working on different
principles provide directional wave information on an operational basis. Global directional spectra
is e.g. provided by satellites carrying so-called Synthetic Aperture Radars (SAR)[1]. The SAR
allows us to obtain global directional wave measurements for operational use, such as global wave
forecasting.

Unfortunately, the inherent difficulties associated with measuring and analyzing directional spec-
tra have not disappeared. In particular, a large amount of information is required to make a robust
estimate of the full directional spectra. Moreover, currently operating satellite-borne SARs may
provide more than 1000 wave spectra daily, each of which often consists of a complex superposi-
tion of waves from several generation areas. Without some sort of data reduction, this represents
an effectively unmanageable data set for global operational data assimilation purposes.

In order to reduce the large number of degrees of freedom of two-dimensional directional wave
spectra to a manageable number of parameters while retaining the complex structures of real ocean
waves, Gerling [3] devised a spectral partitioning scheme for decomposing a given spectra into
components originating from uncorrelated sources. Hasselmann et al., [6, 8] modified Gerling’s
scheme in order to make it more amenable to compare SAR wave spectra with spectra obtained
from WAM wave model. In [7] they used this modified partitioning algorithm to develop an
assimilation scheme which allows multiple distinct wave systems to be characterized across space
and time with a greatly reduced set of parameters. This assimilation technique was extended by
Voorips et al. [17] for the assimilation of pitch-and-roll buoy wave observations into the WAM
model. Recently Hanson and Phillips [5] have adapted the spectral partitioning scheme of [8] to
generate a fully automated technique for wave climatology analysis.

In the present report we describe a generalized form of Hasselmann’s partitioning scheme as it was
presented in [5] and examine its relation to the original method proposed by Gerling [3]. We then
discuss the application of partitioning sequences to comparison and assimilation of directional
wave spectra data and describe the swell source identification schemes proposed by Hanson and
Phillips in [5].
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2 The directional wave spectrum

The directional spectrum, E(ω, θ), of ocean waves may be written as a product of the frequency
spectrum, S(ω), and the directional distribution, D(ω, θ), i.e.

E(ω, θ) = S(ω)D(θ, ω) , 0 < ω < ∞ , 0 ≤ θ ≤ 2π, (1)

where D may further be expressed as the Fourier series,

D(θ, ω) =
1
2π

[1 + 2
∞∑

n=1

(an(ω) cos(nθ) + bn(ω) sin(nθ))] =
1
2π

∞∑
n=−∞

cn(ω)einθ . (2)

The directional spectrum is thus a scalar function defined in the polar (ω, θ)-plane which provides
information about the energy, or intensity, of the waves traveling with an angular frequency ω at
an incident angle θ relative to a predefined x-axis. We note the common convention of writing
the polar integral of E (equal to the variance of the surface) as

Var (η) =
∫ ∞

ω=0

∫ 2π

θ=0
E (ω, θ) dωdθ.

Thus, the Jacobian |ω| has already been absorbed into E.

In deep water, i.e. when the water depth is larger than the typical wavelength, there are three
fundamental scales for the ocean surface. The obvious amplitude scale is the standard deviation of
the surface, or more common, the significant wave height, Hs. The frequency scale are given by the
frequency (ωp) of the dominating waves, and hence the time scale may be chosen as Tp = 2π/ωp.
For the spatial scale, it is natural to choose the typical wavelength according to the dispersion
relation, X = 2πg/ω2

p, where g is the acceleration of gravity. All scales can be combined into the
overall wave steepness s:

s =
Hs

λp
=

Hsω
2
p

2πg
=

Hs

(g/2π)T 2
p

.

The state of the sea is furthermore depending on the wind speed U at some reference height
and the fetch F over which the wind has blown. Obviously, this will frequently be a gross over-
simplification, since the wind field may have large spatial variations. The parameters U and F

can be combined into the dimensionless parameters inverse wave age,

Ũ =
U

cp
=

U

g/ωp
,

and dimensionless fetch,

F̃ =
gF

U2
.

Within this simplified theory, there are thus three dimensionless parameters characterizing the
surface, and it is possible to write the frequency spectrum as
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S(ω) =
H2

s

16ωp
S0(ω/ωp, s, Ũ , F̃ ),

where ∫ ∞

0
S0(x, s, Ũ , F̃ )dx = 1, (3)

and the maximum of S0 occurs for x = 1.

For purely grown wind waves at large fetches, investigations indicate a good functional relationship
between s and Ũ [12]. Moreover, the spectral shape is not seen to vary much with F̃ . In that
case, it is therefore reasonable to assume that S(f) simplifies to

S(f) =
H2

s

16ωp
S0(ω/ωp, s).

Since swell is by definition independent of the local wind and the fetch, it should also be reasonable
to assume a similar parametrization for swell spectra.

In a similar way, we obtain for the directional distribution,

D(θ, ω) = D0

(
θ − θ0, σθ (ω/ωp) , s, Ũ , F̃

)
,

where θ0 is the dominant (mean) wave direction and σθ is the directional spread With these
assumptions, it is possible to write the directional spectrum for a simple wave field in the open
sea as

E(ω, θ) =
H2

s

16ωp
S0(ω/ωp, · · · )D0 (θ − θ0, σθ (ω/ωp) , · · · ) ,

where ”· · · ” signifies the additional parameters mentioned above. More generally, the shape of
the directional distribution D0 may vary both with ω/ωp and the other parameters.

In practice, the directional spectrum will consist of several wave fields having different origin.
There will typically be a wind sea part and one or several swell parts,

E(ω, θ) =
J∑

j=1

Ej (ω, θ) ,

Ej (ω, θ) =
(Hs)2j
16ωpj

S0(ω/ωpj , · · · )D0 (θ − θ0j , σθ (ω/ωpj) , · · · ) .

This will make the spectrum have a multi-modal appearance.

One should also note that there are several equivalent representations of the directional spectrum,
where remote sensing groups appear to prefer the directional wavenumber spectrum, Ψ (k). The
connection between the wavenumber spectrum and the directional spectrum follows by observing

Var (η) =
∫

k
Ψ(k) d2k =

∫ ∞

k=0

∫ 2π

0
Ψ(k, θ) kdkdθ

=
∫ ∞

ω=0

∫ 2π

0
Ψ(k (ω) , θ) k (ω)

dk (ω)
dω

dωdθ =
∫ ∞

ω=0

∫ 2π

0
E (ω, θ) dωdθ,

and applying the dispersion relation for connecting k and ω.
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3 Partitioning algorithms for directional wave spectra

3.1 The general partitioning algorithm

We shall outline the basic steps in the partitioning algorithms following Hanson and Phillips [5].
The algorithm is conveniently split into five separate steps:

1. Isolate the spectral energy peaks,

2. Identify and combine wind sea peaks,

3. Identify and combine mutual swell peaks,

4. Remove low energy partitions,

5. Calculate partition statistics.

The output of the algorithm is thus a set of wave spectrum statistics associated with a decom-
position of the initial directional spectrum into distinct subsets that represent individual and
uncorrelated wave fields. Ideally, the physical interpretation of each partition should be that it
represents a wave system originating from a certain meteorological event which is uncorrelated
with the meteorological events that created the other wave systems in the partitioning.

3.1.1 Isolation of the spectral energy peaks

The idea behind the peak isolation procedure is analogous to the concept of a catchment area in
hydrology, if one turns the graph of the spectrum upside down. To be more precise, a partition
is defined as the set of all points in the polar (ω, θ) plane whose steepest ascent paths lead to the
same local maximum. Thus, there is an associated catchment area for each local maximum.

It should be stressed that in the present study the catchment area is computed based on the graph
of E (ω, θ) and not a graph of Ψ (k), which could be another choice.

3.1.2 Locally generated wind sea

After identifying peaks (local maxima) and catchment areas, the next step will be to isolate the
locally generated wind sea peaks from the swell peaks, which typically originate from distant
storms. The wind sea identification is based on a local wave age criterion. The phase speed of a
spectral component in deep water is given by c = g/ω. Assume that the component is traveling
in the direction θ. A wave component is classified as a member of the wind sea if its propagation
direction is within π/2 of the wind direction θU , and the phase speed is less that a certain fraction
of the wind speed U , i.e. if

|θU − θ| < π

2
and c < γU cos(θU − θ).

6



ω

θ

ωy

ωx kx

ky

RRR

ω

θ

ωy

ωx kx

ky

RRR

Figure 1: Typical shapes of the wind sea region, indicated by the bounds and the letter R, in the
(ω, θ)-plane (left), the (ωx, ωy)-plane (middle), and the k-plane (right).

In terms of peak angular frequency, the ”catchment area” for wind waves is simply defined as

{(ω, θ) : |θU − θ| < π

2
, γω ≥ g

U cos(θU − θ)
}.

Figure 1 illustrates the shape of this region in the (ω, θ) plane, and the corresponding regions in
the polar, or (ωx, ωy)-plane, and the k-plane. Upon classification, all wind sea peaks within this
region are combined into one partition, say partition 0.

3.1.3 Combination of swell peaks

After the identification of wind sea, the next step will be to decide whether some of the swell peaks
originate from the same source. Such peaks must, in order to achieve a partitioning sequence of
uncorrelated wave systems, be combined into one partition. The separation criteria to be used
here is (a) that the distance between two peaks is too small compared with the spectral spread
of the respective peaks, and/or (b) the minimum spectral energy density on the ”saddle point”
between the two peaks is too high relative to the peak energy of smaller of the two.

Following Hasselmann et al., [6], let p be the (vector) location of a peak

(ωp cos θp, ωp sin θp) ,

and denote by ∆(pi, pj) = |pi− pj | the Euclidean distance between two adjacent peaks pi and pj .
The spread of a peak at p is denoted δ(p), and amounts to usual root mean spread,

δ2(p) = (px − p̄x)2 + (py − p̄y)2 = p2
x + p2

y − (p̄2
x + p̄2

y).

Here the overbar denotes the spectrally weighted average over the the (preliminary) partition
P = P (p), i.e.

ρ̄ =
1

e(P )

∫

P
ρE(ω, θ) dωdθ ,

where e(P ) =
∫
P E(ω, θ) dωdθ is the total energy of partition P .

Two adjacent swell partitions P (pi) and P (pj) are now combined if

∆(pi, pj) ≤ κmax{δ(pi), δ(pj)} ,

for some suitable spread factor κ and the ratio between the saddle point value and the lowest
associated maximum is larger than a certain constant.
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3.1.4 Low energy partitions

Partitions whose total energy is very small compared to the total energy of the spectrum are
considered to be insignificant in the sense that they do not have an important impact on any of
the dominating wave systems in the spectrum. Typically, one does not wish to assimilate the data
from such partitions into models. Hence, partitions with total energy Et below a

f4
p+b

where fp is
the peak frequency and where a and b are chosen to eliminate noise in the low-energy regions of
the spectrum, are simply removed from the partitioning sequence. Alternatively, the energy may
be redistributed among the other partitions so that the total energy is preserved.

3.1.5 The partition statistics

The final step is now to calculate, for each of the remaining partitions, a number of statistical
parameters which capture the main characteristics of the different wave systems. As the partitions
are assumed to be uncorrelated, these calculations can be carried out independently for each
partition. A typical statistics file may contain

• the partition identification number

• the observation time and location

• the significant wave height

• the mean and peak frequencies

• the mean wave direction and the directional spread

• the wave age of the swell wave systems

• the angle between a swell wave system and the closest wind sea wave system

In general, the selection of parameters depends on the application of the results.

3.1.6 Some remarks on the selection of control parameters

The result of the partitioning algorithm is quite sensitive to some of the parameters involved. We
therefore make some comments regarding the role of the respective parameters, and what issues
one should consider when specifying appropriate parameter values.

The selection of appropriate energy threshold parameters a and b is perhaps especially important.
This is because choosing a too restrictive threshold will only capture the energy peaks of the
strongest wave systems so that we will only recognize a very limited number of wave systems
and these will only appear in the partitioning sequence for a short period of time. On the other
hand, a weak energy threshold will include many more wave systems than what one can expect
is created from distinct and uncorrelated meteorological events.
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Both a and b are required to be positive. The parameter a is the most significant while letting
the parameter b be small preserves ”medium” energy wave systems with high peak frequency. We
found that a = 0.1 and b = 0.002 gave reasonable results.

The frequency threshold parameter γ for the wind sea criterion is chosen so that the phase speed
of the wind sea wave systems in the wind direction is roughly less or equal to the wind speed.
Hence, the parameter γ is typically chosen slightly larger than 1 to include all possible wind sea
wave systems. We used a threshold parameter defined by g

2πγ = 1.2 which gives γ ∼ 4
3 .

Finally we recall that two adjacent peaks are said to belong to the same wave system if (a) the
distance between the two peaks is smaller than a factor κ times the directional spread of the
”larger” of the two peaks, and/or (b) the minimum spectral energy density on the ”saddle point”
between the two peaks is higher than a factor ν times the smaller of the two peak energies. Both
of these parameters may have a strong impact on the partitioning sequence, but we found it
difficult to know how to determine the physically correct set of parameters. In our experimental
test case we chose κ = ν = 2−1/2 which is neither a very restrictive, nor a very generous choice.

3.2 Gerling’s algorithm

Though the partitioning algorithm presented above, which is essentially the one introduced by
Hasselmann et al., [6, 8], has sprung out from Gerling’s algorithm, [3], the original algorithm of
Gerling was based on a completely different strategy. Instead of categorizing individual partitions
as catchment regions, Gerling proposed that one could classify wave systems by considering the
inherent tree structure seen in the graph of the spectrum. The spectral energy serves as a measure
of height, and at any energy level l, the branches of the tree are associated with the components
(i.e. the maximal connected subsets) of

Rl = {(ω, θ); E(ω, θ) ≥ l} .

It is assumed that the spectrum is a continuous function and hence that the components vary
in a smooth manner when l varies. Obviously, Rl1 ⊂ Rl2 when l2 < l1. A branch point occurs
for a component Rl,k at the level l if the number of components within Rl,k jump from one to a
number larger than one when l increases.

The above procedure results in a tree structure that can be used as a constructive tool for further
processing, analogous to steps 2-5 of Hasselmann et al.’s partitioning algorithm. The main branch
structures in Gerlings algorithm play the role of partitions in Hasselmann et al.’s algorithm. We
note, however, that Gerling’s peak identification procedure is qualitatively different from the mod-
ified scheme of Hasselmann et al. While Hasselmann et al.’s catchment region criterion dissects
the spectral plane into disjoint subregions which together make up the whole plane, Gerling’s
spectrum partitioning tree identifies isolated subsets of the plane corresponding to spectral peaks
and sub-peaks. This means that some of the global spectral data is not distributed among the
partitions, but is only contained in the root of the tree from which it is difficult to assess anything
conclusive about the dynamics of the traveling wave systems.
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We are not aware of comparisons between Gerling’s scheme and the scheme of Hasselmann et
al. However, as each of the branches of Gerling’s partitioning tree are subsets of corresponding
partitions obtained with Hasselmann et al.’s partitioning scheme, it seems that Hasselmann et
al.’s scheme may be more robust because each partition includes more of the spectrum in the
neighborhood of the peak. This is an advantage when we want to compare partitions from different
spectra and makes it easier to track wave systems in space and time. This desirable feature also
allows for developing supplementary swell tracking and swell source identification schemes. The
key ingredient here is to introduce a cross assignment criterion for when two partitions of two
different spectra are sufficiently similar to be classified as the same wave system.

3.3 Cross assignment of wave systems

We have assumed that different partitions within a spectrum are uncorrelated in the sense that
they are created by uncorrelated meteorological events. On the other hand, two partitions from
two different spectra (e.g. model and observed spectra or two measured spectra at different
locations) are correlated if they correspond to the same wave system.

Thus, to decide if a partition from one spectrum represents the same wave system as a partition
from another spectrum, and thereby allow us to e.g. monitor the evolution of wave systems
through time, we need to define a cross assignment criterion. The cross assignment criterion of
Voorips et al. [17] says that a partition ”i” of a spectrum A should be be cross-assigned with a
partition ”j” of a spectrum B if i and j

• are partitions of the same type (sea or swell),

• have comparable intensity: ν−1e(i) ≤ e(j) ≤ νe(i),

• are close in the spectral plane: |ω̄i − ω̄j | ≤ ηωω̄i , |θ̄i − θ̄j | ≤ ηθ,

for some appropriate constants ν, ηω, ηθ. If several of the partitions of spectrum A fulfill the above
requirements, then the one closest in wavenumber is chosen.

Clearly, it is possible that not every partition of A can be cross assigned to a partition of B. If the
two spectra represent the ocean state at the same location in space, but at two different times,
then non-assigned partitions can be interpreted as newly generated wave systems, or old wave
systems which have faded out. However, if we are comparing wave model spectra with observed
or measured spectra, then the non-existence of companion wave systems may be more difficult to
explain, and may suggest that we need to adjust our model in order to achieve better coherence
with the observations. A deeper discussion of how to treat non-assigned partitions in comparisons
of directional wave spectra may be found in [17], Sect. 5.6.
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3.3.1 Remarks on the selection of cross-assignment parameters

In the next section we will use the cross assignment criterion to track swell wave systems in time.
For this purpose it is important to observe that the mutual swell system criterion which determines
whether two wave systems in the same spectrum are correlated is different from the swell tracking
criterion which determines whether two partitions from two different spectra represent the same
wave system. This means that we can end up in a situation where two ”uncorrelated” wave
systems are assigned to the same partition of the previous spectrum, and thus belong to the same
wave system.

In our test results for a sequence of spectra from Vøringplat̊aet this situation did not occur
frequently and was not any cause of concern because it only occurred for wave systems that we
interpreted as fading wind sea wave systems that have begun to disperse in the wave spectrum.
This is because these wave systems had low energy and a high, but decaying peak frequency.

When it comes to specifying proper swell-tracking parameters ν, ηω, ηθ we need to keep in mind
that the total energy, or equivalently the significant wave height, can vary rapidly over a rather
short period of time.

Our data record from Vøringplat̊aet contained spectra measured at three hour intervals and we
found it necessary to select a very loose energy threshold, that is, we had to allow the significant
wave height of one single wave system to reduce to one fourth of its original height, or to increase
up to four times that height. This choice corresponds to 10 < ν < 20.

The frequency of the swell wave systems was much more stable than the energy was and we found
that is was sufficient to require that the mean frequency from one observation time to the next
should be within 50% of its original value. This criterion corresponds to ηω = 0.5.

Finally, the mean direction of what appeared to be the same wave system could be quite oscillatory.
We therefore allowed the mean direction of a single wave system to vary as much as π/3 radians
from one observation time to the next. This corresponds to ηθ = π/3.

4 Applications

The primary motivation for using partitioning algorithms in processing of directional wave spectra
is to identify uncorrelated wave systems and to characterize them using a reduced set of parame-
ters. To what extent these modeled wave spectra actually reflects the observed or real ocean wave
spectra depends, obviously, on the correctness of the assumption about uncorrelated wave sources,
but it also depends on our ability to tune the various adjustable parameters in the algorithm.

As no rigorous mathematical theory or simple physical principles indicate how to choose the
parameters, they have been selected rather ad-hoc in the literature. On the other hand, it has
been recognized that using wave-spectrum statistics to describe complex ocean spectra can not
be expected to give a complete picture of the real ocean state, and should only be interpreted
as an intelligent first guess. This realization has led to the development of iterative assimilation
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schemes for retrieving improved directional ocean wave spectra.

Here, we shall give a brief description of iterative interpolation schemes for retrieving improved
ocean wave spectra using partitioning algorithms, and show how a correctly partitioned wave
spectrum can be applied to identify the source of swell wave systems.

4.1 Assimilation of wave spectra in wave models using partitioning algorithms

Assume that we want to update a family of model spectra based on a corresponding family
of observed spectra. Furthermore, assume that all spectra involved, both model spectra and
observed spectra, can be represented as a superposition of a uncorrelated wave systems, and that
each wave system is characterized by a few spectral parameters. This assumption implies that
we may benefit from the use of a spectral partitioning scheme in the sense that we only need to
work with components defined by a reduced set of parameters rather than the entire spectrum.

Thus, let pi(x) denote the state vector associated with partition i of a model wave spectrum
p(x) at x ∈ X and let qj(y) be the state vector associated with partition j of an observed wave
spectrum q(y) at y ∈ Y. The index sets X and Y contain the time and geographic location of the
observations or the spectra that we consider. In general these X and Y may differ, but we shall
for simplicity assume that they do not, and will henceforth let X = Y.

We now introduce the cross assignment identifier function,

δφi(x),ϕj(y) =
{

1 if φi(x) is cross assigned with ϕj(y) ,
0 otherwise .

The general optimal interpolation scheme of Voorips et al. [17] is now given by

pk(x) := pk(x) +
∑

y∈Y
Wx(y)

∑

i(y),j(y)

δpk(x),pi(y)δpi(y),qj(y)(qj(y)− pi(y)) ,

where Wx(y) are statistical weight factors. Note that we also extract information from locations
y 6= x, as these may supplement the information we are able to extract from q(x).

The first cross assignment, which compares partitions of two model spectra, ensures that only
innovations corresponding to the same wave system are used to increment the state vector of a
model partition. Instead of δpk(x),pi(y) one could also choose to use δpk(x),qj(y), which was done
by Hasselmann et al., [6], but Voorips et al. found the present choice to be more robust. The
second cross assignment identifies the partition of the observed spectrum located at position y

which corresponds to the same wave system as partition i of the corresponding model spectrum.

The weight factors are determined by the condition that the statistical mean square error between
the analyzed model state pk(x) and the true state vector pt

k(x) is minimized. This gives,

Wx(y) = P (P + Q)−1 ,

where P and Q are the model and observation error covariance matrices

P (x, y) = Cov(p(x), p(y)) = E[(p(x)−E[p(x)])(p(y)−E[p(y)])]

Q(x, y) = Cov(p(x), p(y)) = E[(q(x)− E[q(x)])(q(y)−E[q(y)])] .
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Here we have used that the model and observation errors are uncorrelated, cf. Komen et al., [9],
Chap. 6. Actually, a correlation between model errors and observation errors can arise through
data assimilation of past errors in the observations into the model states. In fact, observation
errors, particularly of satellite data, can be correlated when, for example, they are due to envi-
ronmental influences that are not included in the retrieval algorithm. However, as the extent of
such error correlations is difficult to access, they are normally ignored.

Note that in the definition of the covariance matrices we do not make any reference to the
partitions of the respective spectra. The dependence on the partitions is dropped since we have
assumed that the partitions within a spectrum are uncorrelated. Thus, two partitions pk(x) and
pi(y) from two different spectra p(x) and p(y) are correlated only if they are cross assigned, in
which case Cov(pk(x), pi(y)) = Cov(p(x), p(y)). Similarly, if qk(x) is cross assigned to qi(y), then
Cov(qk(x), qi(y)) = Cov(q(x), q(y)), and zero otherwise.

4.2 Swell source identification by spectral partitioning

We first recall how one can, on the basis of simple linear wave theory, approximate the location, in
space and time, of the meteorological events which created the various swell wave systems [14, 4].

Wind on the ocean surface produce a spectrum of waves that, according to linear wave theory,
disperse from the generation area according to the deep water dispersion relationship ω2 = gk,
implying a group (or energy propagation) velocity, cg (ω) = g/2ω. Thus, if we release a pulse of
wave energy at x = xs and at time t = ts, an observer at at a distance d will, after some time,
observe passing waves with a dominating frequency given by

g

2ωp (t)
=

d

t− ts
,

or
ωp (t) =

g

2d
(t− ts) .

By fitting a linear regression line through observed pairs {ωp (t) , t}, it is thus possible to obtain
an estimate of the distance d to the generation area, as well as the time of origin, ts. In addition,
a directional measurement will give a mean direction of arrival, θ̄.

By applying a spectral partition algorithm and a cross assignment in time, it is now possible to
carry out this analysis for each of the swell partitions. In deep water, the waves travel along great
circle routes, and we deduce that the source latitude, longitude coordinates (φs, ϕs) are given by

φs = sin−1(sinφ0 cos θd + cosφ0 sin θd cos θ̄i) ,

ϕs = ϕ0 − sin−1(
sin θd sin θ̄i

cosφ
) ,

where φ0 and ϕ0 are the observation coordinates and θd = d/(radius of the earth) is the angular
distance to the source. Refinement of the above analysis may be found in [4].
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5 Examples

We shall illustrate how the partitioning algorithm works, and have used data obtained from mea-
surements on Vøringplat̊aet in the Norwegian Sea [13] and selected a time frame which illustrates
some of the important aspects. The measurements are sampled 3 hours apart, so that we have 8
spectra for each day.

We concentrates on the swell wave systems and demonstrate how the partitioning algorithm splits
the spectrum into distinct components, and how the swell tracking algorithm recognizes that two
partitions from two consecutive measurements correspond to a wave system which is created by
the same meteorological event.

Our first objective is to show how the partitioning of directional ocean wave spectra can be used
to follow ”individual” wave systems in time. For this we have chosen a series of wave spectra
measured at Vøringplat̊aet in the Norwegian Sea September 27-29, 1989. Figure 2 plots the
directional ocean wave spectra measured by an ocean wave buoy at three hour intervals.

We see that the first few wave spectra are nice and single peaked, but that the spectrum becomes
more smeared around observation 1398. This is due to a wind sea wave system coming from
south east. Around 1405 we observe that a dual peaked wave spectrum has been established
representing an eastward bound wave system and a south-westward bound wave system. At the
same time we have a strong north-western wind which creates a more complex wave spectrum.
Thus, here there lies a challenge in dissecting the joined wave spectrum into truly uncorrelated
wave systems. The most significant wave systems recognized by the partitioning algorithm are
shown in Figure 3.

Figure 3 shows that the partitioning algorithm correctly identifies the main components of the
directional ocean wave spectra. A total of 15 swell wave systems were identified. Seven of the
wave systems appeared only for 1 time step, most of which were ”low-energy” wave systems that
would not appear in the partitioning sequence if more restrictive energy criteria were chosen.
Selecting a stronger energy threshold would, however, also cause some of the partitions which
represent one wave system to be split into two. This is because the total energy of a wave system
might diminish dramatically before it again gains ”strength”. This is illustrated in Figure 4 where
we show how the total energy of the different wave systems evolve in time. We therefore found
it better to to relax the criteria slightly and rely on our ability to pick out the most significant
wave systems.

Another problem was that the mutual swell partition criteria is not the same as the criteria used
to determine when two wave systems from two different spectra are to be co-assigned. This led
to a situation where two non-mutual wave systems from one spectrum could be co-assigned to
the same wave system, thus representing the same wave system. For instance, three non-mutual
wave systems of spectrum 1398 were co-assigned to the same partition of spectrum 1397.

Finally we take a closer look at the mean frequency and mean direction associated with wave
spectra 1405-1410. Here we have one wave system which appears in all spectra and several other
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Figure 2: A subsequence (1392-1415 out of 2640) of directional ocean wave spectra taken from
measurments at Vøringplat̊aet in the Norwegian Sea in the period September 27-29, 1989.

spectra that appear over short periods of time. These spectra illustrate the complex nature of
real ocean waves.

Table 1 illustrates that a directional ocean wave spectrum may consist of a multitude of different
components that might or might not have been created by the same meteorological source. It
is not a trivial task to dissect such a spectrum into truly uncorrelated partitions. Nevertheless,
we believe, and have made an effort to show, that this kind of partitioning algorithm can be a
helpful tool when attempting to interpret ocean wave spectra. However, even though this kind
of partitioning algorithms are designed for automated wave spectra analysis, they can not be
thought of as entirely automatic, and rely on manual interaction.
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Figure 3: The peak coordinates for the dominating wave systems in the spectra depicted in Fig. 2.
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Figure 4: The significant wave height of a sequence of swell wave systems from Vøringplat̊aet in the
Norwegian Sea. The series in Figure 3 ????? can be seen between day 2 and day 5.
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Figure 5: The figure plots the wave spectra 1405-1410 from the series depicted in Fig. 2.

Mean frequency Mean direction
Spec. 1405 1406 1407 1408 1409 1410 1405 1406 1407 1408 1409 1410
Ws 1 .113 .077 .095 .088 .094 .097 260 228 254 244 237 255
Ws 2 .209 357
Ws 3 .094 11
Ws 4 .342 .321 314 349
Ws 5 .267 287
Ws 6 .112 .154 .135 20 336 277
Ws 7 .354 29
Ws 8 .123 .167 50 351
Ws 9 .271 10

Table 1: The mean frequency and mean direction of the identified wave systems depicted in Fig. 5
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6 A Matlab code for the partitioning of ocean wave spectra

PartAlg.m - The partitioning algorithm.

IdentPart %Identifies partitions.

%Computing peak frequencies and peak directions.
fp=(fx(xp).2+fy(yp).2).1/2;
dp=90-(180/pi)*atan2(fy(yp),fx(xp));

%Checking if partition energy is below a minimum threshold.
eth=a./(fp.4+b);
for i=1:NP

if EP(i)<eth(i)
EP(i)=0;

%Identify swell and wind sea peaks.
WI=[]; SI=[];
dd=(pi/180)*(180+dp-Bdir(n-from+1,32));
for i=1:NP

if EP(i)>0
if gamma<cos(dd)*fp(i)*Bdir(n-from+1,28)

WI=[WI,i]; %Partition ”i” is classified as wind sea.
else

SI=[SI,i]; %Partition ”i” is classified as swell.

%Compute swell partition statistics.
if length(SI)>0

SPM=CombSP(. . . ); %Combines mutual swell partitions.
SS=CompSS(. . . ); %Computes swell partition statistics.

%Compute wind sea statistics.
if length(WI)>0

WS=CompWS(. . . ); %Computes wind sea statistics.

IdentPart.m - Partitions the directional ocean wave spectrum into disjoint components.

%Step I: Locate peaks and generate steepest ascent indicator matrix.
NP=0; SAI=zeros(9,L,H);
xp=[]; yp=[]; ep=[];
for i=2:L-1

for j=2:H-1
me=max(max(E(i-1:i+1,j-1:j+1)));
if E(i,j)==me %Checking if (i,j) is a local maximum.

NP=NP+1; %Number of peaks.
xp=[xp,i]; yp=[yp,j]; %Peak coordinates.
ep=[ep,E(i,j)]; %Peak energy.

for k=-1:1
for l=-1:1

if E(i+k,j+l)==me
SAI(5-k*3-l,i+k,j+l)=1; %Steepest ascent path goes from (i,j) to (i+k,j+l)

SAI(5,:,:)=0;
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%Step II: Follow steepest ascent paths backwards from peak.
xP=xp; yP=yp; eP=ep;
for p=1:NP

old=1; new=0; Ne=1;
while old>0 & Ne<1000

for i=1:old
e=Ne-old+i;
for k=-1:1

for l=-1:1
if SAI(5+k*3+l,xP(e,p),yP(e,p))==1

new=new+1; Ne=Ne+1;
xP(Ne,p)=xP(e,p)+k; yP(Ne,p)=yP(e,p)+l; %Partition coordinates
eP(Ne,p)=E(xP(e,p)+k,yP(e,p)+l); %Partition energies

old=new; new=0;
EP=sum(eP);

CombSP.m - Combines mutual swell partitions and returns the swell system indicator SPM.

function SPM=CombSP(SI,fx,fy,xp,yp,ep,xP,yP,eP,EP,kappa,nu,E)

Ns=length(SI);
spx=fx(xp(SI)); spy=fy(yp(SI)); %Swell peak coordinates
sfx=zeros(1,Ns); sfy=zeros(1,Ns); %Swell peak mean energies.
sfx2=zeros(1,Ns); sfy2=zeros(1,Ns); %Swell peak mean-square energies.

for s=1:Ns
p=SI(s); lp=nnz(eP(:,p));
ev=eP(1:lp,p);
Fx=fx(xP(1:lp,p));
Fy=fy(yP(1:lp,p));
sfx(s)=(Fx*ev)/EP(p);
sfy(s)=(Fy*ev)/EP(p);
sfx2(s)=((Fx.2)*ev)/EP(p);
sfy2(s)=((Fy.2)*ev)/EP(p);

psp=sfx2+sfy2-sfx.2-sfy.2;

CM=zeros(Ns,Ns);
for s=1:Ns

for t=1:Ns
p1=SI(s); p2=SI(t);
di=(spx(s)-spx(t))2+(spy(s)-spy(t))2;
ms=max(psp(s),psp(t)); em=min(ep(p1),ep(p2));
xm=min(xp(p1),xp(p2)); xM=max(xp(p1),xp(p2));
ym=min(yp(p1),yp(p2)); yM=max(yp(p1),yp(p2));
mu=min(min(E(xm:xM,ym:yM))); %Minimum energy between peaks.
if di<kappa*ms | mu>nu*em %Mutual peak criterion.

CM(s,t)=1; CM(t,s)=1; %Peak p1 is mutual to peak p2.

A1=CM; A2=spones(CM2);
while A2-A1>0

A1=A2; A2=spones(A22);
A2=rref(A2);
SPM=A2(1:rank(A2),:);
%If SPM(s,i)=SPM(s,j)=1, then partitions SI(i) and SI(j) belong to the same wave system.
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CompSS.m - Computes swell partition statistics and stores the statistics in the matrix SS.

CompWS.m - Computes wind sea statistics and stores the statistics in the matrix WS.

Parameter.m - Control parameters for the partitioning and swell tracking algorithms.

%Energy threshold parameters for classification of significant partitions.
a = 0.1; %High values gives a strong energy threshold criterion.
b = 2e-3; %Lower values makes the frequency contribution more significant.

%Frequency threshold parameter for wind sea criterion.
gamma = 1.2; %1≤gamma≤1.5, low values (∼1) gives a weak wind sea criterion.

%Mutual swell peak criterion parameters.
kappa = 0.5; %Partition spread separation criterion.
nu = 0.5; %Peak separation criterion.

%Swell tracking parameters.
edt = 20; %The total energy must be within 5% of the other.
fdt = 0.5; %The mean frequency must be within 50% of the other
adt = 60; %The mean direction must be within 60 deg. of the other

SwellTrack.m - Tracks the evolution of the swell wave system in (space or) time.

%SPT(1,s) gives the first time step for which swell system ”s” was observed.
%SPT(2,s) gives the final time step for which swell system ”s” was observed.
%SPS(:,t,s) gives the statistics for swell system ”s” at time ”t”.

if lso==0 %If there were no swell systems in the previous spectrum.
for s=1:ls

SPS(:,1,ns+s)=SS(:,s);
SPT(1,ns+1:ns+ls)=n;
SPT(2,ns+1:ns+ls)=n;
ns=ns+ls;

else
No = [];
for t=1:ns

if SPT(2,t)==n-1
No=[No,t]; %Identifies the wave systems from the previous spectrum.

nso=length(No);
dM=zeros(3,nso);
for s=1:ls

for t=1:nso
no=No(t); nt=nnz(SPS(1,:,no));
fd=abs((SPS(7,nt,no)-SS(7,s)))/max(SPS(7,nt,no),SS(7,s));
dd=abs((SPS(6,nt,no)-SS(6,s));
ed=SPS(5,nt,no)/SS(5,s);
dM(1,t)=fd/fdt;
dM(2,t)=dd/adt;
dM(3,t)=max(ed,1/ed)/edt;

sdM=sum(dM);
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for t=1:nso
if sdM(t)==min(sdM)

tm=No(t); %The system from the previous spectrum which is closest to ”s”.

nt=nnz(SPS(1,:,tm));
if max(dM(:,tm)) < 1 %If ”s” should be cross-assigned to ”tm”.

SPT(2,tm)=n; %Update final observation time.
SPS(:,nt+1,tm)=SS(:,s); %Update statistics.

else
ns=ns+1; %Increment number of observed swell systems.
SPS(:,1,ns)=SS(:,s);
SPT(1,ns)=n;
SPT(2,ns)=n;

dirspec.m

function E=dirspec(fx,fy,B)

% B = data record DSPEC-format.
% E = directional spectrum on a cartesian grid.

f = .01:.01:.50;
d = -pi:pi/72:pi;

(fg,tg) = meshgrid(f,d);
fg = fg’; tg = tg’;

(X,Y) = meshgrid(fx,fy);
TIN = atan2(Y,X);
FIN = sqrt(X.2+Y.2);

ab = reshape(B(101:300),50,4);
ab(1:2,:) = zeros(2,4);
ab(46:49,:) = zeros(4,4);

(n,m) = size(ab);
D = zeros(n,max(size(d))); %MEM directional distribution.
for nn=1:n

if ab(nn,1)>-1
c1 = ab(nn,1)+i*ab(nn,2);
c2 = ab(nn,3)+i*ab(nn,4);
f1 = (c1-c2*conj(c1))/(1-abs(c1).2);
f2 = c2-c1*f1;
s1 = 1-f1*conj(c1)-f2*conj(c2);
dn = 1-f1*exp(-i*d)-f2*exp(-i*2*d);
D(nn,:) = real(ones(size(dn))*s1./(abs(dn).2*2*pi));

dspec = max(0.0,diag(B(51:100))*D);
E = griddata(fg,tg,dspec,FIN,TIN);

main.m - Main file which tracks the partitioned ocean wave spectra in time.

fileid=fopen(filename,’r’,’l’); %Read data from file.
status=fseek(fileid,(from-1)*2560,’bof’);
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Bdir=[fread(fileid,[640,nsamples],’float32’)]’;

fm=0.5; fx=-fm:fm/50:fm; fy=fx; %Generate grid coordinate vectors.
L=length(fx); H=length(fy);

ns=0; lso=0; ls=0;
for n=from:to

E=dirspec(fx,fy,Bdir(n-from+1,:)); %Generates the directional wave spectrum.
PartAlg %Partitioning algorithm.
if length(SI)>0

ls=rank(SPM);
SwellTrack %Swell tracking algorithm.

else ls=0;
lso=ls;
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