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The Bragg scattering of random, non-stationary surface gravity waves by random to-
pography on a gently sloping bottom is investigated. A correction is given of previously
published expressions for the triad wave-wave-bottom interaction source term in the
spectral energy balance equation, and the result is reconciled with deterministic theo-
ries for the re
ection of waves from sinusoidal seabed undulations. For both normal and
oblique incidence, the stochastic and deterministic theories are equivalent in the limit of
long propagation distances. Even for relatively short distances (for example two bottom
undulations), the re
ected energy predicted by the stochastic source term formulation
is generally within 15 % of values predicted by deterministic theories. The detuning of
Bragg resonance by refraction and shoaling is discussed, suggesting practical validity
conditions for the stochastic theory. The e�ect of bottom scattering on swell propaga-
tion is illustrated with numerical model computations for the North Carolina continental
shelf using high-resolution bathymetry and an e�cient semi-implicit scheme to evaluate
the bottom scattering source term and integrate the energy balance equation. Model re-
sults demonstrate the importance of forward scattering of waves that propagate at large
oblique angles over bottom features with typical scales of one to several surface wave-
lengths. This process contributes signi�cantly to the directional spread of swell on the
continental shelf by di�using energy, in the spectrum, around the mean wave direction.
Back-scattering, caused by bottom features with crests parallel to those of the surface
waves and wavelengths close to half the surface wavelength, is weak, owing to the sharp
roll-o� of the bottom elevation spectrum at high wavenumbers. Model predictions are
consistent with �eld measurements.

1. Introduction

Many theories have been proposed that describe the e�ects of natural depth variations
on the propagation of surface gravity waves over a continental shelf or in a shallow
marginal sea. The importance of wave refraction and shoaling caused by large scale
features (i.e. many surface wavelengths) such as submarine shoals and canyons, islands,
bays and headlands is well known (Munk & Traylor 1947), and these e�ects are well
described by numerical models (see for example O'Reilly & Guza 1993). The e�ects of
depth variations with intermediate scales of the order of the surface wavelength are less
well understood.
Hasselmann (1966) proposed a statistical theory for the evolution of random surface

gravity waves over an irregular bottom assuming spatially homogeneous conditions (i.e.
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Figure 1. Geometric properties of wavenumbers satisfying the resonance condition. The inter-
action between a surface wave with wavenumber k

0 and a bottom component with wavenumber
l excites a surface wave with the sum wavenumber k = k

0+ l . For �xed k , the resonant k
0 and

l lie on the solid and dashed circles, respectively.

uniform surface wave and bottom elevation spectra). At the lowest order, two wave com-
ponents with the same radian frequency ! but di�erent wavenumber vectors k and k

0

exchange energy in a resonant triad interaction with the bottom component that has the
di�erence wavenumber l = k�k0 (�gure 1). This process is potentially important for the
directional properties of the waves. Long (1973) applied Hasselmann's theory to swell in
the North Sea with some assumptions about the unknown statistical properties of the
bottom topography. His results suggested that back scattering of surface waves from bot-
tom undulations with wavelengths close to half the surface wavelength (k � �k0, l � 2k)
could explain the swell energy decay observed during the JONSWAP experiment (Has-
selmann et al.1973). Subsequent bathymetric surveys (Richter, Schmalfeldt & Siebert
1976) showed that the amplitude of sea bed undulations at the site of the JONSWAP
experiment was too small to cause signi�cant back scattering. Although the potential
importance of wave-bottom scattering is widely recognised (see for example Mei & Liu
1993), the lack of detailed bathymetric data has prevented further investigations of this
process over natural seabed topography (Komen et al.1994).
Di�erent deterministic theories have been developed for wave re
ection by periodic

bottom undulations. Davies (1979) derived an analytical solution for the weak re
ection
of a monochromatic wavetrain propagating at normal incidence over a patch of sinusoidal
bars, that was subsequently veri�ed in laboratory experiments (Heathershaw 1982; Davies
& Heathershaw 1984). Davies' theory does not account for the decay of the incident wave,
losing energy to the re
ected component, and therefore overestimates strong re
ections,
in particular at resonance where l = 2k. Mei (1985) derived a more accurate energy
conserving solution, valid close to resonance, that was con�rmed by experiments (Hara
& Mei 1987). The more general case of oblique incidence was considered by Mei (1985),
Dalrymple& Kirby (1986), and Kirby (1993). Mei (1985) further generalized his theory to
bars superimposed on a sloping bottom. Kirby (1986a,b) subsequently showed that Mei's
(1985) generalized theory can also be derived from modi�ed mild slope equations. Other
related developments include nonlinear e�ects in a long wave approximation (Benjamin,
Boczar-Karakiewicz & Pritchard, 1987), higher-order Bragg scattering (Mitra & Green-
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berg 1984; Belzons, Rey & Guazzelli 1991; Liu & Yue 1998; Agnon & Sheremet 2000),
extended mild slope equations for steep topography (Athanassoulis & Belibakis 1999),
and investigations of Anderson localization of waves on a random bottom (Devillard,
Dunlop & Souillard 1988; Belzons, Guazzelli & Parodi 1988). Implications for sediment
transport and the formation of multiple sand bar systems just outside the surf zone were
discussed by Heathershaw (1982), Mei (1985), and Dulou, Belzons & Rey (2000).
Whereas Hasselmann's (1966) stochastic theory gives an energy balance equation that

is an e�cient tool for predicting the spectral evolution of random waves, it is restricted
to homogeneous wave and bottom topography properties, and has not been veri�ed
experimentally. In contrast, Mei's (1985) deterministic theory is more general and has
been veri�ed for simple cases, but it has not yet been applied to a natural sea bed because
it requires a numerical solution to an elliptic equation that is prohibitively expensive for
large domains. Kirby (1986a) discussed these two complementary theories but could not
reconcile them for the case of monochromatic waves travelling over a sinusoidal bottom.
Indeed, Hasselmann's theory assumes that the wave energy spectrum is continuous across
the resonance manifold in order to determine its long-term evolution, and thus cannot
be be applied to monochromatic waves (see Hasselmann 1962, and Komen et al.1994, for
detailed discussions of the continuum approximation in random wave scattering theory).
In this paper, we examine the e�ects of wave scattering from natural seabed topography

by extending Hasselmann's (1966) theory to heterogeneous waves and bottoms. In x 2 we
rederive Hasselmann's scattering source term on a gently sloping bottom with slowly
varying wave and bottom spectral properties, correcting for an apparent error in the
wave{bottom coupling coe�cients given by Hasselmann (1966) and Long (1973). In x 3
the predicted scattering source term for a sinusoidal bottom is shown to be in agreement
with the well-veri�ed solutions of deterministic theories. The e�ects of Bragg scattering
on swell propagation across the North Carolina continental shelf are illustrated in x 4
with an implementation of the scattering source term in the spectral wave prediction
model CREST (Ardhuin, Herbers & O'Reilly 2001) using measured wave spectra and
high-resolution bathymetric data. Conclusions are given in x 5.

2. Scattering theory for random waves in heterogeneous conditions

The present derivation of the energy balance equation for random waves propagat-
ing over an irregular sea 
oor uses a perturbation expansion of the wave energy, closely
following Hasselmann's (1962) derivation of energy transfers in quartet wave{wave inter-
actions, and a ray approximation of medium variations adapted from Mei (1989, ch. 3).
The result is a local energy balance equation that incorporates refraction and shoaling
by large-scale depth variations, and a source term describing Bragg scattering by seabed
topography with small horizontal scales (of the order of the surface wavelength).

2.1. General formulation

We consider weakly nonlinear random waves propagating over an irregular bottom with
a slowly varying mean depth and random small-scale topography. For the sake of sim-
plicity we will neglect the e�ects of mean currents on wave propagation (see for example
Bretherton & Garrett 1969) and on wave scattering by bottom undulations (Kirby, 1988;
Ting, Lin & Kuo, 2000). All variables are non-dimensionalized with a representative
wavenumber k0, acceleration due to gravity g and water density �. The bottom elevation
is represented by z = �H (x) + h (x), where h is a zero-mean small deviation from the
gently sloping large-scale bottom features represented by �H (x), x is the horizontal po-
sition vector, and z is the elevation relative to the mean water level. The vertical position
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Figure 2. De�nition sketch.

of the ocean free surface is given by � (x; t) with a zero mean value (�gure 2). Assuming
irrotational 
ow for an incompressible 
uid, the horizontal velocity �eld u is equal to
r�, the horizontal gradient of a velocity potential, and the vertical velocity w is equal
to @�=@z. We further assume that � is constant. The governing equations for � are

r2�+
@2�

@z2
= 0 for �H + h 6 z 6 �; (2.1)

@�

@z
= r� � (rh�rH) at z = �H + h; (2.2)

@2�

@t2
+
@�

@z
=r� � r� �r� �

@r�

@t
�
@�

@z

@2�

@t@z
at z = �: (2.3)

Equation (2.1) is Laplace's equation, (2.2) is the `free slip' bottom boundary condition,
and the `combined' surface boundary condition (2.3) is obtained by eliminating linear
terms involving � from the dynamic (i.e. Bernoulli's equation) and kinematic conditions
at the free surface (see for example Hasselmann 1962). � is given by Bernoulli's equation,

� +
@�

@t
= �

1

2

"
jr�j2 +

�
@�

@z

�2
#

at z = �: (2.4)

Assuming that h varies on scales of the order of the surface wavelength, we introduce
three small parameters: the wave slope " = k0a0, the small-scale bottom slope � = k0h0,
and a measure � of the large-scale bottom slope jrHj. Equations (2.1){(2.3) are scaled
as

r2�+
@2�

@z2
= 0 for (�H + �h) 6 z 6 "�; (2.5)

@�

@z
= r� � (�rh� �rH) at z = �H + �h; (2.6)

@2�

@t2
+
@�

@z
= "r� � r� � "r� �

@r�

@t
� "

@�

@z

@2�

@t@z
at z = "�: (2.7)

Following Keller (1958) we introduce slow space ex = �x and time et = 
t variables. h
and � are assumed to be semi-stationary random processes in horizontal space and time

(for � only), with evolution scales (�k0)
�1 and 
�1k

�1=2
0 respectively (Priestley, 1965),

that can be decomposed into Fourier modes with slowly varying amplitudes. Following
Hasselmann (1962) we shall approximate h and � with discrete sums, and take the limit
to continuous integrals after deriving expressions for the evolution of the phase averaged
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wave energy. We write

h (x) =
X
l

Bl (ex) eil�x; (2.8)

where l are regularly spaced wavenumbers of bottom undulations and Bl are slowly
varying amplitudes. Anticipating the e�ects of refraction, � is decomposed as

� (x; t) =
X
k

�k (ex; t; z) eiSk (x); (2.9)

where k are regularly spaced surface wavenumbers, and each k-component has an am-
plitude �k, an eikonal Sk, and a local wavenumber

kr (k; �x) =rSk (x) (2.10)

such that kr = k at the origin x = 0; �k and kr are Lagrangian variables following a wave
component along a ray trajectory. The spectral decomposition (2.9) for an evolutionary
process is `unique', in a sense de�ned by Priestley (1981, theorem 11.2.3), only for a �nite
region in space and time, and is used here only to evaluate local variations of �k.
The slow spatial variations of �k can result from shoaling, refraction, and scattering

processes, as well as non-stationary and non-uniform wave conditions. Since � and h are
real, it follows that �k = ��k and Bl = B�l, where the overbar denotes the complex
conjugate.
In the vicinity of x = 0, the decomposition (2.9) reduces to a Fourier sum

� (x; t) =
X
k

�k (0; t; z) e
ik�x + O (� jxj ; � jxj) : (2.11)

The simpli�ed decomposition (2.11) will be used when no space di�erentiation is involved,
taking advantage of the orthogonality of Fourier modes.
The goal of the present derivation is to determine from (2.1){(2.4) the energy balance

at ex = 0 for each k-component of the wave spectrum (2.9). The solution depends on the
relative magnitudes of the �ve small parameters: �, �, 
, � and ". Here, we use

� � � � 
 � �2 � "2 � 1: (2.12)

The choice of a small-scale bottom slope � much larger than the large-scale slope � is
usually well suited to sandy continental shelves, with the exception of the steeper beach
and shelf break regions. This choice makes the present derivation a priori di�erent from
Mei's (1985) theory in which � � � � �.
Following the method of Hasselmann (1962), the solution to (2.5){(2.7) is obtained

through a perturbation expansion in powers of ",

� = �1 + "�2 + "2�3 + h. o. t. (2.13)

The boundary conditions (2.6) and (2.7) are expressed at z = �H and z = 0, respectively,
using Taylor series expansions of � about z = �H and z = 0, e.g. at the bottom,

�jz=�H+h = �jz=�H + �h
@�

@z

����
z=�H

+ �2
h2

2

@2�

@z2

����
z=�H

+ h. o. t. (2.14)

Each term in (2.13) will be found to be of the form

�i =
X
k;s

cosh (krz + krH)

cosh (krH)
�s
i;k (ex;t) eiSi;k(x) + bound wave terms ; (2.15)

where kr is the magnitude of the local wavenumber vector kr , s is a sign index (+ or �),
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�s
i;k is the amplitude of the free wave component (k; s) that propagates in the direction

of skr , and �s
i;k = ��si;�k.

The slowly evolving spectral statistics of free wave components can be expressed in
terms of the covariances F�

i;j;k of the velocity potential amplitudes:

F�
i;j;k =

D
�+
i;k�

�
j;�k +��i;�k�

+
j;k

E
: (2.16)

where the angular brackets denote an average over many realizations of the wave �eld,
and in local space and time over a region that is large compared to the `fast' scales k�10 of

sea surface excursions, but small compared to the slow scales (�k0)
�1 and 
�1k0

�1=2 of
spectral variations. The contribution of the complex conjugate pairs of components (k;+)
and (�k;�) are combined in (2.16) so that Fi;j;k is the covariance of waves propagating
in the direction of k. Note that the wavenumber separations �kr=(�kr;x;�kr;y) in
the sum (2.9) vary along rays owing to refraction. In the limit of small wavenumber
separation, a continuous cross-spectrum can be de�ned at ex (e.g. Priestley 1981 ch. 11)

F�
i;j

�ex; et;k� = lim
j�kj!0

F�
i;j;k

�ex; et �
�kx�ky

: (2.17)

The de�nitions of all spectral densities are chosen so that the integral over the entire
wavenumber plane yields the total covariance of �i and �j.
The slowly varying bottom elevation spectrum in discrete form is given by FB

l
=

hBlB�li and in continuous form by

FB (ex; l) = lim
j�lj!0

FB
l
(ex)

�lx�ly
; (2.18)

so that 

h2 (ex)� = Z +1

�1

Z +1

�1

FB (ex; l) dlxdly : (2.19)

This de�nition di�ers by a factor of 2 from that chosen by Hasselmann (1966) and Long
(1973).
The total wave energy at ex = 0, in non-dimensional form,

E
�
0; et � = *Z �

�H+h

1

2

"
jr�j

2
+

�
@�

@z

�2
#
dz

+
+

1

2



�2
�
; (2.20)

can be written as

E
�
0; et � = Z 1

�1

Z 1

�1

�
"2E2 (k) + "3E3 (k) + "4E4 (k)

�
dkxdky +O

�
"5
�
; (2.21)

where

E2 (k) = E1;1 (k) ; (2.22)

E3 (k) = E2;1 (k) + E1;2 (k) ; (2.23)

E4 (k) = E2;2 (k) + E3;1 (k) +E1;3 (k) : (2.24)

Here, Ei;j (k) is the (i + j)th-order energy contribution from correlations between ith and
jth-order components with wavenumber k. Since the average in (2.20) is over several
wavelengths, correlations between wave components with di�erent wavenumbers that
result from re
ections (i.e. standing wave patterns of nodes and antinodes) are averaged
out and do not contribute to (2.21). For all (i; j) pairs, Ei;j (k) = Ej;i (k). Hasselmann
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(1962) discarded odd-power energy terms E3 and E5 under the assumption that the sea
surface is Gaussian. It was later found that this assumption is unnecessary (Benney &
Sa�man 1966 ; Newell & Aucoin 1971) as dispersion decorrelates the wave components
during their propagation. Here, additional terms involving correlations between two wave
and one bottom component contribute to E3, but these terms are shown to be bounded
in Appendix A. The dynamically important growing terms will be found in the 4th-order
energy E4 (2.24).
For freely propagating waves, the potential and kinetic energy contributions to (2.20)

are equal and Ei;j is approximately given by the linear relation

Ei;j

�
0; et;k� = kF�

i;j

�
0; et;k� tanh (kH) : (2.25)

Neglected in (2.25) are the contributions to the kinetic energy integral (2.20) from the
z-intervals [�H + h;�H] and [0; �]. Although these contributions are O

�
"4
�
for E1;1

and thus should be included in E4, their magnitude is bounded and thus their time
derivative is O

�
"6
�
. All O

�
"4
�
bounded terms resulting from the surface and bottom

boundary conditions can be discarded in the following analysis of energy transfers within
the wave spectrum (see Hasselmann 1962 for a detailed discussion).

2.2. First-order solution

Substitution of the �rst-order wave �eld �1

�1 =
X
k;s

cosh (krz + krH)

cosh (krH)
�s
1;k (ex;t) eiS1;k(x) (2.26)

in the surface boundary condition (2.7) yields

�s
1;k (ex;t) = b�s

1;k

�ex;et � e�is!t; (2.27)

where the radian frequency ! (k) is constant along rays, and is given by the linear dis-
persion relation (in non-dimensional form):

! (k) = [kr tanh (krH)]1=2 : (2.28)

The slow space and time modulations of b�s
1;k and the associated variations of the energy

spectrum E2 (kr) are not constrained by the �rst-order equations, but can be determined
from the fourth-order energy E4 (kr) (2.24), that depends on both second- and third-
order waves.

2.3. Second-order solution

Substituting (2.13) in (2.5)-(2.7) and collecting terms of order " and � yields the governing
equations for the second order velocity potential �2

r2�2 +
@2�2
@z2

= 0 for �H 6 z 6 0; (2.29)

@�2
@z

= �h
@2�1
@z2

+r�1 � rh at z = �H; (2.30)

@2�2
@t2

+
@�2
@z

= NL2 at z = 0; (2.31)

where NL2 contains the nonlinear terms in the surface boundary condition that force
a bound wave solution �nl2 (Hasselmann 1962 (47)). Note that refraction and shoaling
terms associated with the large-scale bottom slope rH are of higher order and do not
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contribute to the second-order equations. Therefore, ray curvature e�ects on �1 can be
neglected, and we can use kr � k and Sk (x) � k � x in the vicinity of x = 0. A general
solution to Laplace's equation (2.29) is formed with a Fourier sum of free and bound

wave components with amplitudes �s
2;k and �si;s

2;k:

�2 =
X
k;s

�
cosh (kz + kH)

cosh (kH)
�s
2;k (t) +

sinh (kz + kH)

cosh (kH)
�si;s
2;k (t)

�
eik�x + �nl2 ; (2.32)

�si;s
2;k follows from substituting the �rst-order wave �eld ((2.26) and (2.27)) in the right

hand side of the bottom boundary condition (2.30).

�si;s
2;k (t) = �

X
k

0;s

k � k
0

k
Bk�k0

b�s
1;k0e�is!

0t; (2.33)

where
�
!0;k0

�
obey the dispersion relation (2.28). The bound wave �si;s

2;k e�ectively cou-
ples the bottom and surface waves. Substitution of (2.32) and (2.33) in (2.31) yields a
forced harmonic oscillator equation for the free wave amplitude �s

2;k,�
d

dt2
+ !2

�
�s
2;k (t) =

X
k0

�
k � !02 tanh (kH)

� k � k0
k

Bk�k0�s
1;k0 (t) : (2.34)

Following the method of Hasselmann (1962), the time derivative of the energy density
E2;2 (k) of the second-order waves in the limit of large t at ex = 0, can be written in the
form (Appendix A)

@E2;2 (k)

@t
= K (k;H)

Z 2�

0

cos2 (� � �0)FB
�
k � k

0
�
E2

�
k
0
�
d�0; (2.35)

where k = (k cos �; k sin �), k0 = (k cos �0; k sin �0), and

K (k;H) =
4�!k4

sinh (2kH) [2kH + sinh (2kH)]
: (2.36)

2.4. Third-order solution

Slowmodulations of �1 yield third-order terms in Laplace's equation. Substituting (2.13),
(2.26), and (2.27) in (2.5){(2.7), collecting terms of order "2, "�, �2, �, � and 
, and
using the approximations (in the vicinity of x = 0) kr = k + O (�x), and Sk (x) =
k �x+O (�x; �x), yield the following equations for the third-order velocity potential �3

r2�3 +
@2�3
@z2

= �i

Iz }| {X
k;s

k � r

�b�s
1;k

cosh (krz + krH)

cosh (krH)

�
ei(k�x�s!t)

�i

IIz }| {X
k;s

r �

�
kr

b�s
1;k

cosh (krz + krH)

cosh (krH)

�
ei(k�x�s!t) for �H 6 z 6 0;

(2.37)

@�3
@z

= �

IIIz }| {
h
@2�2
@z2

+

IVz }| {
r�2 � rh �i

Vz }| {X
k;s

k � rH b�s
1;ke

i(k�x�s!t) at z = �H; (2.38)
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@2�3
@t2

+
@�3
@z

= i

VIz }| {X
k;s

2s!
@b�s

1;k

@et ei(k�x�s!t) +NL3 at z = 0: (2.39)

Note that third-order terms involving �1 in the bottom boundary condition (2.38) vanish
because @3�1=@z3 = 0 and @�1=@z = 0 at z = �H. The right-hand side forcing terms of
(2.37){(2.39) include Bragg scattering terms (III and IV), e�ects of spatial heterogeneities
(I,II and V), non-stationarity (VI), and third-order nonlinear surface terms that are
gathered here in the term NL3. This set of equations is linear in �3. Therefore, �3 is the
sum of a homogeneous solution (absorbed in �1) and four particular solutions,

�3 = �sc3 + �he3 + �ns3 + �nl3 ; (2.40)

where sc, he, ns and nl, stand for scattering, heterogeneity, non-stationarity and non-
linarity, respectively. Each solution satis�es (2.37){(2.39) forced, respectively, by the
scattering terms (III and IV) only, the heterogeneity terms (I, II and V) only, the non-
stationarity term (VI) only, and the surface nonlinearity terms (NL3) only. Although
�nl3 is resonantly forced, it contributes only bounded terms to E4 (Hasselmann 1962).
Similarly, nonlinear contributions to the scattering terms III and IV (the O

�
"2�

�
products

involving �nl2 and bottom undulations) yield only bounded contributions in E4. The
remaining solutions �sc3 , �

he
3 , and �ns3 contribute growing terms, Esc

3;1, E
he
3;1 and Ens

3;1, to

E4. Following the method used to obtain @E2;2
4 =@t, at ex = 0 we have (Appendices B, C

and D)

@
�
Esc
3;1 (k) + Esc

1;3 (k)
�

@t
= �K (k;H)

Z 2�

0

cos2 (� � �0)FB
�
k � k

0
�
E2 (k) d�0; (2.41)

@
�
Ens
3;1 (k) + Ens

1;3 (k)
�

@t
= �

@E2 (k)

@t
; (2.42)

@
�
Ehe
3;1 (k) + Ehe

1;3 (k)
�

@t
= �Cg (k) � rE2 (kr) ; (2.43)

where Cg (k) is the group velocity of linear waves (equation (D 9)), and E2 (kr) is a La-
grangian variable that describes energy evolution along the ray trajectory [x (k; �r) ;kr (k; �r)]
of wave component k, where r is the along-ray coordinate. E2 (kr) is de�ned by

F�
1;1

�ex; et;kr� = lim
j�krj!0

F�
1;1;k

�ex;et �
�kr;x�kr;y

; (2.44)

E2

�ex; et;kr� = krF
�
1;1

�ex;et;kr� tanh (krH) : (2.45)

Note that the advection term Cg (k) � rE2 (kr) describes the divergence of the energy

ux in Lagrangian coordinates, and thus incorporates refraction and shoaling e�ects. All
other terms in (2.42){(2.43) depend only on the energy at ex = 0 where the Lagrangian
wavenumber kr is equal to the Eulerian wavenumber k, and E2 (kr) = E2 (k).

2.5. Energy balance

Combining (2.35) and (2.41){(2.43), the rate of change of the fourth-order spectrum
(2.24) at ex = 0 is given by

@E4 (k)

@t
= �

@E2 (k)

@t
�Cg (k) � rE2 (kr)

+K (k;H)

Z 2�

0

cos2 (� � �0)FB
�
k � k

0
� �
E2

�
k
0
�
�E2 (k)

�
d�0; (2.46)
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Figure 3. Values of � (kH), as de�ned by (2.49).

where K (k;H) is given by (2.36).

To ensure that E4 is bounded for large t, that is @E4=@t = O ("), the right-hand
side terms of (2.46) must balance. Recognizing the �rst two of these terms as the total
derivative of E2 (kr) along a ray trajectory, and replacing E2 by E, we obtain (using
dimensional and unscaled variables from now on) the Lagrangian energy balance equation
at ex = 0

dE (kr)

dt
= SBragg (k) + O

�
"5
�
; (2.47)

SBragg (k) = 4�g1=2H�9=2� (kH)

Z 2�

0
cos2 (� � �0)FB

�
k � k

0
� �
E
�
k
0
�
�E (k)

�
d�0;

(2.48)
with

� (kH) =
(kH)9=2 [tanh (kH)]1=2

sinh (2kH) [2kH + sinh (2kH)]
: (2.49)

Equation (2.47) describes the net energy transfer at ex = 0 to a wave component with
wavenumber k (propagating in direction �), resulting from triad interactions involving a
wave of the same radian frequency ! and a di�erent wavenumber k0 (direction �0), and
a bottom component with the di�erence wavenumber l = k � k

0 (�gure 1). The energy
transfer between components k and k0 is proportional to the energy di�erence of the wave
components and the bottom spectrum density at l = k � k

0. The factor cos2 (� � �0) in
(2.48) indicates that there is no energy transfer between waves propagating in perpendic-
ular directions. The factor � (kH) has a single maximum, approximately equal to 0:049
for the intermediate water depth kH � 1:27 (�gure 3). In addition to directional and
wavenumber dependencies, the scattering strength is proportional to H�9=2, increasing
strongly with decreasing water depth. Taking into account their di�erent normalization
of the bottom elevation spectrum, the present expression (2.48) of SBragg is 4 and 8 times
smaller than the expressions given by Long (1973) and Hasselmann (1966), respectively.
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2.6. Conditions of validity

The present theory is both a spectral generalization and higher-order energy conserv-
ing form of the solution given by Davies (1979) for sinusoidal bed undulations. Davies
describes the generation of second-order waves �2, but uses constant amplitudes for �1,
and thus does not account for the associated energy losses of the primary waves. In the
present theory, the extension of the perturbation expansion to third-order provides the
balancing terms E1;3 and E3;1 (equation (2.41)), necessary for the conservation of the
total energy in (2.47). Whereas Davies' theory assumes small re
ected wave amplitudes,
(2.47) can describe �nite cumulative re
ections over large distances and even complete lo-
calization of waves over rough bottom topography. However, the present theory assumes
that signi�cant wave-amplitude variations occur over scales of O (�) wavelengths with
� � "2, and thus cannot accurately describe strong localized scattering that modi�es the
wave amplitudes over scales of only a few wavelengths (see Mei 1985 for a discussion of
those e�ects over sinusoidal bottom topography, including, in particular, the importance
of near-resonant interactions in that case).

It should be noted that the wavenumber spectrum E (k) =
R 2�
0 kE (k) d� was assumed

to be continuous in order to derive (2.47) in the limit of large times, removing the
singularities for perfect resonance in (A 6), and reducing the bandwidth of important
near-resonant interactions to a region of the spectrum where E (k) can be considered
constant. Thus, (2.47) is not valid for monochromatic waves. Whereas the initial growth
of the scattered energy is proportional to t2 for resonant monochromatic waves, it is only
proportional to t for waves with a continuous spectrum, because resonance becomes more
selective with time, a�ecting a wavenumber bandwidth that narrows proportionally to
t�1.

Another consequence of the asymptotic large time limit taken in Appendices A{D, is
that the stochastic model (2.47) may not describe accurately wave evolution over natural
seabeds which are often not homogeneous over scales of many wavelengths. The robust-
ness of (2.47) for short propagation distances is examined in x 3 through comparisons
with deterministic models for wave evolution over a �nite patch of sinusoidal bars. Equa-
tion (2.47) includes wave{bottom interactions with jk � k

0j � k, violating our scaling
assumption l � k. This particular aspect is discussed in x 3.4.

2.7. Extensions of the present theory

The present energy balance (equation (2.47)) may be extended to higher orders of �
and/or " by closing the energy Taylor expansion at E6, giving an evolution equation for
E2 + E4. In the case of steeper waves, say � � � � 
 � �2 � "4, it can be seen that
all the energy transfer terms derived here (equations (2.35), (2.41){(2.43)) are moved
from E4 to E6, joining the additional source term Snl that represents resonant quartet
wave{wave interaction (Hasselmann 1962; Herterich & Hasselmann 1980). Extensions to
steeper waves and steeper topography, for example � � � � 
 � �4 � "4, should yield at
least two additional source terms, corresponding to higher-order Bragg scattering (class
II and III, see for example Liu & Yue 1998).

Furthermore, it can be expected that including higher-order heterogeneity e�ects and
nonlinearity should introduce nonlinear e�ects on the left-hand side of (2.47), as described
by Willebrand (1975). For example, in the present theory, E6 contains correlations be-
tween the tertiary waves �nl3 and the heterogeneity and non-stationarity terms �he3 and
�ns3 . Thus, it may be possible to derive a more complete energy balance equation with
not only the source terms for the individual physical processes that contribute to the
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Figure 4. Schematic of incident waves (dashed crests) and re
ected waves (dotted crests) on a
patch of sinusoidal bars (grey shades).

evolution of the wave spectrum, but also the cross-interactions of these processes that
are usually neglected in wave prediction models (Komen et al.1994).

3. Random waves over a �nite patch of sinusoidal bars

Following Davies (1979), we consider a simple seabed consisting of sinusoidal bars
on an otherwise 
at bottom for which analytical results exist that have been veri�ed
in laboratory experiments. Waves arriving from x = �1 at an incidence angle �I are
partially re
ected, in a direction �R = ���I by a patch ofm sinusoidal bars of amplitude
b, aligned with the y-axis. The barred pro�le h = b sin (lx) covers the region �L < x < L
where L = m�=l and l is the bar wavenumber (�gure 4). The incident wave �eld is
assumed to be a continuous spectrum EI (k) of unidirectional (� = �I ) waves. The
total re
ected energy ER in the far �eld (x � �L) predicted by the stochastic and
deterministic theories are compared for both normal and oblique incidence cases, in the
limit of large m, corresponding to large propagation times for which (2.47) is valid, and
for �nite m.

3.1. Stochastic source term approach

In a steady state, uniform along the y-axis, the energy balance (2.47) for the bottom
pro�le described above simpli�es to

Cg cos �
dE (k)

dx
= SBragg (k) : (3.1)

In order to evaluate SBragg (equation (2.48)) we approximate the �nite patch of sinusoidal
bars as a subsection of a sinusoidal bottom extending to in�nity, for which the bottom
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Figure 5. Resonant triads for waves over sinusoidal bars represented on the wavenumber plane.
The bar wavenumbers are �xed at (l; 0) and (�l; 0) and all possible pairs of resonant surface
wavenumbers kI and kR lie on the vertical dashed lines. For the wave direction � shown here,
the directional spectral density E (�) (the integral of kE (k) along the thick arrow) is a�ected
by energy transfers in the resonant (kI;kR; l) triad.

variance spectrum FB is a double Dirac distribution

FB (l) =
1

4
b2 [� (l; 0) + � (�l; 0)] : (3.2)

Outside the barred section (jxj > L), FB is set equal to zero. The singularity in (3.2) is
removed in SBragg by integrating (3.1) over k for a �xed direction � (Figure 5). Changing
variables from (k; �0) to (lx; ly) = k (cos � � cos �0; sin � � sin �0) (the corresponding reso-
nant bottom wavenumber) we obtain

dE (�)

dx
=

8�

cos �

Z Z
k�l>0

cos2 (� � �0)Fb (l) [E (k � l)� E (k)]k5

[1� cos (� � �0)] [2kH + sinh (2kH)]2
dlxdly ; (3.3)

where

E (�) =

Z 1

0

kE (k cos �; k sin �) dk (3.4)

is the directional spectrum integrated over all wavenumbers, and the Jacobian J =
1= fk [1� cos (� � �0)]g of the transform from (k; �0) to (lx; ly) is used. Note that the
integration over l is restricted to the half-plane where k � l > 0 (�gure 5).
For �1

2� < � < 1
2� (3.3) describes the evolution of an incident component with

direction �I = �. Only interactions in the neighbourhood of the resonant triad kI =
1
2 l (1; tan �), kR = 1

2 l (�1; tan �), l = (l; 0) contribute to this integral (�gure 5). For
1
2� < � < 1

23�2, (3.3) describes the evolution of a re
ected component with direction
�R = � resulting from the resonance of kI = 1

2 l (1;� tan �), kR = 1
2 l (�1;� tan �),

l = (�l; 0). Substitution of (3.2) in (3.3) yields

dER

dx
= �Dx [E (kI)� E (kR)] for � L < x < L; (3.5)

where

Dx =
�b2 cos2 (2�I) l

5

16 cos6 �I [1 + cos (2�I)] [lH=cos �I + sinh (lH=cos �I )]
2 : (3.6)

For weak re
ection (E (kI) � E (kR)) we can neglect changes in E (kI). Integrating
(3.5) from L to �L yields

ER = 2LDxE (kI) for x < �L: (3.7)

For unidirectional incident waves with a spectrum EI (k) = � (� � �I )EI (k) =k, the total
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re
ected energy is given by

ER = DlEI (kI) ; (3.8)

where D is an non-dimensional coe�cient

D =
2LDx

lkI
=

m�2b2 cos2 (2�I ) l2

4 cos5 �I [1 + cos (2�I )] [lH=cos �I + sinh (lH=cos �I)]
2 : (3.9)

For the particular case of normal incidence (�I = 0) D reduces to

D =
m�2b2l2

8 [lH + sinh (lH)]
2 : (3.10)

3.2. Comparison with deterministic theory for normal incidence

In Davies' (1979) theory for weak re
ection of a normally incident monochromatic wave-
train by a patch of m sinusoidal bars with amplitude b, the ratio of the re
ected and
incident wave amplitudes is given by

�DH =
2bk

2kH + sinh(2kH)

(�1)
m
2k

l

sin (2kL)

(2k=l)2 � 1
: (3.11)

Theoretical values of �DH have been veri�ed experimentally by Heathershaw (1982; see
also Davies & Heathershaw 1984), even in cases with large re
ection coe�cients.
For random waves with a wavenumber spectrum EI (k), the re
ected energy ER;DH is

therefore the convolution of j�DH (k)j
2 and EI (k),

ER;DH =

Z 1

0

j�DH (k)j
2
EI (k) dk: (3.12)

The response function j�DHj
2 has a `resonant lobe' of width �=L and height proportional

to m2 centred at the resonant wavenumber k = 1
2 l, and narrower side lobes at higher

and lower wavenumbers (�gure 6, dotted curve). In the limit of large m (equivalent to

the large t limit in the stochastic theory), j�DHj
2 approaches a Dirac distribution

j�DHj
2 �

m�2l

8

�
2bk

2kH + sinh(2kH)

�2�
2k

l

�2

�

�
l

2

�
: (3.13)

Since EI (k) is continuous, the substitution of (3.13) in (3.12), yields

ER;DH �
m�2b2l3

8 [lH + sinh(lH)]2
EI

�
l

2

�
; (3.14)

which is identical to the stochastic theory prediction (equations (3.8) and (3.10)). The
exact agreement of the stochastic and (experimentally veri�ed) deterministic theories in
the limit of large m, where both are valid, con�rms that the coupling factor � (equation
(2.49)), which di�ers by factors of 8 and 4 from previous publications (Hasselmann 1966;
Long 1973), is correct.

3.3. Oblique incidence and �nite numbers of bars

Davies' (1979) theory for wave re
ection from sinusoidal bars was generalized to oblique
incidence and �nite re
ection coe�cients by Mei (1985), using an approximation for
weak detuning from resonance. Dalrymple & Kirby (1986) applied Mei's theory to a
�nite patch of bars and derived the amplitude re
ection coe�cient �DK (their equations
5 and 9). For normal incidence, �DK is in good agreement with the experimental results of
Davies & Heathershaw (1984), and reduces to �DH in the limit of small bar amplitude b.



Bragg scattering of surface gravity waves 15

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

0.376× 10−4 1.31× 10−4 0.367× 10−2

k/l

no
rm

al
iz

ed
 κ D

K
2

  o
r 

  E
(k

)

Figure 6. Response function j�DKj
2 for H = 25 m, 2�=l = 300 m, b = 0:05 m, m = 4, and three

incidence directions: ||, �i = 0; { { {, �i = 60�; � � � , �i = 75:5� (corresponding to resonant
wavenumbers k = l=2, k = l, and k = 2l). The response functions are normalized by their
maximum values indicated on the �gure. For reference, a generic wave spectrum is included (�,
arbitrary units) with a Pierson{Moskowitz shape, a peak period of 14 s, and uniform infragravity

energy levels. The total re
ected energy is the convolution of j�DKj
2 and the wave spectrum.

For oblique incidence, no experimental veri�cation exists, but Mei's theory was veri�ed
numerically with solutions of Kirby's generalized mild slope equations (Kirby, 1993).

Values of j�DKj
2 for a patch of four bars of wavelength 2�=l = 300 m, and amplitude

b = 0:05 m in 25 m depth, are shown in �gure 6 as a function of k=l for di�erent incidence
angles �I . The interaction between the bottom undulations and the surface gravity waves
is dominated by near-resonant triads, for which j�DKj

2 is maximum.The Bragg resonance
condition k = 2l= cos �I determines the wavenumber for which re
ection is maximum, as
a function of the incidence angle. For example, for the wave spectrum shown in �gure 6,
back scattering (�I � 0, �R � 180�) is con�ned to the long wavelength (infragravity) part
of the spectrum, and shorter swells are scattered forward (see the response functions for
�I = 60�, �R = 120� and �I = 75:5�, �R � 104:5� in �gure 6).
To determine the accuracy of the stochastic theory for a �nite patch of bars, the

total re
ected energy ER predicted by (3.8){(3.9), valid only in the limit of large m, is
compared to the `exact' ER;DK predicted by the deterministic theory (equation (3.12)
where �DH is replaced by �DK), valid for arbitrary m. In these calculations, EI (k) is
taken to be a Pierson{Moskowitz spectrum (Pierson & Moskowitz 1964) with a peak
period Tp = 14 s. A white background spectrum E (k) = 0:04EI (kp) is added to represent
contributions of longer wavelength infragravity waves (�gure 6). The convolution integral
(3.12) is computed numerically over the range 0:005 < k=l < 4, for incidence angles
�I = 0�, 60� and 75:5�. Other parameters are H = 25 m and b = 0:05 m. A small b
value was chosen to have a small re
ection coe�cient (�DK < 0:1) because (3.8) neglects
variations in the incident energy EI and thus is valid only for weak re
ections. The
relative di�erence between stochastic and deterministic theories is shown in �gure 7 as a
function ofm. The di�erence is sensitive to the variations of the wave spectrum across the
resonant lobe and the relative magnitude of the side-lobes of the response function j�DKj

2
,
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Figure 7. Relative di�erences between the re
ected energy predicted by the stochastic theory
(equation (3.8)) and the spectral form (equation (3.12), replacing �DH by �DK) of Dalrymple
and Kirby's theory, as a function of the number of bars m. All other parameters are the same
as in �gure 6. The incident wave spectrum is shown in �gure 6.

these e�ects vanish in the limitm!1 as the width of the resonant lobe and the height
of the side-lobes go to zero. As m increases, the predictions of both theories converge, as
expected since both theories are valid for large m. For all three incidence angles �I = 0�,
60� and 75:5�, the di�erence in wave energy re
ections predicted by the stochastic and
deterministic theories is less than 10% for more than three bars. This rapid convergence
not only provides a further consistency check on the coupling factor � (equation (2.49))
for cases of oblique incidence, but also indicates that the stochastic Bragg scattering
theory is surprisingly robust, although formally valid only in the asymptotic limit of
many bottom wavelengths, and yields reasonable estimates of energy transfers resulting
from scattering by only a few bottom undulations.

3.4. Bottom slope e�ects

The large time limit used to evaluate fourth-order energy terms in Appendices A{D
requires implicitly that the large-scale bottom slope does not signi�cantly change the
interaction over a distance �r that allows waves to propagate across a su�ciently large
number of bars ma to approach the asymptotic limit of the energy transfer (�gure 7).
Wave refraction by the large-scale bottom slope changes the surface wavenumbers and
thus introduces a detuning of near-resonant wave{bottom interactions. This detuning
e�ect can be neglected only if changes in the surface wavenumbers are small compared
to the width of the resonant lobe of the response function j�DKj

2 (�gure 6).
For simplicity we consider a �nite patch of ma sinusoidal bars aligned with the y-axis,

with wavenumber l, superimposed on a plane bottom with a downward slope � in a
direction �b. The along-ray gradient of the resonance mismatch u = (2k cos � � l) =l is
given by

@u

@r
=

2

l

�
cos �

@k

@r
� k sin �

@�

@r

�
: (3.15)

Using Snel's law we have

@u

@r
=

�4�k2 cos �b
l [2kH + sinh (2kH)]

: (3.16)
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For small bottom slopes, the distance travelled by the waves across the bar �eld is
�r � 2ma�= (l cos �), giving a change in the resonance mismatch

�u � �
2�ma� cos �b

cos3 � [2kH + sinh (2kH)]
: (3.17)

Detuning of resonant interactions by refraction can be neglected if j�uj is small compared
with the (normalized) width of the resonant lobe 1=ma, that is

ma j�uj � 1: (3.18)

Equation (3.18) also follows from considering the phase di�erence between waves re-

ected by the �rst and math bars, which should be small compared to 1

2� to allow the
constructive interference that causes resonance.
Equation (3.18) is a necessary condition for the application of the stochastic theory. For

a given bottom slope �, (3.18) imposes a maximum incidence angle �max. For practical
purposes, we assume that the largest acceptable value of ma j�uj is about 0.5, giving

cos3 �max >
4�m2

a� cos �b
2kH + sinh (2kH)

: (3.19)

For example, considering 14 s period waves in 25 m depth with a bottom slope � =
2� 10�4 at an angle �b = 60�, and taking ma = 2, the source term (2.48) is expected to
overestimate signi�cantly the energy of scattered waves for incidence angles greater than
�max � 83�, corresponding to a ratio k=l = 4:3.
It should be noted that (3.18) is consistent with the scaling of (2.1){(2.4) requiring that

bottom and surface elevations have comparable horizontal scales. This scaling is violated
for large-angle interactions (i.e. k � l for � close to 90�), even on a 
at bottom. In the
following, the contribution of wave{bottom interactions to (2.48) is taken to be accurate
for � < �max and is neglected for � > �max. This crude truncation of the interactions
is expected to give only qualitative results for the scattering of waves at large incidence
angles. Sensitivity of predicted spectral evolution to the choice of the cuto� angle �max

is examined for natural shelf topography in x 4.

4. Hindcast of wave scattering on a natural shelf

The e�ect of Bragg scattering on directional wave spectra evolution is illustrated here
with a numerical model hindcast of swell evolution observed across the North Carolina
shelf. The scattering source term SBragg (equation (2.48)) was implemented in the spec-
tral model CREST (Ardhuin et al.2001), that solves the energy balance (equation (2.47))
using a hybrid Eulerian{Lagrangian numerical scheme. In addition to SBragg, a bottom
friction source term Sfric is included in the energy balance to account for energy dissi-
pation in the boundary layer over a sandy movable bottom. Details of the model for-
mulation, numerical scheme, treatment of boundary conditions, and parameterization of
bottom friction are given in Ardhuin et al. (2001). SBragg is evaluated using bottom el-
evation spectra that were estimated from high-resolution bathymetry surveys. Processes
not represented in the model such as wind-wave generation, e�ects of currents, wave
breaking, and nonlinear e�ects, are expected to be negligible because at the time of the
hindcast (21:00 Greenwich Mean Time, 20 October 1994) local wind speeds (3 m s�1),
and current velocities (� 20 cm s�1, Lentz et al.1999) were weak, and the observed waves
were long-period (� 13 s) swell with low signi�cant height (� 1 m).
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4.1. Wave data

Frequency-directional wave spectra were estimated from measurements on the outer and
inner shelf near Duck, North Carolina (�gure 8a). An array of pressure sensors, located
1 km from the shoreline in 8 m depth, was operated by the Army Corps of Engineers
Field Research Facility (FRF), in Duck, North Carolina, and a 3 m discus pitch and
roll buoy located close to the shelf break, in 49 m depth, was operated by the National
Data Buoy Center (NDBC). Standard techniques (Herbers, Elgar & Guza 1999; Ardhuin
et al.2001) were used to obtain estimates of the frequency-directional wave spectra at
both locations. The NDBC buoy wave spectrum was transformed across the shelf break
to deep water using Snel's law, assuming parallel depth contours, in order to obtain the
o�shore boundary condition for the model.

4.2. Bottom topography

Bathymetric data for most of the shelf was available from the National Ocean Service
(NOS). In regions not covered by the NOS archives, water depths were measured during
instrument deployment and recovery cruises in a series of experiments (DUCK94; Sandy
Duck; SHOWEX) on the North Carolina continental shelf, using a single precision depth
recorder. Additionally, high-resolution multibeam sonar bathymetric surveys were con-
ducted during the SHOWEX experiment in November and December 1999, in two 6 �
6 km2 regions of the inner shelf (labelled S1 and S2 in �gure 8a). This data set was
processed with the MB-System software (Caress & Chayes 1995) to obtain 10 m reso-
lution grids shown in �gure 8 (b,c). The vessel motion and tide were carefully removed,
although a slight but systematic measurement bias is still noticeable in the striped pat-
tern of �gure 8 (c), yielding an arti�cial ridge of spectral densities on the x-axis of �gure
9 (b). Although the high-resolution bathymetry data were acquired �ve years after the
wave data, comparisons with depth soundings, performed within a few months of the
wave data collection, show good agreement, suggesting that bottom topographic features
of scales larger than 500 m have not moved in regions S1 and S2.
Bottom elevation spectra FB

1 (l) and FB
2 (l) (�gure 9a,b) were estimated for regions S1

and S2, respectively, based on bidimensional Fourier transforms of Hanning windowed
1.6 � 1.6 km2 square segments with 50 % overlap. The large-scale bottom slope was
previously removed from each segment using a bilinear �t. Spectra of the large-scale shelf
topography (not shown), computed from the entire bathymetry grid, are consistent with
the spectral levels at small l shown in �gure 9 (a,b). The bottom elevation spectra are
not isotropic, showing a preferential north-east/south-west orientation of intermediate
scale features (200{1000 m) that are most important for swell scattering. It also appears
that bottom spectral levels at these scales are about a factor 4 higher in region S1 (15{
25 m water depth, variance 1.4 m2) than in the deeper region S2 (20{40 m, variance
0.35 m2, see �gure 9c). As we lack detailed topographic information in other regions,
the bottom elevation spectrum used in model hindcasts is taken to be uniform over the
entire continental shelf. Hindcasts are presented in x 4.4 based on both estimates FB

1 (l)
and FB

2 (l), illustrating the likely range of scattering e�ects.

4.3. Numerical model

The numerical wave model CREST used for the present calculations is described by
Ardhuin et al. (2001). The model consists of a precomputation of wave rays and a La-
grangian time integration scheme for the energy balance (equation (2.47)). In contrast
to more widely used �nite-di�erence schemes (see for example the WAMDI group 1988;
Booij, Ris & Holthuijsen 1999) the Lagrangian approach avoids numerical di�usion that
could cause an arti�cial broadening of the wave spectrum in shallow water (not related
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Figure 9. Contour plots of the bottom variance spectra estimates for regions (a) S1 and (b)
S2. The contour values are log

10

�
4�2FB

�
with FB in m4rad�2, and the contour interval is 0.5.

Circles indicate the bottom components that interact with waves arriving from the east with
frequencies 0.05 (inner circle), 0.12 (middle circle) and 0.25 Hz (outer circle). Axes units are
reciprocal wavelengths lx= (2�) and ly= (2�). (c) Direction-integrated spectra for (||) S1 and
({ { {) S2. The vertical lines indicate the bottom scales responsible for scattering 0.08 Hz swell,
for di�erent incidence angles �I .

to physical scattering processes). The Eulerian model grid, shown in �gure 10 is unstruc-
tured and much coarser than the bathymetry grid. It consists of 329 points distributed
over a large portion of the shelf between latitudes 35� and 37� N. Wave rays are traced
backwards from the Eulerian grid points to the model boundary, using a smoothed (2 km
scale) bathymetry grid that resolves wave refraction over the large-scale shelf topogra-
phy. Along each ray, the energy balance (equation 2.47) is integrated in time. At the grid
points, the full wave spectrum E (k) is evaluated using ensemble averages of rays within
�nite wavenumber bands kq;i corresponding to 19 frequency bands fq spaced exponen-
tially with a 5% increment from 0.05 Hz to 0.12 Hz, and 120 direction bands �i spaced
linearly over a full circle with a 3� resolution. The spectral source terms Sfric (k), repre-
senting bottom friction (Ardhuin et al.2001, equation 13), and SBragg (k) ; given by (2.48),
are evaluated at the grid points based on the local spectrum E (k) and other parame-
ters. Sfric (k) and SBragg (k) are interpolated onto the ray trajectories to account for the



Bragg scattering of surface gravity waves 21

  8M

 44014

100

10
0

        76º 0‘75º48‘75º36‘75º24‘75º12‘75º 0‘74º48‘74º36‘
Longitude (W)

0 20 40 60 80 100 120
x (km)

 

 

 

 

 

35º 0‘  

35º30‘  

36º 0‘  

36º30‘  

37º 0‘  

La
tit

ud
e 

(N
)

0

50

100

150

200

y 
(k

m
)

Figure 10. Model grid. The grid points where the source term is evaluated are the nodes of
the triangular mesh. A linear interpolation is applied in each triangle to approximate the source
term along the rays. The 100 m depth contour is indicated by the dotted line.

energy losses (bottom friction), and exchanges with other wave components (scattering),
of component k during propagation. Details of the time integration and interpolation
schemes can be found in Ardhuin et al. (2001).
The model was run here with constant o�shore boundary conditions and a �xed inte-

gration time step �t = 10 min, until a steady state was reached. To determine accurately
the contribution of SBragg over the time step �t, an implicit integration scheme was used.
Omitting other source terms and propagation e�ects, (2.47) can be written in discretized
form and for a given wavenumber magnitude k, as a set of linear equations

@E (k; �i)

@t
= 4�g1=2H�9=2� (kH)

X
j

Li;j (k)E (k; �j) for all i; (4.1)

where �i are the discretized directions with ki = k (cos �i; sin �i) and the matrix L (k) is
given by

Li;j (k) =

"
cos2 (�i � �j)F

B (ki � kj) � �ij
X
n

cos2 (�i � �n)F
B (ki � kn)

#
��; (4.2)
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with �ij = 1 for i = j and 0 otherwise. As discussed in x 3.4, FB (l) is replaced by zero in
(4.2) for k=l greater than (k=l)max. Since L is real and symmetric, it can be diagonalized
and represented as the matrix product L = VDV

T where D is a diagonal matrix with the
eigenvalues �i as diagonal elements, the columns of V are the corresponding normalized
eigenvectors, and V

T is the transpose of V . Using this decomposition the solution of
(4.1) can be given in the form

E (k; �i; t+�t) =
X
j

X
l

Vi;j (k) exp
h
4�g1=2H�9=2� (kH)�j (k)�t

i
Vl;j (k)E (k; �l; t) :

(4.3)
The source term SBragg (R in (12) of Ardhuin et al.2001) is given by the average change
in E (k; �i; t) over a time step �t

SBragg (k; �i) = [E (k; �i; t+�t)�E (k; �i; t)]=�t: (4.4)

The matrices V (k) and eigenvalues �i (k) are precomputed using Jacobi's algorithm (see
for example Press et al.1992) for 500 values of k covering the entire range of wavenum-
bers in the model, and the resulting matrices V and D are interpolated on the spectral
model grid. The high accuracy of the implicit numerical scheme was con�rmed through
comparisons with an explicit �fth-order Cash{Karp Runge{Kutta method.

4.4. Hindcast

The model hindcast was performed both with and without the Bragg scattering source
term, to isolate the scattering e�ects from other processes (refraction, shoaling and bot-
tom friction), using two di�erent measured bottom elevation spectra (FB

1 (l) and FB
2 (l),

�gure 9) to estimate the possible variability of the scattering e�ects. Bottom components
with wavelengths larger than 5 times the surface wavelength (k=l > 5) are excluded in
the evaluation of SBragg because, as discussed in x 3.4, the theory is not expected to be
accurate for near-grazing angle interactions. Figure 11 shows an example wave spectrum
predicted in region S1 (20 m depth, �gure 8), and the corresponding Bragg scattering
source term. The source term has a 3-lobe shape with negative values near the peak
�p of the directional wave spectrum, and positive maxima on both sides of the peak,
at about �p � 30�. The interactions broaden the peak of the directional wave spectrum
(forward-scattering) and cause weak, almost isotropic back-scattering. Sign reversals of
SBragg within the main lobe (�gure 11b) are caused by irregularities in the wave spec-
trum (�gure 11a) . Bragg scattering tends to smooth the directional wave spectrum, with
an evolution time scale E=SBragg of the order of 103 and 104 s in 20 and 50 m depth,
respectively.
The combined e�ect of Bragg scattering and refraction is shown in �gure 12 with the

predicted cross-shore evolution of the mean wave direction (from) at the peak frequency,
�, taken as the direction of the �rst-order moment vector

(a1; b1) =

Z �

0

(cos �; sin �) E (fp; �) d�; (4.5)

and the directional spread, in radians,

�� =
�
2
�
1�

�
a1 cos � + b1 sin �

�
=E (fp)

�	1=2
: (4.6)

�� ranges from 0 for unidirectional waves, to 81� for isotropic waves. O�shore propagating
waves (� < � < 2�) are excluded in the analysis because the predicted back-scattering is
weak, and re
ection from the beach (Elgar, Herbers & Guza, 1994), not represented in
the model, is apparent in the 8 m data (�gure 12b).
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Figure 11. (a) Predicted wave spectrum E in region S1 (�gure 8) and (b) corresponding Bragg
scattering source term SBragg , based on bottom spectrum FB

1 (�gure 9a). Contours in (b) are
solid for positive values (yellow to red colour shades), solid and thick for zero, and dashed for
negative values (green to blue colour shades).

The model without Bragg scattering predicts the expected turning of � towards the
shore-normal direction, caused by refraction (�gure 12a). The introduction of Bragg
scattering shifts the mean wave direction by an additional 1� to 10 � to the north, because
the bottom spectrum is not isotropic (�gure 9). This e�ect is strongest for the hindcast
which uses the bottom spectrum FB

1 with a larger variance. This small shift is not evident
in the observations, suggesting that either the orientation of the bathymetric features in
�gure 9(a) may not be representative of other parts of the shelf, or other processes, not
represented in the model, may be important. The detailed directional spectra, shown in
�gure 13, demonstrate that rather than shifting the entire spectrum, Bragg scattering
skews the directional spectrum to the north (�gure 13c,d) by preferentially scattering
waves that propagate in directions parallel to the crests of the larger bedforms (i.e. waves
from the north-east, �gures 8 and 9).
Bragg scattering strongly a�ects the directional spread, causing a gradual increase of

�� across the shelf (�gure 12a), that partly balances the reduction of the directional
spread of the incident waves caused by refraction. Results based on bottom elevation
spectra FB

1 and FB
2 are qualitatively similar but the increase in directional spread is

much larger for the more `energetic' bottom spectrum FB
1 (a factor of about 2.5) than

predicted for FB
2 (a factor 1.6). On the inner shelf, in 8 m depth, the observed �� value

of 14� is a factor 2 larger than the model prediction without Bragg scattering (7�, �gure
12b), but falls in the range of model results with the source term SBragg based on bottom
spectra FB

1 (18�) and FB

2 (12�).
The cuto� value (k=l)max of the ratio between surface and bottom wavenumbers was

varied from 0.5 (no scattering) to 5, in order to examine the importance of di�erent
bottom topography scales in the scattering process (�gure 14). Increasing (k=l)max from
0.5 (no scattering) to 1 (maximum scattering angle �max = 60�) does not change sig-
ni�cantly the directional properties of the waves. These interactions, involving bottom
components with wavelengths smaller than the surface wavelength, are weak because of
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Figure 12. Measured (�) and predicted (||, with Bragg scattering using FB
1 (l); { { {, with

Bragg scattering using FB
2 (l); � � �, without Bragg scattering) variations of (a) � and (b) �� at

the peak frequency fp. Results are shown for 20 October 1994, at 2100 GMT, along a cross-shelf
transect (c) extending from the 8 m depth array to deep water o�shore of NDBC buoy 44014 .
A maximum value of k=l = 5 was used in the scattering calculations.

the sharp roll-o� of the bottom spectral levels at high wavenumbers. At the other end of
the spectrum, results for (k=l)max values of 4 and 5 are nearly identical, indicating that
larger bottom features also do not signi�cantly a�ect directional properties. Although the
bottom spectral levels are relatively high at these small values of l, the angular separa-
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(c)  model output, 8 m depth, no SBragg (d)  model output, 8 m depth, with SBragg

(a)        Observations, 49 m depth (b)       Observations , 8 m depth

Figure 13. Observed wave spectra in (a ) 49 and (b ) 8 m depth, and predicted wave spectra
in 8 m depth, (c ) without Bragg scattering and (d ) with Bragg scattering, based on the
bottom spectrum FB

1 (�gure 9a). Note that waves coming from the west in panel b are probably
re
ections from shore (at 1 km of the 8 m site).

tion of the interacting wave components is small (11.5� for k=l = 5) and thus the energy
transfers do not strongly modify a directional spectrum that is already broad. A range
of interactions involving intermediate scale bottom components (k=l = 1 to 4) appears
to dominate the scattering process (i.e. note the gradual shift of � and increase of �� as
(k=l)

max
increases from 1 to 4 in �gure 14). Predictions of �� are weakly sensitive to the

bathymetry smoothing scale used in ray computations, with a typical 2� di�erence be-
tween model runs using the original 150 m resolution grid, and the predictions presented
here using a 2 km smoothed grid.
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Figure 14. Predicted variations of (a) � and (b) �� across the shelf for six values of the cuto�
parameter (k=l)

max
: ||, 5; �, 4; �, 3; 4, 2; +, 1; � � �, 0.5 (i.e. no Bragg scattering).

5. Conclusion

The energy balance equation for random surface gravity waves, including Bragg scatter-
ing (the lowest-order resonant interactions between waves and bottom undulations), was
rederived for non-stationary conditions and multiple-scale bottom topography, combin-
ing Hasselmann's (1962) perturbation expansion of the wave energy, with a ray approx-
imation for medium variations. The bottom topography is decomposed in a large-scale
topography, responsible for wave refraction and shoaling, and random undulations with
smaller wavelengths (of the order of the surface wavelength), that cause Bragg scatter-
ing. The e�ects of the large-scale and small-scale bottom slopes, surface nonlinearity,
wave non-stationarity and non-uniformity are represented by �ve small parameters, �,
�, ", �, and 
, respectively. Using � � � � 
 � �2 � "2, a closure of the fourth-order
energy yields a spectral energy balance equation in which refraction, shoaling, and Bragg
scattering processes are all of the same order "4.
The stochastic scattering theory was reconciled with a spectral application of deter-

ministic theories for waves propagating over sinusoidal bars (Davies & Heathershaw 1984;
Mei, 1985; Dalrymple & Kirby 1986), with agreement found in the asymptotic limit of
a large number of bars. These comparisons support the present derivation of the Bragg
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scattering source term (2.48) which is a factor 8 and 4 smaller than expressions given
by Hasselmann (1966) and Long (1973), respectively. Analysis of the detuning of wave{
bottom interactions by the large-scale bottom slope � shows that the present theory is
valid only for small values of �= cos3 �, where � is the wave incidence direction relative to
the bedform-normal. In the present application, wave-bottom interactions corresponding
to � larger than a cuto� value �max were neglected.

The e�ect of bottom scattering on swell propagation was illustrated with a hindcast
for the North Carolina continental shelf using the numerical wave model CREST with
high-resolution bathymetry and an e�cient semi-implicit scheme to evaluate the bottom
scattering source term and integrate the energy balance equation. Back-scattering of
waves towards the open ocean was found to be negligible in this region. However, forward-
scattering causes a di�usion of wave energy about the mean direction that results in a
dramatic increase of the directional spread of the wave spectrum on the inner shelf. This
weak back-scattering and strong forward-scattering is caused by the sharp roll-o� of the
bottom elevation spectrum at high wavenumbers. The predicted directional broadening
of the swell spectrum in shallow water is qualitatively consistent with �eld measurements.

This research is sponsored by the Coastal Dynamics Program of the O�ce of Naval
Research, and the National Oceanographic Partnership Program (NOPP). We would like
to acknowledge P. Jessen and M. Orzech (NPS) for the wave and bathymetry data anal-
yses, the National Data Buoy Center for providing wave data for the outer shelf, and
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board the Canadian Hydrographic vessel Frederick G. Creed, as part of the Bedford In-
stitute of Oceanography contribution to SHOWEX, with the participation of F. Dobson,
M. Donelan and H. Graber. T. Stanton instigated the surveys, and his involvement in,
and support of the present work are greatly appreciated.

Appendix A. Derivation of E2;2 (k)

The governing equation (2.34) for �s
2;k (t) is an undamped forced harmonic oscillator

with a resonant frequency ! given by the dispersion relation (2.28). Applying a Fourier
decomposition to the right-hand side forcing terms, (2.34) can be written as a linear
superposition of equations of the type

d2f1
dt2

+ !2f1 = ei!
0t: (A 1)

In order to specify a unique solution to (A 1), initial conditions must be prescribed. In
the limit of large propagation distances, the initial conditions contribute a negligible
bounded term to the solution. Following Hasselmann (1962), we chose f1 (0) = 0 and
df1=dt (0) = 0, giving the solution

f1 (!; !
0; t) =

ei!
0t � ei!t + i (! � !0) sin (!t) =!

!2 � !02
for !02 6= !2; (A 2)

f1 (!; !
0; t) =

tei!
0t

2i!0
�

sin (!t)

2i!0!
for !0 = �!: (A 3)
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�s
2;k (t) is given by

�s
2;k (t) =

X
k

0

A
�
k;k0

�
Bk�k0

b�s
1;k0f1 (!;�s!

0; t) ; (A 4)

where

A
�
k;k0

�
=
�
k � !02 tanh (kH)

� k � k0
k

: (A 5)

The third-order energies E1;2 and E2;1 that result from the correlations between �s
1;sk

and ��s
2;�sk (equation (A 4)) are found to be bounded, but the fourth-order energy E2;2

grows with time. Substituting (A 4) in (2.16) and taking the limit (2.17) to a continuous
spectrum yields the solution for E2;2 (t;k) as de�ned by (2.25):

E2;2 (t;k) =

Z 1

0

Z 2�

0

A
�
k;k0

�
FB

�
k � k0

�
E2

�et;k0� jf1 (!;�!0; t)j2 dk0d�0+ : : : ; (A 6)

where k0 = k0 (cos �0; sin �0), and the omitted terms (: : :) include bounded terms forced
by surface nonlinearity. Assuming that the frequency spectrum is continuous, the contri-
bution of exact resonant interactions (k0 = k) to (A 6) is negligible compared to contri-
butions of near-resonant interactions (k0 � k) that span a �nite range of wavenumbers,
and thus (A 2) can be substituted in (A 6). Changing the integration variable k0 to !0,
given by the dispersion relation (2.28), and removing the singularity at !0 = ! using
contour integration on the complex plane, we obtain

E2;2 (t;k) = t

Z
2�

0

4�!k4 cos2 (� � �0)

sinh (2kH) [2kH + sinh (2kH)]
FB

�
k � k0

�
E2

�et;k0� d�0
+bounded terms ; (A 7)

For large t, the derivative of E2;2 (t;k) with respect to t yields equation (2.35).

Appendix B. Derivation of Esc

3;1
(k) + Esc

1;3
(k)

The particular solution �sc
3
to (2.37){(2.39) in the vicinity of x = 0 can be written as

�sc
3
(x; z; t) =

X
k;s

�
�s
3;k (t)

cosh (kz + kH)

cosh (kH)
+ �si;s

3;k (t)
sinh (kz + kH)

cosh (kH)

�
eik�x: (B 1)

The solution for the bound component �si;s
3;k follows from substituting the second-order

velocity potential (2.32) in the bottom boundary condition (2.38 with term V set to zero)

�si;s

3;k (t) = �
X
k0

k � k
0

k
Bk�k0�s

2;k (t) : (B 2)

Substitution of (B 2) in the surface boundary condition ((2.39) with the right-hand side
set to zero) yields the forced harmonic oscillator equation�

d2

dt2
+ !2

�
�s
3;k = �

X
k0

k � k
0

k
Bk�k0

��
k + tanh (kH)

d2

dt2

�
�s
2;k0 (t)

�
: (B 3)

Using (2.34) and (A 4) we have�
d2

dt2
+ !2

�
�s
3;k = �

X
k0

A
�
k;k0

�
Bk�k0

X
k00

A
�
k
0;k00

�
Bk0�k00

b�s
1;k00f1 (!

0;�s!00; t)
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�
X
k

0

k � k
0

k
tanh (kH)Bk�k0

X
k

00

A
�
k
0;k00

�
Bk0�k00�s

1;k00 (t) ; (B 4)

where A is de�ned by (A 5). The only terms of (B 4) that force growing correlations with
�1 are those that have a product of two factors A and equal wavenumbers k00 = k, other
terms force bounded correlations and can be neglected. Therefore (B 4) can be regarded
as a linear combination of forced oscillator equations of the form

d2f2
dt2

+ !2f2 = f1 (!
0;�s!; t) : (B 5)

The solution of (B 5) for !02 6= !2 and initial conditions f2 (0) = df2=dt (0) = 0 is

f2 (!; !
0; s; t) = �

teis!t � sin (!t) =!

2is! (!02 � !2)
�
(!0 + !) ei!

0t + (!0 � !) e�i!
0t � 2!0ei!t

2!0 (!02 � !2)2
: (B 6)

Following the steps in Appendix A, we obtain

Esc

3;1 (t;k) + Esc

1;3 (t;k) = �t

Z 2�

0

4�!k4 cos2 (� � �0)FB
�
k � k0

�
sinh (2kH) [2kH + sinh (2kH)]

E2

�et;k� d�0
+ bounded terms: (B 7)

Taking the derivative of (B 7) with respect to t yields equation (2.41).

Appendix C. Derivation of Ens

3;1
(k) +Ens

1;3
(k)

In the vicinity of x = 0, �ns3 can be written in the form

�ns3 =
X
k;s

cosh (kz + kH)

cosh (kH)
�s
3;k (t) e

ik�x;

where �s
3;k satis�es �

d2

dt2
+ !2

�
�s
3;k = 2is!

@b�s
1;k

@t
e�is!t; (C 1)

With the solution given by equation (A 3):

�s
3;k (t) = �t

@b�s
1;k

@t
e�is!t: (C 2)

This solution is correlated with the �rst-order velocity potential, giving the energy con-
tribution at ex = 0

Ens

3;1 (t;k) +Ens

1;3 (t;k) = �t
@E2

�et;k�
@t

+ bounded term: (C 3)

Taking the derivative of (C 3) with respect to t yields (2.42).

Appendix D. Derivation of Ehe

3;1
(k) + Ehe

1;3
(k)

Terms I and II in (2.37) can be written as

I + II =
X
k;s

eik�x

cosh (kH)
fcosh (kz + kH) (r � kr + 2k � r)

+2 [(z +H) sinh (kz + kH)�H tanh (kH) cosh (kz + kH)]k � rkr

+2 [k sinh (kz + kH)� k tanh (kH) cosh (kz + kH)]k � rHg�s
1;k (t) :(D 1)
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In the vicinity of x = 0, we can write the solution to (2.37) as

�he3 =
X
k;s

cosh (kz + kH)

cosh (kH)

h
(z +H)

2
�coz2;s

3;k (t) + (z +H) �coz;s

3;k (t) + �s
3;k (t)

i
eik�x

+
sinh (kz + kH)

cosh (kH)

h
(z +H) �siz;s

3;k (t) + �si;s
3;k (t)

i
eik�x; (D 2)

where

�siz;s

3;k (t) =
�i

2k

�
�s
1;k (t)r � kr + 2k � r�s

1;k (t)
�

+i
�s
1;k (t)

k
k �

��
H tanh (krH) +

1

2k

�
rkr + k tanh (kH)rH

�
(D 3)

�coz2;s
3;k (t) = �i�s

1;k (t)
k � rkr

2k
; (D 4)

�coz;s

3;k (t) = �i�s
1;k (t)k � rH; (D 5)

and the remaining two terms follow from the bottom and surface boundary conditions.
Substituting (D 2){(D5) in the bottom boundary condition ((2.38) with III and IV set
to zero) gives

�si;s
3;k (t) = 0: (D 6)

Substituting (D 2){(D 6) in the surface boundary condition ((2.39) with VI set to zero)
yields a forced harmonic oscillator equation for �s

3;k (t):�
d2

dt2
+ !2

�
�s
3;k (t) = ie�is!t

("
tanh (kH) + kH

�
1� tanh2 (kH)

�
k

#

�

�
r � kr + kr � r� 2k �

��
H tanh (kH) +

1

2k

�
rkr + k tanh (kH)rH

��
+
H

k
k � rkr + k � rH

� b�s
1;k: (D 7)

(D7) is of the same form as (A 1) with only resonant forcing terms (!0 = �!) and a
solution given by (A 3). The covariance of ��

3;�k and the �rst-order potential, de�ned by
(2.16), is given by

F�;he
3;1;k = �t

Cg

2k
r �

�
krF

�

1;1;k

�
+t

Cg

k
k �

��
H tanh (kH) +

1

2k

�
rkr + k tanh (kH)rH

�
F�

1;1;k

�
t!

k2 tanh (kH)
k � (Hrkr + krH)F�

1;1;k + bounded term ; (D 8)

where Cg is the group speed

Cg =
!

kr

�
1

2
+

krH

sinh (2krH)

�
; (D 9)

and the bounded term is given by the initial conditions (the second right-hand side term
in A3). From the dispersion relation (2.28) we �nd

rH = �
2kH + sinh (2kH)

2k2
rkr; (D 10)
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and

r [Cg tanh (krH)]

k tanh (kH)
= �

!

2k3

�
3 +

2kH

sinh (2kH)
� 2kH tanh (kH)

�
rkr: (D 11)

Using (D 10),(D11), and the de�nition of the Lagrangian energy spectrum E2 (kr) (2.45),
(D8) reduces to�
Ehe

3;1 (k) + Ehe

1;3 (k)
�
�kr;x�kr;y = �tr � (CgE2 (kr)�kr;x�kr;y) + bounded terms.

(D 12)
Writing Cg as (Cg cos �; Cg sin �), where � is the local ray direction, the divergence term
in (D 12) can be expressed in terms of intrinsic coordinates:

r � [CgE2 (kr)�kr;x�kr;y] =
@ [CgE2 (kr)�kr;x�kr;y]

@r
+ CgE2 (kr)�kr;x�kr;y

@�

@n
;

(D 13)
where r and n are the local along-ray and ray-normal coordinates. Longuet-Higgins (1957,
equations 6, 10 and 21) showed that (D 13) can be simpli�ed using ray theory. De�ning
the small separation p of two rays that are parallel in the vicinity of ex = 0, we have

@�

@n
=

1

p

@p

@r
(D 14)

and
@ (pCg�kr;x�kr;y)

@r
= 0: (D 15)

Substituting (D 14) and (D 15) in (D 13), and taking the limit j�kr j ! 0, we have

Ehe

3;1 (k) +Ehe

1;3 (k) = �tCg

@E2 (kr)

@r
+ bounded term : (D 16)

Finally the derivative of (D 16) with respect to t yields (2.43).
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