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Abstract

A new semi-Lagrangian advection scheme called ‘multi-step ray ad-
vection’ is proposed for solving the spectral energy balance equation
of ocean surface gravity waves. Existing so-called piece-wise ray meth-
ods advect wave energy over a single time step using ‘pieces’ of ray
trajectories, after which the spectrum is updated with source terms
representing various physical processes. The generalized scheme pre-
sented here allows for an arbitrary number N of advection time steps
along the same rays, thus reducing numerical diffusion, and still in-
cluding source term variations every time step. Tests are performed
for along-shore uniform bottom topography, and the effects of two
types of discretizations of the wave spectrum are investigated, a fi-
nite bandwidth representation and a single frequency and direction
per spectral band. In the limit of large N , both the accuracy and
computation cost of the method increase, approaching a non-diffusive
fully Lagrangian scheme. Even for N = 1 the semi-Lagrangian scheme
test results show less numerical diffusion than predictions of the com-
monly used first-order upwind finite difference scheme. Application to
the refraction and shoaling of narrow swell spectra across a continen-
tal shelf illustrates the importance of controlling numerical diffusion.
Numerical errors in a single step (∆t = 600s) scheme implemented on
the North-Carolina continental shelf (typical swell propagation time
across the shelf is about 3 hours) are shown to be comparable to the
angular diffusion predicted by wave-bottom Bragg scattering theory,
in particular for narrow directional spectra, suggesting that the true
directional spread of swell may not always be resolved in existing wave
prediction models, because of excessive numerical diffusion. This dif-
fusion is effectively suppressed in cases presented here with a 4-step
semi-Lagrangian scheme, using the same value of ∆t.

1 Introduction

Phase-averaged models that aim to predict the evolution of surface gravity
waves over distances much larger than the wavelength are usually based
on a spectral energy balance [Gelci et al., 1957]. The wave field can be
represented by the spectral energy density F (x,k, t), in wavenumber vector
space (k), as a function of geographical space (x) and time (t). Neglecting
currents, the energy balance equation is given by (e.g. Whitham 1974;
Willebrand 1975)

∂F

∂t
+∇x · (cgF ) +∇k · (ckF ) = S, (1)

2



where ∇x and ∇k are divergence operators in geographical and wavenumber
space respectively, and cg (the group speed) and ck are the corresponding
energy transport velocities. The source term S (k,x, t) is the net rate of
energy transfer to component k resulting from interactions with the bottom
and the atmosphere, and nonlinear interactions with other components of
the spectrum. This transport equation, similar to Boltzmann’s equation for
gas kinetics is written in terms of local values of the wave energy, as could
be measured by a fixed instrument. For each spectral component (1) can
be discretized at fixed locations in physical and wavenumber vector space
and integrated in time on an Eulerian grid. This type of numerical model
is widely used in deep water applications where large spatial and temporal
scales of wave evolution allow for relatively coarse grids (e.g. The WAMDI
group, 1988). Finite differences approximations of the gradients in (1) in-
troduce numerical diffusion in time, and in both physical and wavenumber
spaces. These effects can be mitigated by using higher-order finite difference
schemes but this enhances the ‘garden-sprinkler effect’, that is, energy tends
to flow with discrete group speeds along the discretized propagation direc-
tions, causing over large distances an artificial accumulation of energy at dis-
crete locations rather than the smooth dispersion of a continuous spectrum.
This garden sprinkler effect is usually reduced by introducing additional
numerical diffusion, thereby losing part of the accuracy of the higher-order
advection scheme. Tolman (2002) gave a review of this approach with new
improvements.

Although source terms play a dominant role in the generation process,
the local changes in wave properties are often dominated by propagation
effects that are well described by linear wave theory (see e.g. Bretherton
and Garret 1969; Mei 1989), in particular for swell-dominated sea states and
in shelf regions with complex and shallow bottom topography (Lavrenov,
2003). Ray theory for waves propagating through a slowly varying medium
can be used to simplify (1) by writing the energy balance following a wave
packet along its ray trajectory

dF

dt
= S. (2)

The conservative form of (2), i.e. with S = 0, states that the energy density
in wavenumber vector space does not change along a ray (although the
wavenumber vector itself does change) and was established by Longuet-
Higgins (1957). It can also be derived from more fundamental conservation
laws (Lavrenov, 2003; and references therein).
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Numerical evaluation of (2) only describes the changes in the energy
of the moving wave trains, it thus also requires the computation of all ray
trajectories followed by the spectral components, keeping track of changes
in wavenumber vectors along the rays. All this is obtained from linear re-
fraction theory using well-known ray-tracing algorithms (see Ardhuin et al.,
2001). For spectral applications it was clearly demonstrated that backward
ray tracing, from a given arrival point, is preferable to forward ray tracing,
from parallel directions in deep water towards the area of interest, (see e. g.
O’Reilly and Guza , 1993; Bouws and Battjes, 1982).

Such a ‘Lagrangian’ method (in the sense that we follow wave groups,
but not water particles) is economical when rays are fixed in time, i.e. in
the absence of significant variable currents or temporal changes in sea lev-
els, because rays can be precomputed once and for all. Furthermore, ray
computations can be performed on a bathymetry grid different from the
wave model grid, taking advantage of the full resolution of the bathymet-
ric data available. The Lagrangian approach was initially used with S = 0
(e.g. Dobson, 1967), providing an accurate method for the transformation
of swell over complex bathymetry (e.g. O’Reilly and Guza, 1991). Cav-
aleri and Malanotte-Rizzoli (1981) introduced a non-zero source term S,
assuming that for a given wave component k, S (k) is only a function of
the energy of that component, which is appropriate for commonly used pa-
rameterizations of some physical processes, such as wave generation by the
wind (see also the review by Lavrenov, 2003). Recently Ardhuin, Herbers
and O’Reilly (2001) presented a generalized model CREST that can handle
arbitrary source terms, including scattering processes that couple different
spectral components such as wave scattering by the bottom topography
(Ardhuin and Herbers, 2002) or ‘quadruplet’ wave-wave interactions (Ard-
huin et al. 2003). The extension to arbitrary source terms is achieved by
the interpolation of source terms from a fixed Eulerian grid onto the rays.
The model essentially combines the well established physical description of
wave spectra evolution in the form of source terms, with the accurate non-
diffusive advection of finite spectral bands along rays. It also allows a stable
integration of (2) with arbitrary time steps. Furthermore, the advection
computations can be carried out over finite bandwidths using precomputed
rays, thus eliminating the ’garden sprinkler’ effect of finite difference schemes
that use discrete spectral components (e.g. Tolman, 2002).

The high computational cost of the full Lagrangian advection scheme
in CREST, associated with the variability of ray trajectories over large dis-
tances, is still prohibitive for large regional (e.g. 500 km of coastline) or
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global implementations on a workstation. Some alternative schemes, such
as the ‘piecewise ray method’ (Sobey, 1986; Young, 1988, Benoit et al., 1996)
achieve numerical efficiency by propagating wave energy over only one time
step along the ray trajectories, from locations (‘roots’) determined by the
ray calculations, to the grid points (the ‘plant’). However the interpolation
necessary at these ‘roots’ to determine the local energy from the neighbor-
ing grid points introduces numerical diffusion at each time step, similar to
low-order finite difference schemes.

Although it is well recognized that some numerical schemes commonly
used in spectral wave prediction models are too diffusive to accurately prop-
agate a localized disturbance over large distances (e.g. the WAMDI Group,
1988; Booij et al., 1999), the errors introduced by numerical diffusion in nat-
urally broad wind generated wave fields are not well known. In deep water,
frequency and directional dispersion of swell causes a natural diffusion of
energy in physical (x) space but also narrows the wave field in wavenumber
(k) space. In shallow water, refraction can cause large spatial gradients in
wave energy that enhance numerical diffusion. Wave-wave and wave-bottom
scattering processes on the other hand provide natural diffusion mechanisms
that tend to broaden the wave spectrum (Hasselmann, 1966). Hindcasts of
swell transformation across a wide, irregular shelf, using the wave model
CREST, showed that diffusion by wave-bottom interactions (class I Bragg
scattering) approximately doubled the directional spread near the shore of
the North Carolina Outer Banks (Ardhuin and Herbers 2002, Ardhuin et al.
2003a,b).

The goal of the present paper is therefore to evaluate whether this type
of scattering process can be resolved by numerical models, that, for this pur-
pose, may be limited by numerical diffusion. To investigate this question we
propose a generalization of the Lagrangian CREST scheme, a multi-step ray
method, with an arbitrary number of time steps over which the wave energy
is advected along the same ray, offering a clear and flexible trade-off between
computational cost and numerical diffusion (section 2). The technique has
similarities with the semi-Lagrangian scheme called ‘INTERPOL’, already
described by Lavrenov and Onvlee (1995), and Lavrenov (2003, chapter
3). The present approach is illustrated with predictions of the evolution
of the directional spread of swell across the broad and shallow North Car-
olina – Virginia continental shelf during the Shoaling Waves EXperiment
(SHOWEX, in section 3), comparing the effects of numerical and physical
(Bragg scattering) diffusion in model results. Conclusions and perspectives
for this generalized multi-step propagation scheme are given in section 4.

5



2 Generalization of the CREST numerical scheme

CREST is a phase-averaged spectral wave prediction model based on equa-
tion (2) described in detail by Ardhuin and others (2001). First, in the
precomputation phase, ray trajectories for the waves are traced backwards
from fixed Eulerian grid points with positions xi to the model boundary.
Source terms are evaluated at the grid points and interpolated onto the
rays. The spectrum F is discretized on a fixed frequency-direction, taking
advantage of the conservation of wave frequencies along the rays. However,
the spectral density F is still expressed as density in wavenumber vector
space because only this density is conserved along the rays in the absence of
source terms. Source terms are interpolated linearly in space and direction
to match the local ray position and direction.

Along each ray, arriving at xi we define a Lagrangian energy density
FL (t, τ) as the energy density ‘upstream’ of xi at time t, where τ is the
energy advection time from the local ray position to the grid point xi. At
xi, the Lagrangian densities FL (t, 0) are averaged over all the rays that ar-
rive at xi within a frequency-direction bandwidth ∆f∆θ yielding the band-
averaged discrete Eulerian spectrum FE (fj , θl, t) at xi. Here ∆θ is taken to
be fixed while ∆f is generally increased with frequency. At each grid point
a source term S (fj , θl, t) is determined from the full Eulerian spectrum FE

and other local parameters such as wind stress and bottom roughness. S is
then interpolated at the local ray positions to yield the source term S̃ (t, τ)
along the rays which in turn modifies FL (t, τ) (see Ardhuin et al., 2001,
figure 1).

Although the propagation over short distances for a finite bandwidth
may be well represented by the position and direction along a single ray, the
rays are scattered by complex topography. Thus several rays are needed to
account for the variety of trajectories that reach a grid point with frequencies
and directions in the same discrete band. As a result of this ‘scintillation’ of
rays, the cost of the CREST scheme increases rapidly with increasing model
domain size. That is, the further the rays are integrated, not only more rays
must be computed to describe widely scattered ray bundles, but these ray
bundles also cover a larger region thus increasing the effort to interpolate
the source terms. The computational effort can be reduced by dividing the
entire model domain in subdomains, at the boundaries of which the rays are
terminated and the energy is interpolated from the neighboring boundary
points (Ardhuin et al., 2001).

A more general and flexible approach is used here. Rays are terminated
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after a given number of time steps N . At the termination point, the wave
energy density FL is interpolated from three neighboring grid points. This
interpolation is similar to the interpolation of the source term, with the
difference that for a given ray it is performed at a fixed location and time
N∆t, whereas the interpolated source term S̃ is distributed in space and
time over a ray segment that corresponds to the finite advection time step
∆t (figure 1). If no source terms are used, increasing N is equivalent to
increasing ∆t as the energy is simply advected over larger distances along
the rays. When source terms are included the duration of the effective
propagation time step N∆t is essentially decoupled from the source term
integration time step ∆t, and N may be varied across the model domain
and spectrum, for example to better describe the propagation of swell in
regions with complex bathymetry. If a ray crosses a boundary within a
propagation time less than N∆t, the energy is interpolated from the two
adjacent boundary grid points (Ardhuin et al., 2001). Although limiting the
number of advection steps N is somewhat equivalent to dividing the model
domain in subdomains of sizes close to Ncg/∆t, where cg is the group speed,
the presented scheme is more flexible and does not introduce a bias in the
propagation time due to the round-off to a lower integer number of time
steps.

For small values of N (say 1 or 2) the rays vary only slightly over a
spectral band if the bathymetry and currents vary slowly over the distance
Ncg/∆t. Thus for low N only one or a few rays are needed to represent
accurately a finite spectral band (e. g. Benoit et al., 1996). In these
numerically efficient low N schemes, rays may be re-computed at regular
time intervals to account for variable currents and water levels that modify
the ray trajectories.

The accuracy of this semi-Lagrangian advection scheme for a small num-
ber of time steps N , and using many or only one ray per frequency-direction
band is investigated below through comparisons with predictions of the full
Lagrangian scheme (N = ∞). In that scheme, many rays are used for
each spectral component, and we adjust their number so that two rays with
neighboring arrival directions have close directions and positions at their
upwave ends. An upper bound on this number was set to 900 rays per fi-
nite frequency-direction band, which is rarely reached, and a minimum of
30 rays. Calculations described here use in general about 50 rays per com-
ponent (see Ardhuin et al., 2001 for details on the procedure for adjusting
the number of rays), unless the use of a single ray is specified.
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3 Numerical diffusion in the directional spectrum

3.1 Schematic shelf

A simplified (one-dimesional) transect version of CREST for an along-shore
uniform shelf was created. The interpolation grid, from which rays are
computed is reduced to a line of points along a cross-shelf transect. A linear
cross-shore interpolation of energy spectra and source terms is performed
based on the two neighboring grid points, instead of the three points of the
local triangle in the full model. The time-integration scheme is described by
Ardhuin et al. (2001).

The first test presented in figure 2 uses a simple bottom profile consist-
ing of a plane, gently sloping shelf (1:3000) with a relatively steep inner
shelf and shelf break (figure 3a), that represents the general geometry of
the approximately 100 km wide U.S. East coast continental shelf off North
Carolina.

Along the cross-shelf transect, grid points were regularly spaced at in-
tervals ∆x, from 8 m to 200 m water depth. The incident wave energy
was taken to be constant in time and distributed uniformly in a single fre-
quency band (0.07 to 0.074 Hz), with a directional distribution proportional
to cosp (θ − θ0), including only onshore propagating components. The ex-
ponent p = 12 was chosen to obtain a narrow offshore directional spread
σθ of 15◦, close to the observed values in the period 15–21 September 1999
during the SHOWEX experiment (discussed below) Here σθ is based on the
first order moments and equals the standard deviation of the directional
distribution in the limit of a narrow spectrum (Kuik et al., 1988). The
mean incidence wave direction was set to 60◦ (figure 2b). The directional
distribution was discretized with a 5◦ resolution in the model. The model
was integrated in time, starting from energy densities set to zero across the
transect and along the rays, until a steady state was reached.

Model results for different advection schemes are compared to exact an-
alytical solutions based on the invariance of the wavenumber vector spectral
densities along ray trajectories given by Snel’s law (Longuet-Higgins, 1957),
keeping track of wavenumber vector changes. These analytical solutions
were computed with 1◦ resolution for a step-wise constant offshore spec-
trum (with a step width of 5◦) that is exactly identical to the one used in
the numerical model integrations. Differences between model results and
Snel’s law are thus entirely the result of numerical errors in the energy and
direction of waves, introduced by the interpolation at the end of the rays.
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This error generally has a small effect on the mean wave direction (less than
0.1◦ and not shown) because the interpolation yields both positive and neg-
ative direction errors that tend to cancel. However the interpolation tends
to diffuse energy to neighboring rays, thus artificially broadening the wave
spectra.

In the multi-step ray advection scheme presented here this diffusion can
be reduced by increasing the number N of back-refraction steps. The time
step ∆t was kept constant at 600 s, a typical value used in realistic appli-
cations with time-varying source terms and boundary conditions. Changing
the value of N is equivalent here to changing the value of ∆t keeping the
product N∆t constant. Model runs with N = 20 and a finite-bandwidth
representation of each spectral element (using many rays for each frequency-
direction band) correspond approximately to the original CREST scheme
since the back-refracted rays generally reach the offshore boundary in less
than 20 steps (with the exception of very large oblique angles). Good agree-
ment with the analytical Snel’s law result (σθ errors less than 0.4◦) confirms
that the full Lagrangian CREST scheme effectively eliminates numerical dif-
fusion (figure 2b). As N is reduced, repeated interpolations in direction and
space enhance numerical diffusion. On the inner shelf the relative increase
of σθ due to numerical diffusion is approximately 60% for N = 1, 30% for
N = 2 and 15% for N = 4. To examine how much of this diffusion is due
to spatial interpolations, results for ∆x = 2 km and 0.5 km are compared
in figure 2b (squares and triangles). The nearly identical results indicate
that the spatial variations of the energy densities are well resolved by the
linear interpolation from the grid points to the end of the rays, even for a
relatively coarse 2 km grid, and the numerical diffusion in this test case is
essentially caused by the directional interpolation. For small values of N ,
using a finite bandwidth representation for the direction bands yields about
twice as much numerical diffusion compared with results for a single ray per
band (shown in figure 2b for N = 1). Indeed, the interpolated energy at
the end of a ray is an average of wave energies, previously advected by rays
spanning a ∆θ interval, and thus this average is clearly a source of numerical
diffusion. However, if a single ray is used for each band, this interpolation
at the end of the ray resolves linear variations in energy between adjacent
bands and is therefore less diffusive.

The test results for full and semi-Lagrangian schemes are compared in
figure 2b with predictions of an explicit first-order upwind scheme, that
uses finite differences to represent the gradients in the Eulerian spectral
energy balance equation (1). The finite difference scheme was implemented
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on a frequency(f)-direction(θ) grid, taking advantage of the fact that f is
conserved. On an alongshore uniform shelf eq. (1) reduces to an advection
equation in three dimensions x, θ, and t. In order to keep the Courant
numbers, in both x and θ space, below 0.6, ∆x and ∆t were reduced to
0.25 km and 15 s. Results indicate that the semi-Lagrangian schemes, even
the most diffusive N = 1 scheme, give less numerical diffusion than the first-
order finite difference scheme. In contrast to the semi-Lagrangian schemes,
the finite-difference scheme does not account for wave refraction on sub-
grid scales (in space and directions), and thus introduces numerical errors
in regions with significant depth changes over a grid cell. The associated
strong diffusion is evident in the steeper shelf break and inner shelf regions in
figure 2b. The numerical results of the finite-difference scheme converge to
the analytical result only if both ∆x and ∆θ are reduced, and the required
resolution, of the order of 100 m and 0.1◦ makes applications to realistic
two-dimensional cases prohibitively expensive. The directional resolution
∆θ = 5◦ used here is already three times smaller that what is generally used
in operational models, while a spatial resolution ∆x of the order of 1 km is
a typical value for shallow-water applications.

The same test case was repeated using a more realistic cross-shelf bottom
profile, taken from surveys of the actual North Carolina shelf, just south of
the entrance to the Chesapeake Bay (figure 3a). This more irregular topogra-
phy causes stronger refraction that further enhances the artificial directional
smoothing of the numerical schemes. The upwind finite-difference scheme
yields the largest errors, overpredicting σθ by a factor 2–3 across most of
the shelf (figure 3b). The N = 1 semi-Lagrangian schemes typically over-
predict σθ by 40–60%, and these errors are reduced to less than 20% for the
multi-step N = 4 scheme.

3.2 Physical and numerical diffusion in a SHOWEX hindcast

Model tests for an along-shore uniform shelf show that numerical diffusion
caused by the directional discretization of the wave spectrum can broaden
artificially the directional spectra predicted by wave models. For realistic
bidimensional bathymetry, physical processes, in particular refraction and
scattering of waves by the bottom topography, may also broaden directional
wave spectra across the shelf. The importance of controlling numerical diffu-
sion in a realistic setting with natural physical diffusion is investigated here
by comparing different numerical schemes in hindcasts of observed swell
evolution across the North-Carolina continental shelf. During the SHOal-
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ing Waves EXperiment (SHOWEX), a cross-shelf transect of six surface-
following Datawell Directional Waverider buoys was deployed from Septem-
ber to December, 1999. Data from three buoys X1, X4, and X6, in 20, 33
and 193 m depth, respectively, are used here (figure 4). A description of the
experiment, data processing and hindcast procedure is given by Ardhuin et
al. (2003a). Wave measurements were also available from permanent in-
struments, including pitch-and-roll buoy 44014, maintained by the National
Data Buoy Center (NDBC) in 49 m depth, and an array of pressure gauges
in 8 m depth (8M in figure 4) at the U.S. Army Corps of Engineers Field
Research Facility (FRF) in Duck, North Carolina.

The model CREST was implemented covering the entire shelf with 570
grid points extending from 34◦30′ N, south of Cape Hatteras, to 38◦ N,
at the Virginia-Maryland border on Assateague Island. The model uses
29 frequency bands from 0.05 to 0.15 Hz, and 72 direction bands regularly
spaced at 5◦ intervals. For each of these finite bands, bundles of rays were
traced from all grid points. The grid was subdivided into nine subdomains
(numbered 1 to 9 on figure 4) coupled at their mutual boundaries, where
the ray computations were stopped. The incident wave conditions along the
offshore model boundary are based on linear interpolation of spectral data
from buoys X6 and 44014. The energy balance equation (2) was integrated
with a 10 minute time step, using source terms that represent wave-bottom
Bragg scattering (Ardhuin and Herbers, 2002) and bottom friction over a
movable bed. The bottom friction source term is a slightly modified version
of the formulation proposed by Tolman (1994) that was tuned to improve
the hindcast skill of swell wave heights observed during SHOWEX and the
earlier DUCK94 experiment (Ardhuin et al., 2003b). Predictions both with
and without Bragg scattering were made to quantify the contribution of
this process to directional diffusion. Although the model is fully spectral,
comparisons presented here are restricted to the mean direction θp and di-
rectional spread σθ,p at the peak frequency. Analysis of spectra suggests
that bottom friction does not have a strong effect on the spectral distribu-
tion of wave energy (Ardhuin et al., 2003a), while wave-bottom scattering
is a linear process that does not transfer energy between wave components
that have different frequencies.

The mean direction and directional spread in the previous academic ex-
amples correspond to values at the peak frequency observed on 15 Septem-
ber at the offshore buoy X6 when narrow band swell arrived from hurricane
Floyd at large oblique angles (150 < θp < 160◦, where θp is direction from,
in nautical convention, and σθ,p = 15◦, see figure 5a). Swell from Hurricane
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Gert on 17–21 September was similar except for the mean wave direction
(θp = 120◦) that was closer to normal incidence to the coastline.

Differences between observations at buoys X6 and 44014 (both located
on the outer edge of the shelf) on 15 September suggests that errors may re-
sult from variations of the deep water wave field that are poorly represented
in the model incident wave conditions, interpolated from the measured spec-
tra at X6 and 44014, spectra from the latter being first ’back refracted’ to
deep water. Additional uncertainty in the model predictions result from ap-
plying a uniform bottom elevation spectrum in the Bragg scattering source
term, based on limited high-resolution bathymetry data. Despite these un-
certainties the predictions of σθ,p obtained with the full Lagrangian scheme
including Bragg scattering agree well with the observations, indicating that
the dominant physical processes are well represented in the model. A more
detailed analysis of over 50 days of swell-dominated conditions is given by
Ardhuin (2001) and Ardhuin and others (2003a,b). A systematic underpre-
diction of directional spread at nearshore sites is the likely result of other
scattering processes not included in the present model, such as non-linear
wave-wave interactions (see Herterich and Hasselmann, 1980; Herbers and
Burton, 1997 ; Zaslavskii and Polnikov, 1998).

Integrating the model with only the bottom friction for source term and
the full-ray advection scheme, the directional spread decreases dramatically
across the shelf (figure 5b,c, diamonds), in particular for the large oblique
incidence angles on 15 September. This directional narrowing is however
weaker than on the alongshore uniform topography since refraction on the
two-dimensional shoals tends to increase directional spread. Using the multi-
step ray advection scheme with N = 1 introduces numerical diffusion that
occasionally doubles σθ,p at X1 (compare squares and diamonds in figure 5) .
At X4 (figures 5b,c) the numerical diffusion is less severe due to the shorter
propagation distance. For the most oblique incident waves (15 September)
the broadening of directional spectra due to numerical diffusion for N = 1
is larger than that predicted by wave-bottom Bragg scattering (triangles in
figure 5). It suggests that this source term should be used with caution when
combined with numerically diffusive advection schemes, such as piecewise
ray methods (N = 1), or first-order finite difference schemes. However,
earlier on September 14, as well as during the period 17–21 September, the
physical Bragg scattering diffusion appears to be stronger than numerical
diffusion, even for N = 1, suggesting that diffusive low-order numerical
schemes may yield reasonable predictions for these more commonly observed
broader wave spectra.
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4 Summary and conclusions

A multi-step ray advection scheme is proposed here for phase-averaged wave
models. It is based on the Lagrangian energy balance equation (2), and
generalizes the fully Lagrangian advection scheme of the CREST wave model
(Ardhuin et al., 2001) by reducing the time interval over which energy is
advected along a given ray trajectory. This time interval, a multiple N of
the pre-defined time step ∆t used for the source term integration, can be
adjusted between the original fully Lagrangian scheme (N = ∞, in practice
limited by the model domain size) and the efficient but diffusive piecewise
ray methods (N = 1, Sobey, 1986). This scheme belongs to the class of
semi-Lagrangian schemes with the earlier ’INTERPOL’ scheme of Lavrenov
and Onvlee (1995), and is unconditionally stable, can be implemented on
an arbitrary irregular spatial grid, and effectively eliminates the garden-
sprinkler effects of finite-difference schemes by using finite bandwidths.

The finite-bandwidth representation used in CREST, computing as many
rays as necessary to resolve their variability, is probably more accurate (and
slower) than the angular smoothing technique used in INTERPOL for the
shallow water cases described here with strong refraction effects. However
in deeper water the latter technique is probably more efficient. For large
values of N , a large number of rays is needed to describe a finite bandwidth,
resulting in an expensive precomputation effort. The effort of both comput-
ing rays and integrating the energy balance equation is reduced drastically
in a low-N scheme requiring only a single or a few rays to describe a band.
This efficiency makes possible a frequent update of the rays to represent
the variable refraction due to unsteady currents and water levels, already
performed in the TOMAWAC piece-wise ray model (Benoit, personal com-
munication, 2001). In the academic test, presented in figure 2, the N = 1
single ray advection scheme was 5 and 2.5 times faster than N = 20 and
N = 4 multi-step schemes with finite-bandwidth representations, yielding a
maximum error of σθ of 35%, compared with 4 and 15% for N = 20 and 4,
respectively (figure 6).

The N = 1 finite bandwidth scheme is both less accurate (55% error)
and slower (by a factor 1.5) than the N = 1 single ray scheme, but has the
benefit of eliminating garden sprinkler that may appear in large domains
with regular spatial grids. On the real shelf bathymetry the N = 1 finite
bandwidth ray advection scheme was already quite efficient, making the
entire computation (including source term computation and interpolation)
4 times faster than the original CREST scheme.
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The effectiveness of the present semi-Lagrangian scheme in reducing nu-
merical diffusion was demonstrated with academic tests and observations of
the evolution of the directional spread σθ of swell across the shelf during
the SHOaling Waves Experiment in 1999. Although this parameter is rarely
given much attention, it has important implications for nearshore morpho-
dynamics (Reniers et al. 2004) and forces on structures (Forristall et al.
1998). A single-step ray advection scheme may artificially broaden the di-
rectional spectrum, sometimes more so than the predicted natural diffusion
resulting from wave scattering by the bottom topography. These errors are
effectively suppressed by increasing N (e.g. a 4-step scheme with a 600 s time
step was sufficient for the North Carolina Shelf). These results demonstrate
the usefulness of semi-Lagrangian schemes for studying natural scattering
processes that may be buried in the numerical noise when other schemes are
used.

Further work is needed, including model intercomparisons for realistic
wind-sea cases, and verification of predicted full spectra and other wave pa-
rameters (e.g. Lavrenov and Onvlee,1995), to evaluate the potential benefits
of the scheme presented here, in terms of both accuracy and cost, for routine
wave forecasting or hindcasting. In this regard, early results from a hindcast
of fetch-limited wind sea generation should be mentioned (Ardhuin et al.,
manuscript submitted to the Journal of Physical Oceanography). These cal-
culations show that 2-step and 4-step schemes gives spectral shapes almost
indistinguishable from the third order advection scheme used in Wavewatch
III (Tolman 2002). However, the fetch-limited growth at the sites closest
to shore (less than 5 km for an offshore wind speed of 10 m/s) tends to be
underestimated compared to Wavewatch III. This discrepancy is the result
of large source term variations over one time step, that are not well repre-
sented by the linear along-ray interpolation in CREST. In this particular
case the time step was about half the time of propagation from the coast for
the wind sea peak.

Acknowledgments. This research is supported by the Coastal Dynamics
Program of the U. S. Office of Naval Research. Bill O’Reilly, Paul Jessen
and Mark Orzech contributed significantly to the field experiment planning
and deployment, the wave and bathymetry data analysis, and made fruitful
comments on the present work. Buoys X1 through X6 were deployed by staff
from the Naval Postgraduate School and the Scripps Institution of Oceanog-

14



raphy Center for Coastal Studies. Wave data from the 8 m depth array and
buoy 44014 were provided by the Field Research Facility of the U.S. Army
Corps of Engineers Waterways Experiment Station’s Coastal Engineering
Research Center, and the National Data Buoy Center, respectively. Permis-
sion to use these data is appreciated. Anonymous reviewers made helpful
suggestions.

15



References

[Ardhuin et al., 2001] Ardhuin, F., T. H. C. Herbers, and W. C. O’Reilly,
2001: A hybrid Eulerian-Lagrangian model for spectral wave evolution
with application to bottom friction on the continental shelf. J. Phys.
Oceanogr., 31(6), 1498–1516.

[Ardhuin and Herbers, 2002] ——— and ———, 2002: Bragg scattering of
random surface gravity waves by irregular sea bed topography. J. Fluid
Mech., 451, 1–33.

[Ardhuin et al., 2003] ———, W. C. O’Reilly, T. H. C. Herbers, and P. F.
Jessen, 2003a: Swell transformation across the continental shelf. part I:
Attenuation and directional broadening. J. Phys. Oceanogr., 33, 1921–
1939.

[Ardhuin et al., 2003] ———, T. H. C. Herbers, W. C. O’Reilly, and —
——, 2003b: Swell transformation across the continental shelf. part II:
validation of a spectral energy balance equation. J. Phys. Oceanogr., 33,
1940–1953.

[Ardhuin et al., 2004] ———, B. Chapron, and T. Elfouhaily, 2004: Waves
and the air-sea momentum budget, implications for ocean circulation
modelling. J. Phys. Oceanogr., 34, 1741–1755.

[Benoit et al., 1996] Benoit, M., F. Marcos, and F. Becq, 1996: Develop-
ment of a third generation shallow-water wave model with unstructured
spatial meshing. Proceedings of the 25th international conference on
coastal engineering, ASCE, 465–478.

[Bouws and Battjes, 1982] Bouws, E. and J. A. Battjes, 1982: A Monte-
Carlo approach to the computation of refraction of water waves. J. Geo-
phys. Res., 87(C8), 5,718–5,722.

[Bretherton and Garrett, 1969] Bretherton, F. P. and C. J. R. Garrett,
1969: Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. of
London, A302, 529–554.

[Cavaleri and Malanotte-Rizzoli, 1981] Cavaleri, L. and P. Malanotte-
Rizzoli, 1981: Wind wave prediction in shallow water: theory and ap-
plications. J. Geophys. Res., 86(C5), 10,961–10,975.

16



[Dobson, 1967] Dobson, R. S., 1967: Some applications of a digital computer
to hydraulic engineering problems. Technical Report 80, Department of
Civil Engineering, Stanford University.

[Forristall and Ewans, 1998] Forristall, G. Z. and K. C. Ewans, 1998:
Worldwide measurement of directional wave spreading. J. Atmos. Ocean
Technol., 15, 440–469.

[Gelci et al., 1957] Gelci, R., H. Cazalé, and J. Vassal, 1957: Prévision de la
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Fig. 1: Schematic of the multi-step ray advection scheme proposed here.
Each ray, back-refracted from a grid point is terminated after N time steps
(here 2). At this termination point the energy density F is interpolated
in space and direction, from three neighboring grid points (thick dashed
arrows). The source term is interpolated in a similar fashion along the rays
(solid arrows).

Fig. 2: (a) Cross-shore depth profile of an alongshore-uniform plane
continental shelf, and (b) comparisons of directional spreads predicted by
CREST without source terms (S = 0) using different multi-step ray advec-
tion schemes (1, 2, 4, and 20 steps) with the exact Snel’s law solution for 12
s waves with a mean incidence angle of 60◦. Also included are predictions
of a first-order upwind finite-difference scheme.

Fig. 3: Same format as figure 2, for an alongshore uniform continental
shelf with realistic cross-shore topography.

Fig. 4: CREST model grid. The nodes of the triangular mesh are
grid points from which rays are back-refracted and where source terms are
evaluated. The entire model domain is divided into subdomains, numbered
1 through 9, separated by thicker lines. Locations of a few of the instruments
deployed during SHOWEX are indicated. The coastal area around 8M and
X1 is blown up on the left.

Fig. 5: Observations of directional spread at the peak frequency σθ,p

(lines) are compared with model predictions of wave refraction and damp-
ing using various semi-Lagrangian advection schemes (symbols). Also shown
are predictions of the full Lagrangian scheme including the physical diffusion
effect of wave-bottom scattering (triangles). (a) buoys X6 and 44014 (obser-
vations only), (b) buoy X4, and (c) buoy X1 (locations indicated on figure
4). Field data and model results are shown for swell-dominated periods only
(see Ardhuin et al., 2003a, for details).

Fig. 6: Time of computation versus maximum error for the numerical
schemes described here for the academic shelf case. The efficiency of the
upwind finite-difference scheme and the single-step ray scheme may not be
representative of those used in existing operational models. Indeed, no effort
was made here to fully optimize these computations. Please note that 1000
time steps corresponds to a larger simulated time with the semi-Lagrangian
schemes, that allow larger time steps than explicit finite-difference schemes.
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